Received 2019-02-24

Revised 2019-04-05

Accepted 2019-05-06

Plant-Derived Essential Oils; Their Larvicidal Properties and Potential Application for Control of Mosquito-Borne Diseases

Mahmoud Osanloo1,2, Mohammad Mehdi Sedaghat3, Alireza Sanei-Dehkordi4, Amir Amani5,6

1 Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran

2 Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran

3 Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

4 Department of Medical Entomology and Vector Control, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran

5 Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran

6 Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran

Abstract

Mosquito-borne diseases are currently considered as important threats to human health in subtropical and tropical regions. Resistance to synthetic larvicides in different species of mosquitoes, as well as environmental pollution, are the most common adverse effects of excessive use of such agents. Plant-derived essential oils (EOs) with various chemical entities have a lower chance of developing resistance. So far, no proper classification based on lethal concentration at 50% (LC50) has been made for the larvicidal activity of EOs against different species of Aedes, Anopheles and Culex mosquitoes. To better understand the problem, a summary of the most common mosquito-borne diseases have been made. Related articles were gathered, and required information such as scientific name, used part(s) of plant, target species and LC50 values were extracted. 411 LC50 values were found about the larvicidal activity of EOs against different species of mosquitoes. Depending on the obtained results in each species, LC50 values were summarized as follows: 24 EOs with LC50 < 10 µg/mL, 149 EOs with LC50 in range of 10- 50 µg/mL, 143 EOs having LC50 within 50- 100 µg/mL and 95 EOs showing LC50 > 100 µg/mL. EOs of Callitris glaucophylla and Piper betle against Ae. aegypti, Tagetes minuta against An. gambiae, and Cananga odorata against Cx. quinquefasciatus and An. dirus having LC50 of ~ 1 µg/mL were potentially comparable to synthetic larvicides. It appears that these plants could be considered as candidates for botanical larvicides. [GMJ.2019;8:e1532] DOI:10.31661/gmj.v8i0.1532

Keywords: Volatile Oil; Pesticides; Aedes; Anopheles; Culex

Correspondence to:

Amir Amani, Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran

Telephone Number: 00982143052130

Email Address: aamani@tums.ac.ir

GMJ.2019;8:e1532

www.gmj.ir

Introduction

Arthropod-borne diseases are the cause of more than 17% of all human infectious diseases around the world [1]. Mosquitoes (Diptera: Culicidae) are an important family of Arthropoda phylum which is grouped into 39 genera with a total of over 3000 species [2, 3]. More than half the world’s population lives in areas where mosquito-borne diseases are common. Mosquito-borne diseases represent a critical threat for billions of people worldwide, e.g., more than 3.9 billion people in over 128 countries are at risk of dengue, with 96 million cases estimated per year. Malaria causes more than 400,000 deaths every year globally; the majority of them are children under five years of age [1, 4]. Three genera of mosquito which are very important in the transmission of human diseases include Aedes (Chikungunya, Dengue fever, Lymphatic filariasis, Rift Valley fever, Yellow fever, Zika), Anopheles (Malaria, Lymphatic filariasis) and Culex (Japanese encephalitis, Lymphatic filariasis, West Nile fever) [1, 5]. All mosquitoes have immature aquatic stages. Thus, larviciding could be an efficient method to reduce the population of mosquitos and prevent the transmission of such diseases [6-8]. Larvicides reduce their population in breeding places, where they are concentrated, immobilized and accessible before they emerge into adults [9, 10]. Larviciding is usually performed by applying synthetic larvicides such as organophosphates (e.g., temephos, fenthion, and malathion) or using an insect growth regulator (IGRs) such as methoprene [11, 12]. However, indiscriminate use of these agents affects the population of their natural enemies (such as Gambosia fish) and causes resistance in different species of mosquitoes [10, 13]. Additionally, synthetic insecticides are usually based on a single active ingredient. Thus, resistance against them is more probable compared with botanical insecticides having multiple components [14-16]. Developing resistance against insecticides also has been linked to their tendency to remain in the environment for a long time. During this period, larva starts to produce detoxifying enzymes or change their enzymes’ structure. Thus, resistance against the larvicides may be expected [17, 18]. Moreover, synthetic insecticides leave toxic residues in the environment and make safety concerns [13, 19]. In this regards, identification of active and eco-friendly bio-pesticides is crucial for successful management of mosquito-borne diseases. Essential oils (EOs) have been suggested as alternative sources for control of insects as selective and biodegradable agents with minimal impacts on non-target organisms and environment [13, 20]. EOs are complex mixtures of volatile organic compounds which are produced as secondary metabolites in plants [21]. They are obtained from hydrodistillation or steam distillation of plant entities such as flowers, roots, barks, leaves, seeds, peels, fruits, and woods [22]. EO-based pesticides consist of a combination of molecules which can act concertedly on both behavioral and physiological processes. Thus, there is very little chance of resistance development among the treated mosquitoes [10, 21, 23]. Generally, EOs have different larvicidal activity (LA) against various species of mosquitoes. The most critical factor in developing EO-based larvicides is their potency in terms of their LAs. Currently, there is a single review paper, which has gathered LA of 122 plants against mosquitoes. However, the authors have not separated the LA-based on the mosquito species [24]. In this review we have given an update to the potential of herbal larvicides, gathering data for more than 400 LC50 values of EOs. EOs have been arranged based on their LC50, against each species to provide a better understanding and comprehensive knowledge about their larvicide potential.

Common Mosquito-Borne Diseases

In Table-1, profiles of the most common mosquito-borne diseases (including vectors, pathogenic agent, common hosts in vertebrate and distribution) have been summarized. Malaria, Yellow Fever, Dengue Fever, Zika, Chikungunya, West Nile, and Japanese encephalitis accounted for almost 0.7 million deaths around the world, annually [1].

