
Abstract

Metals can cause oxidative stress by increasing the formation of reactive oxygen species (ROS), 
which make antioxidants incapable of defiance against growing amounts of free radicals. Metal 
toxicity is related to their oxidative state and reactivity with other compounds. However, several 
reports about metals have been published in the recent years. Mitochondria, as a site of cellular 
oxygen consumption and energy production, can be a target for metals toxicity. Dysfunction of 
Mitochondrial oxidative phosphorylation led to the production of some metals toxicities metals 
through alteration in the activities of I, II, III, IV and V complexes and disruption of mitochon-
drial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hy-
drolysis can impair the cellular energy production. In the present review study, the researchers 
have criticized reviews and some evidence about the oxidative stress as a mechanism of toxicity 
of metals. The metals disrupt cellular and antioxidant defense, reactive oxygen species (ROS) 
generation, and promote oxidative damage. The oxidative injuries induced by metals can be re-
stored by use of antioxidants such as chelators, vitamin E and C, herbal medicine, and through 
increasing the antioxidants level. However, to elucidate many aspect of mechanism toxicity of 
metals, further studies are yet to be carried out. [GMJ. 2014;3(1):2-13]
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Introduction

Reactive oxygen species (ROS) are the 
most important group of radical spe-

cies [1,2]. ROS and reactive nitrogen species 
(RNS) are known to play a dual role in bio-
logical organisms, since they can be either 
harmful or beneficial to living systems [3]. 
One further beneficial example of ROS at 
low concentrations is the induction mitogenic 
‎response. In contrast, at high concentrations, 
ROS can be important mediators of damage to 
‎cell structures, including lipids in cell mem-

branes, proteins and nucleic acids [4]. Antiox-
idant actions of non-enzymatic antioxidants 
and antioxidant enzymes correct the adverse 
effects of ROS [5]. Oxidative stress can be de-
fined most simply as the ‎imbalance between 
the production of ROS, RNS capable of caus-
ing peroxidation of lipid layer ‎of cells and the 
body’s antioxidant defense [6]. 
‎There is some evidence showing metals such 
as iron, copper, cadmium, chromium, lead, 
mercury, nickel, vanadium and aluminum can 
produce ROS and RNS through lipid perox-
idation, DNA damage, depletion of sulfhy-
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dryls, and altered calcium homeostasis [7,8]. 
In metabolism of oxygen in aerobic organ-
isms, the mitochondrial respiratory chain is 
the major source of intracellular ROS gener-
ation and at the same time, an important tar-
get for the damaging effects of ROS and RNS 
[9,10].
The interaction of diverse macromolecules 
with ROS/RNS may impair the function of 
these organelles and may directly influence 
cell viability and trigger cell death [10,11]. 
The decline of mitochondrial respiratory func-
tion may also be caused by damages to the 
effect of direct free radicals on proteins, lip-
ids and other macromolecules, as well as the 
effects of the mutant oxidatively damaged in 
mtDNA [11,12]. The mitochondrial transcrip-
tion could be sensitive to free radical attack, to 
lipid peroxidation products, or to both. It has 
been proposed that mitochondrial impairment 
being the result of oxidative-induced dam-
age plays a critical role in the metals toxicity 
[13,14]. The overall objective of this paper 
is to provide a concise and current review of 
the effects of metals toxicity on mitochondrial 
function and oxidative stress. 

Metals-induced oxidative stress
Free radicals are defined as atoms or mol-
ecules that contain one or more unpaired 
electrons; the toxicity of many xenobiotic, 
especially metals are associated with the pro-
duction of free radicals, which are in turn toxi-
cant and implicated in the pathophysiology of 
many diseases [6]. 
The possible role of oxidative damage in pa-
thology of metals may ‎contribute to their tox-
icity [15]. Increased rates at ROS generation 
have often been suggested to contribute to the 
toxicity of high levels of several other metals, 
including lead, cobalt, mercury, nickel, cad-
mium, molybdenum, vanadium, chromium 
and aluminum, as well as other elements such 
as selenium and arsenic [16]. However, the 
evidence for a primary role of oxidative stress 
in toxicity for the elements in question is not 
particularly convincing. For example, al-
though increased lipid peroxidation has often 
been demonstrated in isolated cells exposed 
to metals, or in tissues from animals poisoned 
by metals, this peroxidation may be a conse-