Categorizing LA of EOs Against Different Species

Tables-2 to 9 brief 411 LC50 values on LA of different EOs against different species of mosquitoes. Table-2 classifies 152 reports according to LC50 of EOs against Ae. aegypti. The most potent EOs are Callitris glaucophylla and Piper betle with LC50 of 0.69 and 0.72 µg/mL, respectively. Mentioned EOs could be appropriate for preparing potent herbal larvicides, comparable with synthetic ones.From Table-2, LC50 values for 5 EOs are in the range of 1-10 µg/mL: Auxemma glazioviana, Mammea siamensis, Cinnamomum rhyncophyllum, C. microphyllum, and Anacardium occidentale. LC50 of other EOs locate in other 3 groups (i.e. > 10 µg/mL). Table-3 reports the LA of 60 EOs against Ae. albopictus. The most potent EOs (with LC50< 10 µg/mL) were EOs of Echinops grijsii (2.65 µg/mL), C. microphyllum (6.20 µg/mL), C. pubescen (7.90 µg/mL), Tetradium glabrifolium (8.20 µg/mL), C. mollissimum (8.80 µg/mL) and C. impressicostatum (9.30 µg/mL). Seventeen EOs have LC50 between 10-50 µg/mL and remaining have LC50 > 50 µg/mL. Table-4 lists LA of 58 EOs against An. stephensi. From the details, only LC50 of Kelussia odoratissima is under 10 µg/mL (~ 5 µg/mL). LC50 of Artemisia dracunculus (11.36 µg/mL), Platycladus orientalis (11.67 µg/mL), Tagetes patula (12.08 µg/mL), Ferulago carduchorum (12.78 µg/mL), Chloroxylon swietenia (14.90 µg/mL) and Ipomoea cairica (14.90 µg/mL) are between 10-15 µg/mL. LC50 of 19 EOs are in range of 10-50 µg/mL. Table-5 shows reported LA of 16 EOs according to their LC50 against An. subpictus. Among the plant species, EO of Ocimum basilicum with LC50 of 9.75 µg/mL is the first in Table-5. EOs of Eugenia uniflora and Heracleum sprengelianum have similar LC50 values (~ 32 µg/mL). LC50 of other EOs are > 50 µg/mL. Table-6 summarizes information about LA of some EOs against other species of Anopheles such as An. quadrimaculatus, An. gambiae, An. anthropophagus, An. dirus, An. sinensis, An. arabiensis, and An. marajoara. Two EOs show excellent LA (i.e., LC50 ~1µg/mL): T. minuta and Cananga odorata against An. gambiae and An. dirus, respectively. LC50 of two other EOs are also worthy to note: Salvia leucantha (6.20 µg/mL) against An. quadrimaculatus and Echinops grijsii (3.43 µg/mL) against An. sinensis. Among 66 reports on LA of EOs against Cx. quinquefasciatus (Table-7), EO of Cananga odorata demonstrates to be the best result with LC50 of below 1 µg/mL. After that, LC50 of 20 EOs are in the range of 10-50 µg/mL, and LC50 of 20 EOs are between 50- 100 µg/mL. LC50 of 44 EOs are higher than 50 µg/mL. From Table-8, which summarizes LA of some EOs against Cx. pipiens, EOs of K. odoratissima, Echinops grijsii and Pelargonium roseum show to have LC50 at 2.69, 3.43 and 5.49 µg/mL, respectively. They are the most potent EOs against Cx. pipiens. Among other EOs, 8 EOs have LC50 between 10-50 and others have LC50 higher than 50 µg/mL. From Table-9, which briefs the larvicidal activity of different EOs on Cx. tritaeniorhynchus. None of the EOs have LC50 below 10 µg/mL. However, EOs of Ocimum basilicum and Ipomoea cairica with LC50 ~ 14 can be considered as effective against Cx. tritaeniorhynchus. While LC50 of other EOs is in range of 36- 136 µg/mL.

Potent EOs in Terms of LA

Reviewing Tables-2 to 9, some EOs demonstrate proper LA against at least two species, thus, may be suggested as attractive candidates for preparing EO-based larvicides (Table-10). For instance, LC50 of Echinops grijsii is ~ 3 µg/mL against three species: Cx. pipiens, An. sinensis and Ae. albopictus. EO of Cananga odorata is another candidate with LC50 ~ 1 µg/mL against Cx. quinquefasciatus and An. dirus and LC50 of 10 µg/mL against Ae. aegypti. EO of K. odoratissima with LC50 of 2 and 4 µg/mL against Cx. pipiens and An. stephensi respectively, could also be considered as a potent larvicide.Besides mentioned EOs, the LA of 4 EOs is comparable with classic larvicide (i.e., ~ 1 µg/mL). LC50 of Callitris glaucophylla and Piper betle against Ae. aegypti are 0.69 and 0.72 µg/mL, respectively. Cananga odorata show LC50 < ١ µg/mL against both of Cx. quinquefasciatus and An. Dirus. EO of T. minuta has excellent LA against An. gambiae (LC50 < 1.5 µg/mL).

Advantages of EOs as Larvicides

To control mosquito-borne diseases such as malaria, world health organization (WHO) recommends using larvicides; nowadays using in 55 countries around the worlds [164]. Continuous use of synthetic larvicides such as malathion and temephos along with environmental pollution, lead to occurring resistance in a various population of mosquitos such as Ae. aegypti, Cx. pipiens and An. stephensi [165-168].Furthermore, many reports may be found about the impacts of the larvicides against non-target species. For instance, dichlorvos and tetraethyl pyrophosphate (belonging to organophosphates larvicides) and carbofuran (carbamates) have an effect on acetylcholinesterase in some species of fishes including Arapaima gigas, Rachycentron canadum, Oreochromis niloticus, and Electrophorus electricus [169]. In another study, sides effects of 2 other larvicides including Temephos and Novaluron against 10 species of aquatic insect families and copepods have been evaluated. It was revealed that their impact on Veliidae, Odonata, Dytiscidae are significantly higher than that of other [170]. Oudemans (Amblyseius cucumeris) is a crucial predator of mites of tetranychid while two other common pesticides, i.e., Bifenthrin and Malathion posed an extremely effect on this beneficial non-target arthropod [171].EOs are naturally extracted aroma compounds with broad applications such as flavoring additives, medicines, antioxidants, antifungal/bacterial and also larvicides [172-177]. In the past decade, EO based formulation have been suggested as alternative sources for control of mosquitoes to be used as larvicides [8, 127]. They offer advantages such as biodegradability, negligible effects on non-target specious and environment [101, 178]. Besides, resistance against larvicides is observed when a single active agent is used compared with those having multi-components, thus by using EOs, decreases the risk of occurring resistance in mosquito populations [14-16]. EOs are mixtures of many constituents such as flavonoids, alkaloids, and monoterpenes [179, 180]. Modes of action of mentioned constituents are different, for instance, main sites action of alkaloids and monoterpenes are Na-K-ATPase or Na+ and K+ channels [19, 181, 182], while flavonoids target acetylcholinesterase [183]. Synergistic effects of constituents of some EOs are nowadays well-known when they are used as anti-fungal or anti-bacterial agents [184, 185]. Types of synergism also reported in larvicidal studies, e.g., larvicidal activities (LC50) of EOs of Syzygium aromaticum and K. odoratissima (57.49 and 4.77 µg/mL, respectively) significantly better than their major constituents, i.e., Eugenol (86.96 µg/mL) and Z-ligustilide (8.73 µg/mL) against An. stephensi [118, 129].

Conclusion

In this paper, mosquito-borne diseases have been reviewed. Previous studies about LA of EOs against different species of mosquitoes including Aedes, Anopheles, and Culex were investigated. For the first time, 411 LC50 were ranked against each species, separately. LC50 of 4 EOs are ~ 1µg/mL, including Callitris glaucophylla and Piper betle against Ae. aegypti, T. minuta against An. gambiae, and Cananga odorata against Cx. quinquefasciatus and An. dirus. The potency of mentioned EOs is comparable with synthetic larvicides, while simultaneously having some advantages such as reducing the chance of resistance and minimum sides’ effects on non-target species. Thus, it could be considered as candidates for preparing botanical larvicides.

Acknowledgment

This study was supported by Tehran University of Medical Sciences & Health Services (grant No. 95-01-87-31860).

Conflict of Interest

There is no conflict of interest to the authors.

Table 1. Profiles of the Most Common Mosquito-Borne Diseases

Disease

Vectors

Caused by

Vertebrate Hosts

Distribution

Malaria [25]

An. atroparvus,

An. labranchiae,

An. messeae, An. sacharovi, An. sergentii,

An. superpictus Grassi,

An. arabiensis ,

An. funestus, An. gambiae, An. melas, An. merus,

An. moucheti, An. nili,

An. barbirostris,

An. lesteri, An. sinensis,

An. aconitus, An. annularis, An. balabacensis,

An. culicifacies, An. dirus, An. farauti, An. flavirostris, An. fluviatilis, An. koliensis, An. leucosphyrus,

An. maculatus, An. minimus, An. punctulatus,

An. stephensi,

An. subpictus, An. sundaicus.

Protozoan parasite; Plasmodium

Reptiles, birds, rodents, Primates and humans.

Endemic throughout most of the tropics. Ninety-five countries and territories have ongoing transmission

Yellow Fever [26]

Ae. aegypti, Ae. africanus, Ae. aromeliae,

Ae. albopictus,

Ae. furcifertaylori,

Ae. luteocephalus,

Ae. metallicus,

Ae. bromeliae, Ae. serratus.

Virus of the family Flaviviridae; genus Flavivirus.

Primates

Ghana, Guinea, Nigeria, Ethiopia, Liberia, Gambia, Mali, Senegal, Sudan, Togo, Uganda, Congo, Chad, Angola, Brazil, Colombia and Peru, Paraguay, Argentina,

Dengue Fever [27]

Ae. aegypti, Ae. albopictus, Ae. polynesiensis,  

Ae. scutellaris.

Virus of the family Flaviviridae; genus Flavivirus.

Primates

Philippines, Thailand, China, Malaysia, Japan, Pakistan, Taiwan, India, Sri Lanka, Burma , Malay Peninsula, Cambodia, Vietnam, Indonesia, India, Australia, Brazil, Venezuela, Mexico, Bolivia, Argentina, USA

Zika [28, 29]

Ae. africanus,

Ae. luteocephalus,

Ae. aegypti, Ae. albopictus, Ae. furcifer, Ae. vittatus.

The virus of the family Flaviviridae; genus Flavivirus.

Primates

Brazil, Colombia, Venezuela, Puerto Rico, Martinique, Honduras, Guadeloupe , El Salvador , French Guiana, Guinea Bissau, Angola, Cabo Verde, Thailand, Vietnam, Singapore

Chikungunya [30, 31]

Ae. albopictus, Ae. aegypti, Ae. henselli

Virus of the family Togaviridae; genus Alphavirus

Primates, birds, cattle, and rodents

Benin, Burundi, Cameroon, Central African Republic, Comoros, Congo, Equatorial Guinea, Guinea, Kenya, Madagascar, Malawi, Mauritius, Mayotte, Nigeria, Senegal, South Africa, Sudan, Tanzania, Uganda, Zimbabwe, Cambodia, East Timor, India, Indonesia, Laos, Malaysia, Maldives, Myanmar, Pakistan, Philippines, Réunion, Seychelles, Singapore, Taiwan, Thailand and Vietnam.

West Nile [32]

Ae. aegypti, Cx. pipiens,

Cx. quinquefasciatus,

Cx. australicus,

Cx. globcoxitus,

Cx. tarsalis, Cx. univittatus, Cx. annulirostris

Virus of the family Flaviviridae; genus Flavivirus.

Birds, Horses, Other Mammals

Commonly found in Africa, Europe, the Middle East, North America, and West Asia.

Japanese Encephalitis [33]

Cx. tritaeniorhynchus,

Cx. annulirostris,

Cx. vishnui

Cx. pseudovishnui

Cx. gelidus,

Cx. sitiens, 

Cx. fuscocephela,

An. subpictus,

An. hyrcanus, Cxpipiens, Ae. albopictus,

Ae. japonicas

Virus of the family Flaviviridae; genus Flavivirus.

Birds, Pigs

Australia, Bangladesh, Burma, Cambodia, China, Guam, India, Indonesia, Japan, Laos, Malaysia, Nepal, North Korea, Pakistan, Papua New Guinea, Phillipines, Russia, Saipan, Singapore, South Korea, Sri Lanka, Taiwan, Thailand, Timor-Leste, Vietnam

Continue in next Page

Continue of Table 1. Profiles of the Most Common Mosquito-Borne Diseases

Table 2. Larvicidal Activity of Essential Oils Against Aedes Aegypti

No.

Plant species

Used part(s)

LC50

(µg/mL)

Ref

No.

Plant species

Used part(s)

LC50

(µg/mL)

Ref

1

Callitris glaucophylla

Unclear

0.69

[34]

80

Piper hostmanianum

Leaf

54.00

[64]

2

Piper betle

Leaf

0.72

[17]

81

Zanthoxylum armatum

Seed

54.00

[74]

3

Auxemma glazioviana

Heartwood

2.98

[35]

82

Croton sonderianus

Aerial parts

54.50

[56]

4

Mammea siamensis

Flower

5.90

[36]

83

Piper aduncum

Aerial parts

54.50

[75]

5

Cinnamomum rhyncophyllum

Leaf

6.00

[37]

84

Carum carvi

Unclear

54.62

[53]

6

Cinnamomum microphyllum

Leaf

6.70

[37]

85

Syzygium lanceolatum

Leaf

55.11

[76]

7

Anacardium occidentale

Seed

9.10

[36]

86

Lippia sidoides

Leaf

56.00

[57]

8

Piper klotzschianum

Root

10.00

[38]

87

Mentha spicata

Leaf

56.08

[77]

9

Cinnamomum mollissimum

Leaf

10.20

[37]

88

Vitex negundo L

Unclear-

56.13

[22]

10

Cananga odorata

Flower

10.40

[39]

89

Salvia officinalis

Seed

56.90

[42]

12

Cinnamomum impressicostatum

Leaf

10.70

[37]

90

Pinus kesiya

Leaf

57.00

[78]

14

Feronia limonia

Leaf

11.59

[40]

91

Lippia pedunculosa

Unclear

58.00

[18]

15

Citrus sinensis

Fruit

11.92

[14]

92

Apium graveolens

Leaf

59.32

[79]

16

Cinnamomum pubescen

Leaf

12.80

[37]

93

Dendropanax morbifera

Flower

62.32

[80]

17

Piper klotzschianum

Seed

13.27

[38]

94

Cordia leucomalloides

Leaf

63.10

[81]

18

Tagetes patula

Whole plant

13.57

[41]

95

Eugenia triquetra

Aerial parts

64.80

[82]