quence of tissue injury and GSH depletion 
cause by the metals rather than on early ‎con-
tributor to the metal toxicity [17,18]. Several 
studies have focused on metal-induced toxici-
ty and carcinogenicity, emphasizing their role 
on the generation of ROS / RNS in biological 
systems [18].

Mitochondria: The major source cellular 
oxidative stress
As estimated [19],  some 0.2–2% of the oxygen 
taken up by cells is converted by mitochon-
dria to ROS, mainly through the production of 
superoxide anion. Mitochondria consume 85–
90% of a cell’s oxygen to support oxidative 
phosphorylation, the major-energy production 
system in cells that works through oxidation 
of fuels through the synthesis adenosine tri-
phosphate (ATP) [20]. 
Hence, the mitochondrial respiratory chain 
serves as a major source of ROS, derived 
from the disproportionation of superoxide an-
ions [21]. Within mitochondria, it is the elec-
tron transport chain that is the main source of 
ROS [22]. The sites of ROS production along 
the chain have been subjected to many studies 
[23-25]. Recent findings show that two major 
sites of superoxide production are at complex 
I and complex III [26,27]. As described in 
previous studies [6,28,29], the term oxidative 
stress refers to both oxidative damage and ox-
idative stress impact on signaling, transcrip-
tional control and other normal processes 
within cells; the term has also encompassed 
the effects of oxidants such as RNS.
In mammalian tissues, there are at least three 
distinct superoxide dismutase (SOD) isoen-
zymes, including one manganese form (Mn-
SOD) present in the mitochondrial matrix and 
two copper and zinc forms (Cu,Zn-SOD), one 
of which is located only in the cytosol and 
the other one is in various extracellular flu-
ids, respectively [30]. SOD plays a key role in 
catalyzing the dismutation of O2•−to O2 and 
H2O2. Glutathione peroxidase (GPx) and cat-
alase (CAT), remove hydrogen peroxide. In 
the presence of transition metals, H2O2 can be 
reduced to the extremely reactive OH [31,32]. 
Metabolizing water and corresponding alco-
hols (ROH) need to reduce H2O2 and a wide 
range of organic hydroperoxides (ROOH) by 
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some catalyzing reactions through GPx. An-
other abundant reactive radical is Nitric oxide 
(NO°). NO° acts as an important oxidative 
biological signaling molecule, having an im-
portant role on a large variety of diverse phys-
iological processes. These include neurotrans-
mission, blood pressure regulation, defense 
mechanisms, smooth muscle relaxation and 
immune regulation [33,34]. NO° is enzymat-
ically generated by the actions of nitric oxide 
synthases (NOS) and has a half-life of only 
a few seconds in an aqueous environment. 
Under these conditions, Peroxynitrite anion 
ONOO° is an oxidizing free radical produced 
by NO° and the superoxide anion, being able 
to cause DNA fragmentation and lipid perox-
idation [34,35].