19

Salvia elegans

Aerial parts

14.40

[42]

96

Swinglea glutinosa

Unclear

65.70

[46]

20

Citrus reticulata

Fruit

15.42

[43]

97

Tagetes lucida

Unclear

66.20

[46]

21

Apium graveolens

Seed

16.10

[44]

98

Boswellia ovalifoliolata

Leaf

66.24

[83]

22

Chloroxylon swietenia

Leaf

16.50

[45]

99

Croton nepetaefolius

Aerial parts

66.40

[56]

23

Cymbopogon flexuosus

Unclear

17.10

[46]

100

Origanum scabrum

Leaf

67.13

[84]

24

Hyptis martiusii

Unclear

18.20

[47]

101

Acorus calamus

Root

67.20

[36]

25

Allium monanthum

Stem

19.38

[48]

102

Annona muricata

Seed

69.25

[36]

26

Lippia sidoides

Unclear

19.50

[47]

103

Syzygium aromaticum

Whole plant

77.00

[85]

27

Piper marginatum

Stem

19.90

[49]

104

Eucalyptus citriodora

Unclear

71.20

[46]

28

Piper marginatum

Inflorescence

19.90

[49]

105

Knema globularia

Seed

72.10

[36]

29

Chloroxylon swietenia

Stem

20.20

[50]

106

Capraria biflor

Leaf

73.39

[86]

30

Citrus sinensis

Unclear

20.60

[46]

107

Stemona tuberosa

Root

75.20

[36]

31

Syzigium aromaticum

Unclear

21.40

[47]

108

Samanea saman

Stem bark

79.20

[36]

32

Cinnamomum scortechinii

Leaf

21.50

[37]

109

Croton jacobinenesis

Leaf

79.30

[87]

33

Ipomoea cairica

Unclear

22.30

[51]

110

Tagetes erecta

Leaf Stem

79.78

[88]

34

Piper marginatum

Leaf

23.80

[49]

111

Croton nepetaefolius

Leaf

84.00

[57]

35

Asarum heterotropoides

Root

23.82

[52]

112

Ocimum sanctum

Aerial parts

85.11

[89]

36

Zanthoxylum limonella

Unclear

24.61

[53]

113

Cunninghamia konishii

Wood

85.70

[90]

37

Psidium guajava

Leaf

24.70

[54]

114

Strychnos nux-vomica

Seed

90.00

[36]

37

Plectranthus mollis

Whole plant

25.40

[55]

115

Cunninghamia konishii

Leaf

91.70

[90]

39

Lippia sidoides

Aerial parts

25.50

[56]

116

Syzygium aromaticum

Bud

92.56

[91]

40

Phyllanthus pulcher

Leaf & twig

25.80

[36]

117

Syzygium aromaticum

Bud

93.56

[14]

41

Croton zehntneri

Aerial parts

26.20

[56]

118

Abutilon indicum

Root

94.20

[36]

42

Anethum graveolens

Leaf

27.40

[36]

119

Croton argyrophylloides

Aerial parts

94.60

[56]

43

Croton zenhtneri

Leaf

28.00

[57]

120

Eucalyptus urophylla

Leaf

95.50

[59]

44

Cryptomeria japonica

Leaf

28.40

[58]

121

Cordia curassavica

Leaf

97.70

[81]

45

Salvia leucantha

Aerial parts

29.50

[42]

122

Costus speciosus

Root

98.50

[36]

46

Citrus hystrix

Fruit

30.07

[43]

123

Guarea scabra

Leaf

98.60

[72]

47

Kaempferia galanga

Root

30.70

[36]

124

Nigella sativa L

Seed

99.90

[92]

48

Eucalyptus camaldulensis

Leaf

31.00

[59]

125

Pinus sylvestris

Needles

100.39

[91]

49

Curcuma zedoaria

Unclear

31.87

[53]

126

Croton argyrophyloides

Leaf

102.00

[57]

51

Eucalyptus grandis

Leaf

32.40

[60]

127

Croton sonderianus

Leaf

104.00

[57]

52

Youngia japonica

Aerial parts

32.45

[61]

128

Kadsura heteroclita

Leaf

111.79

[93]

53

Chenopodium ambrosioides

Aerial parts

35.00

[62]

129

Lantana montevidensis

Leaf

117.00

[68]

54

Murraya exotica

Leaf

35.80

[63]

130

Guarea silvatica

Leaf

117.80

[72]

55

Piper permucronatum

Leaf

36.00

[64]

131

Piper gaudichaudianum

Leaf

121.00

[64]

56

Curcuma aromatica

Rhizome

36.30

[65]

132

Croton rhamnifolioides

Leaf

122.35

[94]

57

Clausena excavata

Leaf

37.10

[66]

133

Cymbopogon citratus

Unclear

123.30

[46]

58

Chamaecyparis formosensis

Heartwood

38.60

[67]

134

Syzygium aromaticum

Flower

124.69

[43]

59

Spondias purpurea

Leaf

39.70

[54]

135

Echinophora lamondiana

Leaf

138.30

[95]

60

Clausena excavata

Twig

40.10

[66]

136

Sphaeranthus indicus Linn

Leaf

140.00

[6]

61

Cinnamomum sintoc

Leaf

41.10

[37]

137

Guarea convergens

Branch

145.10

[72]

62

Apium graveolens

Unclear

42.07

[53]

138

Croton tetradenius

Leaf

152.00

[96]

63

Lippia alba

Unclear

42.20

[46]

139

Piper humaytanum

Leaf

156.00

[64]

64

Lantana camara

Leaf

42.30

[68]

140

Cinnamomum cordatum

Leaf

183.60

[37]

65

Cinnamomum porrectum

Wood

43.50

[36]

141

Myrcia ovata

Leaf

192.10

[54]

66

Zingiber nimmonii

Rhizome

44.46

[12]

142

Eugenia piauhiensis

Leaf

230.00

[97]

67

Blumea eriantha

Leaf

44.82

[69]

143

Siparuna camporum

Leaf

251.00

[97]

68

Zingiber cernuum

Rhizome

44.88

[21]

144

Guarea silvatica

Branch

273.60

[72]

69

Mentha x villosa

Leaf

45.00

[70]

145

Lippia gracilis

Unclear

282.00

[97]

70

Artemisia absinthium

Leaf

46.33

[71]

146

Piper aduncum

Leaf

289.9

[98]

71

Lavandula gibsoni

Whole plant

48.30

[55]

147

Psidium myrsinites

Leaf

292.00

[97]

72

Guarea humaitensis

Branch

48.60

[72]

148

Croton argyrophyllus

Leaf

310.00

[99]

73

Zingiber zerumbet

Rhizome

48.88

[43]

149

Mentha piperita L

Leaf

367.60

[100]

74

Foeniculum vulgare

Unclear

49.32

[53]

150

Echinophora lamondiana

Flower

>125

[95]

75

Plectranthus amboinicus

Leaf

51.80

[54]

151

Echinophora lamondiana

Stem

>125

[95]

76

Eucalyptus nitens

Leaf

52.83

[73]

152

Salvia apiana

Seed

>125

[42]

77

Cananga odorata

Unclear

52.90

[46]

153

Myrcia erythroxylon

Leaf

>1000

[97]

78

Lippia origanoides

Unclear

53.30

[46]

154

Xylopia frutescens

Unclear

>1000

[18]

79

Kaempferia galanga

Rhizome

53.64

[43]

155

Xylopia laevigata

Unclear

>1000

[18]

Continue in next Page

Continue of Table 2. Larvicidal Activity of Essential Oils Against Aedes Aegypti

Continue in next Page

Continue of Table 2. Larvicidal Activity of Essential Oils Against Aedes Aegypti

Table 3. Larvicidal Activity of Essential Oils Against Aedes albopictus

No.

Plant species

Used part(s)

LC50

(µg/mL)

Ref

No.

Plant species

Used part(s)

LC50

(µg/mL)

Ref

1

Echinops grijsii

Root

2.65

[13]

32

Artemisia absinthium

Leaf

57.57

[71]

2

Cinnamomum microphyllum

Leaf

6.20

[37]

33

Cupressus arizonica

Leaf

64.80

[107]

3

Cinnamomum pubescen

Leaf

7.90

[37]

34

Syzygium lanceolatum

Leaf

66.71

[76]

4

Tetradium glabrifolium

Fruit

8.20

[101]

35

Pinus brutia

Aerial parts

67.04

[110]

5

Cinnamomum mollissimum

Leaf

8.80

[37]

36

Coleus aromaticu

Leaf

67.98

[111]

6

Cinnamomum impressicostatum

Leaf

9.30

[37]

37

Toddalia asiatica

Root

69.09

[112]

7

Cinnamomum rhyncophyllum

Leaf

11.80

[37]

38

Pinus halepensis

Aerial parts

70.21

[110]

8

Ocimum basilicum

Leaf

11.97

[102]

39

Tetraclinis articulata

Leaf

70.60

[107]

9

Saussurea lappa

Root

12.41

[103]

40

Allium macrostemon

Bulb

72.86

[113]

10

Cinnamomum scortechinii

Leaf

16.70

[37]

41

Pinus stankewiczii

Aerial parts

81.66

[110]

11

Allium tuberosum

Root

18.00

[104]

42

Plectranthus barbatus

Leaf

87.25

[11]

12

Ocimum gratissimum

Leaf

26.10

[10]

43

Boswellia ovalifoliolata

Leaf

89.80

[83]

13

Eucalyptus nitens

Leaf

28.19

[73]

44

Syzygium zeylanicum

Leaf

90.45

[114]

14

Ruta chalepensis

Leaf

33.18

[105]

45

Pinus strobus

Aerial parts

127.98

[110]

15

Eugenia uniflora

Leaf

33.50

[106]

46

Foeniculum vulgare

Leaf

142.90

[115]

16

Chamaecyparis formosensis

Heartwood

34.90

[67]

47

Pinus nigra

Aerial parts

152.65

[110]

17

Cinnamomum sintoc

Leaf

36.50

[37]

48

Cinnamomum cordatum

Leaf

160.80

[37]

18

Cupressus benthamii

Leaf

37.50

[107]

49

Helichrysum italicum

Leaf

178.10

[115]

19

Heracleum sprengelianum

Leaf

37.50

[108]

50

Cunninghamia konishii

Wood

189.50

[90]

20

Cinnamomum osmophloeum

Leaf

40.80

[109]

51

Cunninghamia konishii

Leaf

194.40

[90]

21

Clausena excavata

Twig

41.10

[66]

52

Achillea millefolium

Leaf

211.30

[115]

22

Clausena excavata

Leaf

41.20

[66]

53

Hyptis suaveolens

Leaf

240.30

[116]

23

Chamaecyparis lawsoniana

Leaf

47.90

[107]

54

Eucalyptus urophylla

Leaf

285.80

[59]

24

Cryptomeria japonica

Leaf

51.20

[58]

55

Coriandrum sativum

Fruit

421.00

[117]

25

Cupressus macrocarpa

Leaf

54.60

[107]

56

Pinus canariensis

Aerial parts

>>200

[110]

26

Cupressus sempervirens

Leaf

54.70

[107]

57

Pinus pinaster

Aerial parts

>>200

[110]

27

Eucalyptus camaldulensis

Leaf

55.30

[59]

58

Lavandula angustifolia

Leaf

>250

[115]

28

Juniperus phoenicea

Leaf

55.50

[107]

59

Myrtus communis

Leaf

>250

[115]

29

Zingiber cernuum

Rhizome

55.84

[21]

60

Rosmarinus officinalis

Leaf

>250

[115]

30

Blumea eriantha

Leaf

56.33

[69]

61

Artemisia absinthium

Leaf

57.57

[71]

31

Cupressus torulosa

Leaf

57.10

[107]

62

Cupressus arizonica

Leaf

64.80

[107]

Continue in next Page

Continue of Table 3. Larvicidal Activity of Essential Oils Against Aedes albopictus

Table 4. Larvicidal Activity of Essential Oils Against Anopheles stephensi

No.

Plant species

Used part(s)

LC50

(µg/mL)

Ref

No.

Plant species

Used part(s)

LC50

(µg/mL)

Ref

1

Kelussia odoratissima

Aerial parts

4.77

[118]

30

Murraya exotica

Leaf

56.30

[63]

2

Kelussia odoratissima

Aerial parts

4.88

[119]

31

Syzigium aromaticum

Unclear

57.49

[129]

3

Artemisia dracunculus

Aerial parts

11.36

[8]

32

Zanthoxylum armatum

Seed

58.00

[74]

4

Platycladus orientalis

Leaf

11.67

[120]

33

Zhumeria majdae

Leaf

61.34

[130]

5

Tagetes patula

Foliage

12.08

[41]

34

Origanum scabrum

Leaf

61.65

[84]

6

Ferulago carduchorum

Aerial parts

12.78

[121]

35

Boswellia ovalifoliolata

Leaf

61.84

[83]

7

Chloroxylon swietenia

Leaf

14.90

[50]

36

Lavandula gibsoni

Aerial parts

62.80

[55]

8

Ipomoea cairica

Unclear

14.90

[51]

37

Origanum vulgare

Leaf

67.00

[4]

9

Feronia limonia

Leaf

15.03

[40]

38

Lawsonia inermis

Leaf

69.40

[131]

10

Chloroxylon swietenia

Stem

19.00

[50]

39

Cionura erecta

Root

77.30

[132]

11

Foeniculum vulgare

Seed

20.10

[122]

40

Cupressus arizonica

Leaf

79.30

[133]

12

Satureja bachtiarica

Aerial parts

24.27

[123]

41

Trachyspermum ammi

Seed

80.77

[134]

13

Bunium persicum

Seed

27.72

[2]