Metal induced mitochondrial dysfunction 
and oxidative stress

Chromium
Chromium (Cr) is a chemical widely used in 
steel, alloy, cast, irons, chrome, paints, met-
al finishes and wood treatment. Cr is one of 
the important causes of allergic dermatitis and 
has toxic and carcinogenic effects on humans 
and animals [36-38]. Chromate plating and 
other hexavalent Cr (VI) exposure can occur 
in several industrial uses such as chromate 
pigments, chromate-based corrosion inhib-
itors, stainless steel machining and welding, 
etc [37,39]. The authors have reviewed recent 
in vitro and in vivo effects of oxygen scav-
engers, glutathione vitamin B2, vitamin E 
and vitamin C on chromate-induced injuries 
including DNA damage, lipid peroxidation, 
enzyme inhibition, cytotoxicity and mutagen-
esis. Also, Chromium overdoes occurs in the 
workplace primarily in the valence forms Cr 
(VI) and Cr (III) [40]. Inhalation of hexava-
lent chromium can result in several disorders 
such as pulmonary fibrosis, chronic bronchi-
tis, lung cancer, occupational asthma and oth-
ers [41-45]. Cr (VI) can also generate highly 
reactive oxidant such as peroxynitrite. In fact, 
Cr(VI) reduction results in several oxidants: 
(a) Cr(V) can directly oxidize cell compo-
nents, (b)  Cr(IV) catalyzes robust hydroxyl 
radical (HO°) generation in Fenton-like reac-
tions with H2O2; and, (c) some enzymes si-

multaneously reduce Cr(VI)to Cr(V) and gen-
erate superoxide (O2°−) [46-48]. In previous 
studies, the results showed that Cr (VI) expo-
sure significantly inhibits the activity of core 
mitochondrial functions (aconitase, complex-
es I and II) in both cultured cells and bronchial 
epithelium [49]. The inhibition of mitochon-
drial core protein results in inhibits of electron 
transfer chain and thereby impaired oxygen 
reduction. These phenomena lead to radicals’ 
formation and oxidative stress [50]. The re-
sults of a  study showed that total blood Cr 
level, SOD level, lipid peroxidation level and 
DNA damage were significantly higher and 
GSH level was significantly  lower in exposed 
group as compared to the unexposed group 
[50]. Also, the studies showed that the toxic-
ity of Cr (III) is mainly associated with cross 
linking mechanism which leads to multiform 
DNA damages, e.g., strand breakage, DNA–
protein cross-links, DNA–DNA cross-links, 
Cr–DNA adducts and base modifications in 
cells [51-54]. Only chromium (VI) does not 
react with DNA in vitro, or in isolated nuclei. 
However, once inside the cell, in the presence 
of cellular reductants, it causes a wide variety 
of DNA lesions including Cr-DNA adducts, 
DNA-protein crosses links, DNA-DNA cross 
links and oxidative damage. Within the cell, 
glutathione rapidly forms a complex with Cr 
(VI), followed by a slow reduction of Cr (VI) 
to yield Cr (V). In addition, superoxide can 
further reduce Cr (VI) to Cr (V), which can 
further catalyze the demonstration of H2O2. 
Thus, it leads to the creation of DNA dam-
aging hydroxyl radical [55,56]. Also, Cr is a 
ROS promoting agent, resulting in mitochon-
drial damage that leads to apoptosis and car-
cinogenicity. For example, in vivo, Cr (VI) 
exposure results in apoptosis, mitochondri-
al instability, release of cytochrome c and at 
least initiation cell disruption [57-59].
All in all, effective Cr chelating or elevated 
cellular antioxidation is the most useful way 
of treating Cr-induced oxidative injury, lead-
ing to the prevention of neurodegenerative 
disorders and chronic diseases [57,58].