42

Eucalyptus camaldulensis

Leaf

89.85

[135]

14

Plectranthus amboinicus

Leaf

28.37

[124]

43

Coccinia indica

Leaf

95.30

[136]

15

Citrus aurantium

Fruit

31.20

[125]

44

Kadsura heteroclita

Leaf

102.86

[93]

16

Plectranthus mollis

Aerial parts

33.50

[55]

45

Stachys byzantina

Leaf

103.29

[131]

17

Achillea kellalensis

Flower

35.42

[126]

46

Heracleum persicum

Seed

104.80

[122]

18

Citrus paradisi

Fruit

35.71

[125]

47

Ajuga chamaecistus tomentella

Aerial parts

117.72

[137]

19

Anethum graveolens

Aerial parts

38.80

[127]

48

Coriandrum sativum

Seed

120.95

[122]

20

Achillea wilhelmsii

Leaf

39.04

[128]

49

Cedrus deodara

Leaf

128.04

[131]

21

Zingiber nimmonii

Rhizome

41.19

[12]

50

Stachys setifera

Leaf

181.62

[131]

22

Zingiber cernuum

Rhizome

41.34

[21]

51

Thymus vulgaris

Leaf

191.33

[131]

23

Blumea eriantha

Leaf

41.61

[69]

52

Stachys inflata

Leaf

195.84

[131]

Continue in next Page

Continue of Table 4. Larvicidal Activity of Essential Oils Against Anopheles stephensi

Table 5. Larvicidal Activity of Essential Oils Against Anopheles subpictus

No

Plant species

Used part(s)

LC50

(µg/mL)

Ref

1

Ocimum basilicum

Leaf

9.75

[102]

2

Eugenia uniflora

Leaf

31.08

[106]

3

Heracleum sprengelianum

Leaf

33.40

[108]

4

Blumea eriantha

Leaf

51.21

[69]

5

Zingiber cernuum

Rhizome

51.42

[21]

6

Artemisia absinthium

Leaf

52.02

[71]

7

Zingiber officinale

Rhizome

57.98

[140]

8

Coleus aromaticus

Leaf

60.31

[111]

9

Zhumeria majdae

Leaf

61.34

[130]

10

Rosmarinus officinalis

Shoot

64.50

[140]

11

Cinnamomum zeylanicum

Leaf

71.96

[140]

12

Origanum vulgare

Leaf

74.14

[4]

13

Cymbopogan citrates

Leaf

77.24

[140]

14

Boswellia ovalifoliolata

Leaf

82.26

[83]

15

Syzygium zeylanicum

Leaf

83.11

[114]

16

Plectranthus barbatus

Leaf

84.20

[11]

Table 6. Larvicidal Activity of Essential Oils Against Other Species of Anopheles

Plant species

Used part(s)

Target

LC50 (µg/mL)

Ref

Salvia leucantha

Aerial parts

An. quadrimaculatus

6.20

[42]

Salvia elegans

Aerial parts

An. quadrimaculatus

10.90

[42]

Salvia officinalis

Seed

An. quadrimaculatus

14.10

[42]

Ruta chalepensis

Aerial parts

An. quadrimaculatus

14.90

[141]

Echinophora lamondiana

Leaf

An. quadrimaculatus

26.20

[95]

Echinophora lamondiana

Flower

An. quadrimaculatus

46.90

[95]

Echinophora lamondiana

Stem

An. quadrimaculatus

65.60

[95]

Salvia apiana

Seed

An. quadrimaculatus

>125

[42]

Tagetes minuta

Unclear

An. gambiae

<1.50

[142]

Piper capense

Unclear

An. gambiae

34.90

[143]

Cinnamomum osmophloeum

Leaf

An. gambiae

35.36

[144]

Plectranthus amboinicus

Leaf

An. gambiae

55.20

[145]

Blumea martiniana

Aerial parts

An. anthropophagus

46.86

[146]

Artemisia gilvescens

Unclear

An. anthropophagus

49.95

[147]

Cananga odorata

Flower

An. dirus

<1

[39]

Echinops grijsii

Root

An. sinensis

3.43

[13]

Juniperus procera

Unclear

An. arabiensis

14.42

[148]

Piper aduncum

Aerial parts

An. marajoara

50.90

[75]

Table 7. Larvicidal Activity of Essential Oils Against Culex quinquefasciatus

No.

Plant species

Used part(s)

LC50 (µg/mL)

Ref

No.

Plant species

Used part(s)

LC50 (µg/mL)

Ref

1

Cananga odorata

Flower

<1

[39]

34

Boswellia ovalifoliolata

Leaf

72.47

[83]

2

Mentha longifolia

Unclear

17.00

[149]

35

Pimenta dioica

Fruit & berry

77.20

[153]

3

Mentha suaveolens

Unclear

17.00

[149]

36

Origanum vulgare

Leaf

80.35

[4]

4

Achillea kellalensis

Flower

21.79

[126]

37

Peumus boldus

Leaf

82.14

[157]

5

Tagetes patula

Foliage

22.33

[41]

38

Zhumeria majdae

Leaf

88.51

[130]

6

Feronia limonia

Leaf

22.49

[40]

39

Mentha spicata

Unclear

92.00

[149]

7

Satureja montana

Aerial parts

25.60

[150]

40

Pelargonium graveolens)

Aerial parts

98.40

[150]

8

Pimpinella anisum

Fruit

26.10

[151]

41

Hyssopus officinalis

Aerial parts

99.50

[150]

9

Tanacetum persicum

Aerial parts

28.53

[126]

42

Ravensara aromatica

Leaf

101.40

[153]

10

Plectranthus mollis

Whole plant

29.50

[55]

43

Anthemis nobilis

Flower

108.70

[153]

11

Rosmarinus officinalis

Stem & Leaf

30.60

[152]

44

Rosmarinus officinali

Flowering herb

111.10

[153]

12

Thymus vulgare

Flowering top

32.90

[153]

45

Nepeta cataria

Flowering top

112.40

[153]

13

Satureja hortensis

Flowering top

36.10

[153]

46

Mentha aquatica

Unclear

118.00

[149]

14

Murraya exotica

Leaf

43.20

[63]

47

Lavandula angustifolia

Flower

121.60

[153]

15

Thymus satureoides Boiss

Herb

43.60

[153]

48

Kadsura heteroclita

Leaf

121.97

[93]

16

Satureja bachtiarica

Aerial parts

44.96

[123]

49

Syzygium aromaticum

Buds

124.42

[91]

17

Zingiber nimmonii

Rhizome

48.26

[12]

50

Cannabis sativa

Herb

127.30

[153]

18

Zingiber cernuum

Rhizome

48.44

[21]

51

Salvia sclarea

Flower

127.50

[153]

19

Blumea eriantha

Leaf

48.92

[69]

52

Pinus sylvestris

Needles

128.00

[91]

20

Zanthoxylum armatum

Seed

49.00

[74]

53

Sphaeranthus indicus

Leaf

130.00

[6]

21

Pinus nigra

Twig

49.80

[150]

54

Pelargonium roseum

Leaf

130.30

[153]

22

Artemisia absinthium

Unclear

50.57

[71]

55

Nigella sativa

Seed

141.70

[92]

23

Zingiber officinalis

Rhizome

50.78

[154]

56

Erigeron canadensis

Herb

141.90

[153]

24

Lavandula gibsoni

Whole plant

54.70

[55]

57

Juniperus communis

Berry & twig

164.30

[153]

25

Ipomoea cairica

Unclear

58.90

[51]

58

Laurus nobilis

Leaf

167.90

[153]

26

Syzygium lanceolatum

Leaf

60.01

[76]

59

Amyris balsamifera

Wood

170.70

[153]

27

Pinus kesiya

Leaf

62.00

[78]

60

Ocimum basilicum

Leaf

171.60

[153]

28

Mentha spicata

Leaf

62.62

[77]

61

Citrus aurantium

Flower

179.80

[153]

29

Psoralea corylifolia

Seed

63.38

[155]

62

Tanacetum vulgare

Flowering top

186.60

[153]

30

Pulegium vulgare

Unclear

64.00

[149]

63

Zingiber cassumunar Roxb

Root

202.30

[153]

31

Aloysia citrodora

Leaf

65.60

[150]

64

Melaleuca alternifolia

Leaf

204.10

[153]

32

Blumea mollis

Leaf

71.71

[156]

65

Santalum album

Heartwood

225.30

[153]

33

Origanum scabrum

Leaf

72.45

[84]

66

Polygonum hydropiper

Leaf

243.00

[139]

Continue in next Page

Continue of Table 7. Larvicidal Activity of Essential Oils Against Culex quinquefasciatus

Table 8. Larvicidal Activity of Essential Oils Against Culex pipiens

Plant species

Used part(s)

LC50 (µg/mL)

Ref

Kelussia odoratissima

Aerial parts

2.69

[119]

Echinops grijsii

Root

3.43

[13]

Pelargonium roseum

Leaf

5.49

[158]

Platycladus orientalis

Leaf

18.60

[2]

Bunium persicum

Seed

20.61

[2]

Asarum heterotropoides

Root

21.07

[52]

Thymus teucrioides

Aerial parts

23.17

[159]

Citrus limon

Lemon

30.14

[160]

Thymus leucospermus

Aerial parts

34.26

[159]

Citrus aurantium

Bitter orange

39.81

[160]

Oenanthe pimpinelloides

Aerial parts

40.26

[161]

Citrus sinensis

Sweet orange

51.50

[160]

Geranium maculatum

Unclear

57.28

[162]

Bupleurum fruticosum

Aerial parts

64.68

[161]

Conopodium capillifolium

Aerial parts

68.50

[161]

Heracleum sphondylium

Aerial parts

77.41

[161]

Citrus bergamia

Unclear

81.45

[162]

Seseli montanum

Aerial parts

86.60

[161]

Eleoselinum asclepium

Aerial parts

96.96

[161]

Hypericum tomentosum from Tbarka

Aerial parts

102.82

[163]

Hypericum tomentosum from Fernana

Aerial parts

125.26

[163]

Hypericum humifusum

Aerial parts

156.80

[163]

Hypericum perforatum

Aerial parts

194.70

[163]

Table 9. Larvicidal Activity of Essential Oils Against Culex tritaeniorhynchus

Plant species

Used part (s)

LC50 (µg/mL)

Ref

Ocimum basilicum

Leaf

14.01

[102]

Ipomoea cairica

Unclear

14.80

[51]

Eugenia uniflora

Leaf

36.35

[106]

Heracleum sprengelianum

Leaf

40.90

[108]

Zingiber cernuum

Rhizome

60.20

[21]

Blumea eriantha

Leaf

61.33

[69]

Artemisia absinthium

Unclear

62.16

[71]

Syzygium lanceolatum

Leaf

72.24

[76]

Coleus aromaticus

Leaf

72.70

[111]

Origanum scabrum

Leaf

78.87

[84]

Origanum vulgare

Leaf

84.93

[4]

Plectranthus barbatus

Unclear

94.34

[11]

Boswellia ovalifoliolata

Leaf

97.95

[83]

Syzygium zeylanicum

Leaf

97.96

[114]

Zingiber officinale

Rhizome

98.83

[140]

Rosmarinus officinalis

Shoot

115.38

[140]

Cinnamomum zeylanicum

Bark

124.70

[140]

Cymbopogan citrates

Leaf

136.58

[140]

Table 10. Potent Essential Oils as Larvicide Against at Least 2 Species of Mosquitoes

Plant species

Target

LC50 (µg/mL)

Ref

Ocimum basilicum

Cx. tritaeniorhynchus

14.01

[102]

An. subpictus

9.75

Kelussia odoratissima

Cx. pipiens

2.69

[118,119]

An. stephensi

4.77

An. stephensi

4.88

Echinops grijsii

Cx. pipiens

3.43

[13]

An. sinensis

3.43

Ae. albopictus

2.65

Cananga odorata

Cx. quinquefasciatus

<1

[39]

An. dirus

<1

Ae. aegypti

10.40

Cinnamomum microphyllum

Ae. albopictus

6.20

[37]

Ae. aegypti

10.70

Cinnamomum pubescen

Ae. albopictus

7.90

[37]

Ae. aegypti

10.20

Cinnamomum impressicostatum

Ae. albopictus

9.30

[37]

Ae. aegypti

10.70

Cinnamomum rhyncophyllum

Ae. albopictus

11.80

[37]