Cadmium
Cadmium (Cd) is a highly toxic metal of oc-
cupational and environmental concern due to 
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its widespread contamination of sites world-
wide and long biological half-life (10 to 30 
years) [59]. In Japan, Itai-Itai disease (sever 
Cd poisoning) was observed when Cd was 
discharged from a mine into a river used to 
supply drinking water. The organism is wide-
ly distributed in the environment and elevated 
exposure can be of both natural and anthropo-
genic origin [60,61]. Exposure occurs main-
ly via food, in particular plant-derived food 
and certain seafood, and from tobacco smoke 
[62]. Several studies showed that low-level 
environmental exposure to Cd has adverse 
health effect on kidney and bone; In addition, 
recent studies have reported higher risk of 
cancer and increased mortality [63]. In adults, 
only a few percentage of the ingested Cd is 
absorbed in the gastrointestinal tract. In con-
trast, Young adults have a higher absorption, 
apparently coupled with a different mecha-
nism of uptake [64]. Cd-increased ROS lead 
to lipid peroxidation and DNA damage ROS 
has been implicated in chronic Cd nephrotox-
icity [65-67], immunotoxicity [68] and car-
cinogenesis [69]. Some indirect mechanisms 
involve in radical production by Cd. Several 
mechanisms have emphasized the role of Cd 
in generation of free radicals. Disruption of 
the cellular antioxidant system by glutathione 
depletion is one of them [70,71]. Induction of 
inflammation in the liver is another important 
mechanism that proposed for Cd-induced ox-
idative stress [65]. Cd-induced inflammatory 
mediators such as IL-1β, TNF-α, IL-6, and 
IL-8 are generated by the activation of the res-
ident macrophages of the liver (Kupffer cells) 
[72]. It has been suggested that Cd produce 
ROS by binding to protein thiols in the mito-
chondrial membrane and affect mitochondrial 
permeability transition and inhibit respiratory 
chain reaction [73,74]. Cd inhibit mitochon-
drial complex III, resulting in accumulation 
of semiubiquinones at the Coenzyme Q sites, 
which lead to one electron to molecular ox-
ygen to form superoxide anion [75]. Indeed, 
Cd effects on mitochondrial electron trans-
fer are the major origin for Cd generated 
ROS, not only in mammalian cells, but also 
in plants [76]. In cells, some of transcription 
factors such as AP-1 and NF-κB are sensitive 
to oxidative stress. The activation of these 

transcription factors by Cd has been shown 
in intact animals and cultured cells [77-79]. 
In addition, the activation of MAPKs by Cd 
is associated with ROS production in intact 
animals (80) in cultured cells [81,82], which 
in turn plays an important role in Cd-induced 
apoptosis to eliminate oxidative damaged 
cells [83]. It is hypothesized that during acute 
and chronic Cd exposure, adaptation mecha-
nisms are induced to offset Cd-induced ROS, 
oxidative damage and mitochondrial dysfunc-
tion [70,71].
Adaptation to chronic Cd exposure reduces 
ROS production, but acquired Cd tolerance 
with aberrant gene expression plays important 
roles in acute, chronic Cd toxicity and apop-
tosis [77,84]. In addition, Cd modulates pro-
tein kinase, transcription factors, MAPK, mi-
tochondria, caspases, and ROS pathways all 
seem to have a role in Cd-induced apoptosis 
and cancer [78,80]. Cooperatively, efficient 
chelation of the element and/or supplement-
ing antioxidative materials is the preferred 
medical treatment for reducing various toxic 
and effects followed by Cd exposure [65,70].

Lead
Lead (Pb) is a common agent that causes en-
vironmental and industrial pollutant. Pb is one 
of the most commonly used metals in industry 
and its toxicity is of concern to public health 
due to the persistence of lead in the environ-
ment. Pb has been found to produce several 
toxic biochemicals [85].
Liver, kidney and brain are the major organ 
that affected by Pb [86]. Long term exposure 
to this bio-toxicant leads to its accumulation 
in these organs with maximum concentration 
in different tissues [87]. The neurotoxic effect 
of Pb, particularly in the developing brain is a 
matter of serious concern and behavioral ab-
normalities, learning impairment, decreased 
hearing and impaired cognitive functions in 
humans and experimental animals have been 
recorded with blood Pb levels as low as 10 g/
dl [88]. Several mechanisms have been pro-
posed to explain the Pb induced toxicity, but 
no mechanisms have been yet defined explic-
itly [85]. Results from recent studies showed 
that oxidative stress is one of the important 
mechanisms of toxic effects of Pb [85]. Also, 
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Pb exposure led to various degrees of in-
creased lipid peroxidation with tissue specific 
changes in liver [89,90], kidneys [89,91] and 
brain [89,92,93]. Treatment of Pb -exposed 
rats with tocopherol and ascorbic acid did not 
reduce tissue Pb burden, but lowered the lipid 
peroxidation levels, revealing their antioxi-
dant potential in lead related oxidative stress. 
In addition Pb is shown to induce changes in 
the composition of red blood cell (RBC) mem-
brane proteins and lipids, and inhibit hemo-
globin synthesis [94,95]. Several antioxidant 
enzymes and molecules such as reduced glu-
tathione (GSH) concentration, GPx, SOD and 
CAT activities, have been used to evaluate Pb 
-induced oxidative damage in animal and hu-
man studies [89,95,96]. Pb, because of its af-
finity to SH group, is known to inhibit ALAD 
(the second enzyme in the heme biosynthesis 
pathway and catalyzes condensation of two 
molecules of aminolevulinic acid (ALA) to 
a porphobilinogen.), resulting in accumula-
tion of ALA. ALAD has been suggested as a 
sensitive index of the effect of Pb exposure 
on hematological system [97,98]. Hemato-
logical system is one of the important targets 
for Pb induced toxicity. The effects of Pb on 
this system result in decreased heme synthe-
sis and anemia [99]. High concentrations of 
oxygen, autoxidizability of hemoglobin, vul-
nerable membrane components to lipid per-
oxidation and limited capacity to repair their 
damaged components, are factors that make 
RBCs sensitive to oxidative damage [100]. 
Previous studies of correlation between clin-
ical indicators of Pb poisoning and oxidative 
stress parameters in controls and Pb-exposed 
workers showed that there was a disruption of 
prooxidant/antioxidant balance in Pb-exposed 
workers [101,102]. However, several studies 
suggested ALA as a possible source [103]. In-
hibition of ALAD by lead results in accumula-
tion of ALA during heme biosynthesis. In next 
step, accumulated ALA has been shown to un-
dergo metal-catalyzed auto-oxidation giving 
rise to the formation of superoxide (O2•−), 
H2O2 and ALA [103]. All in all, there may 
be two independent sources of Pb-induced ox-
idative damage; the first is the pro-oxidative 
effect of δ-ALA, and the second is connected 
with the direct effect of Pb on membrane lip-

ids and mitochondrial dysfunction [104-106]. 
Pb depolarizes cell mitochondria due to the 
opening of permeability transition pore, re-
sulting in cytochrome c release, caspase 
activation, and apoptosis. In Pb induced 
apoptosis, the opening of mitochondrial per-
meability transition pore is due to oxidative 
stress [107,108].
There are many studies suggesting possible 
clinical applications of exogenous antioxi-
dants in the treatment of toxicity induced by Pb 
exposure. For example, treatment with ascor-
bic acid or a-tocopherol and N-acetylcystein 
was found to reduce the level of ROS-initiat-
ed damage and their combined administration 
restored normal mitochondrial function in Pb 
-supplemented rats [89,109,110]. 

Aluminum
Aluminum (Al) is the third most abundant el-
ement and distributed widely in the ‎biosphere. 
Al constitutes approximately 8% of the earth 
crust exceeded only by oxygen ‎‎47% and sili-
con 28% [8]. ‎Several mechanisms have been 
proposed to explain the toxicity of Al, none 
supported by convincing data from in vivo 
experiments [111]. Al3+ ions cannot stim-
ulate lipid peroxidation or other free radical 
reactions which is not surprising because of 
their fixed valence [112]. However, if per-
oxidation in liposomes erythrocytes, synap-
tosome somylein, or microsomes is stimu-
lated by adding fe2+ ions, the simultaneous 
addition of Al3+ increases the per oxidation 
rate. It may be that Al3+ ions bind to mem-
branes and cause a subtle rearrangement of 
membrane lipids that aids the propagation of 
lipid per oxidation, this action of Al3+ might 
contribute to its neurotoxin properties, since 
the brain is sensitive to oxidative damage 
[113,114]. Injection of large dose of alumi-
num salts into animals has been claimed to in-
crease brain lipid peroxidation levels. And in-
jection of aluminum-containing vaccines into 
mice caused a transient rise in brain aluminum 
levels [114,115]. 
Also, Aluminum accumulation is thought to 
be related to renal impairment, anemia and 
other clinical complications in hemodialysis 
patients and they showed that patients under-
going hemodialysis present platelet dysfunc-
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tion and lipid peroxidation [116,117].
However, increased ROS were reported 
during Al exposure, which was attributed 
to electron leakage, enhanced mitochondri-
al activity and increased electron chain ac-
tivity. Mitochondria contribute too much of 
core human metabolism, including oxidative 
phosphorylation, the tricarboxylic acid (TCA) 
cycle, fatty acid oxidation, iron sulfur center 
and heme biosynthesis, and amino acid me-
tabolism [118]. These are in addition to the 
well-established role of the mitochondria 
in energy metabolism and regulation of cell 
death [119]. Also, previous studies revealed 
that Al induced imbalance in this steady state 
allows the induction and effects of mitochon-
drial dysfunction [120,121]. Since Al induces 
oxidative damage resulting in an increase of 
ROS production, it is possible that Al-induced 
ROS are involved in mitochondrial instabil-
ity, and release of cytochrome c [122,123]. 
Although the administration of antioxidant 
materials is widely used in Al intoxication. 
vitamin C, E and efficient chelating of the 
element supplementing is useful, that Al in-
duced, neurode generative disorders such as 
Alzheimer diseases [124-127].

Conclusion

One cannot avoid the generation of ROS, 
because it is a result from aerobic life. ROS 
is produced in mitochondrial function [128]. 
ROS are known not only to attack DNA, but 
additional cellular components ‎such as pro-
teins and lipids, leaving after reactive species 
that can, in turn, bind to DNA ‎bases [129,130]. 
This implicates ‎such damage in the etiology 
of many diseases such as cancer [131,132]. 
Toxic metals (lead, ‎Cd, Cr, Al, mercury and 
arsenic) are widely found in our environment 
[17]. 
Humans are exposed to these metals from 
numerous sources, including ‎contaminated 
air, water, soil and food [16]. There are some 
new studies, showing that transition ‎metals 
act as catalysts in the oxidative reactions of 
biological macromolecules. So, metals act 

their toxicities roles through mitochondri-
al dysfunction and oxidative tissue damage 
[16,18,133,134]. Although, ROS has been im-
plicated in activation of an extrinsic cascade, 
the correlation of ROS, caspase activation and 
p38 in metals-induced apoptosis, requires fur-
ther investigation. A potential role for ROS, 
the mitochondria, and activation of several 
signaling pathways (MAPK and p53) have 
been established for several metals [135,136].
To clarify how ROS induce cellular response 
and signal transduction is quite important for 
understanding of the mechanisms of met-
al-induced carcinogenesis. Certainly, many 
researchers have implicated the involvement 
of ROS signaling in metal-induced carcino-
genesis and cell death over the last decade. 
However, they did not provide a direct ev-
idence of the correlation between ROS and 
metal-induced apoptosis and carcinogenesis 
[137-139].
Data suggest that antioxidants may play a ‎im-
portant role in abating some hazards of metals 
[8,140]. Currently, treatments against metals 
toxicity include the use of chelating agents, 
metallothionein, and antioxidant therapy with 
melatonin, vitamin E, vitamin C, N-acetylcys-
tein and herbal medicine [7,141-144]. The ef-
fectiveness of an antioxidant based treatment 
approach is dependent on understanding the 
mechanisms by which metals cause mitochon-
drial dysfunction and other health conditions. 
Although metal-induced oxidative stress does 
not explain all of the cell disruptions’ caused 
by metals, accumulating evidence emphasiz-
es the protective effect of antioxidants in the 
setting of metal-induced toxicity. The effec-
tiveness of an antioxidant-based treatment 
approach is dependent on understanding the 
mechanisms by which metals cause cancer 
and other health conditions. In this regard, fu-
ture studies should focus on defining cellular 
and molecular mechanisms ‎of metal-induced 
oxidative injuries, developing efficient bio-
markers, and identifying ‎individuals with in-
creased susceptibility to metal exposure.
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