Ae. aegypti

6.00

References

  1. World Health Organization W.(2017) Fact sheet for Vector-borne diseases. Available from: http://www.who.int/mediacentre/factsheets/fs387/en/.
  2. Sanei-Dehkordi A, Vatandoost H, Abaei MR, Davari B, Sedaghat MM (2016) Chemical Composition and Larvicidal Activity of Bunium persicum Essential Oil Against Two Important Mosquitoes Vectors. J Essent Oil-Bear Plants. 19(2):349-357.
  3. Reinert JF (2001) Revised list of abbreviations for genera and subgenera of Culicidae (Diptera) and notes on generic and subgeneric changes. J Am Mosq Control Assoc. 17(1):51-55.
  4. Govindarajan M, Rajeswary M, Hoti SL, Benelli G (2016) Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Anopheles subpictus, Culex quinquefasciatus and Culex tritaeniorhynchus (Diptera: Culicidae). Res Vet Sci. 104:77-82.
  5. World Health Organization W.(2017) Mosquito-borne diseases. Available from: http://www.who.int/neglected_diseases/vector_ecology/mosquito-borne-diseases/en/.
  6. Chellappandian M, Thanigaivel A, Vasantha-Srinivasan P, Edwin ES, Ponsankar A, Selin-Rani S, et al. (2017) Toxicological effects of Sphaeranthus indicus Linn. (Asteraceae) leaf essential oil against human disease vectors, Culex quinquefasciatus Say and Aedes aegypti Linn., and impacts on a beneficial mosquito predator. Environ Sci Pollut Res Int. 25(11):10294-10306.
  7. Gutierrez PM, Antepuesto AN, Eugenio BAL, Santos MFL (2014) Larvicidal activity of selected plant extracts against the dengue vector Aedes aegypti mosquito. Int Res J Biol Sci. 3(4):23-32.
  8. Osanloo M, Amani A, Sereshti H, Abai MR, Esmaeili F, Sedaghat MM (2017) Preparation and optimization nanoemulsion of Tarragon (Artemisia dracunculus) essential oil as effective herbal larvicide against Anopheles stephensi. Ind Crops Prod. 109:214-219.
  9. Soonwera M, Phasomkusolsil S (2016) Effect of Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils on the morphology and mortality of Aedes aegypti and Anopheles dirus larvae. Parasitol Res. 115(4):1691-1703.
  10. Sumitha KV, Thoppil JE (2016) Larvicidal efficacy and chemical constituents of O. gratissimum L. (Lamiaceae) essential oil against Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res. 115(2):673-680.
  11. Govindarajan M, Rajeswary M, Hoti SL, Bhattacharyya A, Benelli G (2016) Eugenol, alpha-pinene and beta-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitol Res: 115(2).807-815.
  12. Govindarajan M, Rajeswary M, Arivoli S, Tennyson S, Benelli G (2016) Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: an eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors? Parasitol Res. 115(5):1807-1816.
  13. Zhao MP, Liu QZ, Liu Q, Liu ZL (2017) Identification of Larvicidal Constituents of the Essential Oil of Echinops grijsii Roots against the Three Species of Mosquitoes. Molecules. 22(2):205.
  14. Araujo AF, Ribeiro-Paes JT, Deus JT, Cavalcanti SC, Nunes Rde S, Alves PB, et al. (2016) Larvicidal activity of Syzygium aromaticum (L.) Merr and Citrus sinensis (L.) Osbeck essential oils and their antagonistic effects with temephos in resistant populations of Aedes aegypti. Mem Inst Oswaldo Cruz. 111(7):443-449.
  15. Intirach J, Junkum A, Tuetun B, Choochote W, Chaithong U, Jitpakdi A, et al. (2012) Chemical constituents and combined larvicidal effects of selected essential oils against Anopheles cracens (Diptera: Culicidae). Psyche (Camb Mass). 2012: ID 591616.
  16. Okumu FO, Knols BG, Fillinger U (2007) Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae. Malar J. 6:63.
  17. Vasantha-Srinivasan P, Senthil-Nathan S, Ponsankar A, Thanigaivel A, Edwin ES, Selin-Rani S, et al. (2017) Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide Temephos and plant derived essential oil derived from Piper betle L. Ecotoxicol Environ Saf. 139:439-446.
  18. Nascimento AM, Maia TD, Soares TE, Menezes LR, Scher R, Costa EV, et al. (2017) Repellency and Larvicidal Activity of Essential oils from Xylopia laevigata, Xylopia frutescens, Lippia pedunculosa, and Their Individual Compounds against Aedes aegypti Linnaeus. Neotrop Entomol. 46(2):223-230.
  19. Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol. 51:45-66.
  20. Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol. 57:405-424.
  21. Rajeswary M, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Zingiber cernuum (Zingiberaceae) essential oil as effective larvicide and oviposition deterrent on six mosquito vectors, with little non-target toxicity on four aquatic mosquito predators. Environ Sci Pollut Res Int. 25(11):10307-10316.
  22. Balasubramani S, Rajendhiran T, Moola AK, Diana RKB (2017) Development of nanoemulsion from Vitex negundo L. essential oil and their efficacy of antioxidant, antimicrobial and larvicidal activities (Aedes aegypti L.). Environ Sci Pollut Res Int. 24(17):15125-15133.
  23. Pavela R (2008) Insecticidal properties of several essential oils on the house fly (Musca domestica L.). Phytother Res. 22(2):274-278.
  24. Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crops Prod. 76:174-187.
  25. Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, et al. (2012) A global map of dominant malaria vectors. Parasit vectors. 5(1):69.
  26. Monath TP, Vasconcelos PF (2015) Yellow fever. J Clin Virol. 64:160-173.
  27. Guzman A, Istúriz RE (2010) Update on the global spread of dengue. Int J Antimicrob Agents. 36(S1):S40-S42.
  28. Hills SL, Fischer M, Petersen LR (2017) Epidemiology of Zika virus infection. J Infect Dis. 216(S10):S868-S874.
  29. Paixão ES, Barreto F, da Glória Teixeira M, da Conceição N. Costa M, Rodrigues LC (2016) History, epidemiology, and clinical manifestations of Zika: a systematic review. Am J Public Health. 106(4):606-612.
  30. Weaver SC, Lecuit M (2015) Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med. 372(13):1231-1239.
  31. Petersen LR, Powers AM (2016) Chikungunya: epidemiology. F1000Research: 5.
  32. Ciota AT (2017) West Nile virus and its vectors. Curr Opin Insect Sci. 22:28-36.
  33. Pearce JC, Learoyd TP, Langendorf BJ, Logan JG (2018) Japanese encephalitis: the vectors, ecology and potential for expansion. J Travel Med. 25(S1):S16-S26.
  34. Shaalan EA-S, Canyon DV, Bowden B, Younes MWF, Abdel-Wahab H, Mansour A-H (2006) Efficacy of botanical extracts from Callitris glaucophylla against Aedes aegypti and Culex annulirostris mosquitoes. Trop Biomed. 23(2):180-185.
  35. Costa JG, Pessoa OD, Menezes EA, Santiago GM, Lemos TL (2004) Composition and larvicidal activity of essential oils from heartwood of Auxemma glazioviana Taub.(Boraginaceae). Flavour Fragrance J. 19(6):529-531.
  36. Promsiri S, Naksathit A, Kruatrachue M, Thavara U (2006) Evaluations of larvicidal activity of medicinal plant extracts to Aedes aegypti (Diptera: Culicidae) and other effects on a non target fish. Insect Sci. 13(3):179-188.
  37. Jantan Ib, Yalvema MF, Ahmad NW, Jamal JA (2005) Insecticidal Activities of the Leaf Oils of Eight Cinnamomum. species Against Aedes aegypti. and Aedes albopictus. Pharm Biol. 43(6):526-532.
  38. do Nascimento JC, David JM, Barbosa LC, de Paula VF, Demuner AJ, David JP, et al. (2013) Larvicidal activities and chemical composition of essential oils from Piper klotzschianum (Kunth) C. DC.(Piperaceae). Pest Manag Sci. 69(11):1267-1271.
  39. Soonwera M (2015) Efficacy of essential oil from Cananga odorata (Lamk.) Hook.f. & Thomson (Annonaceae) against three mosquito species Aedes aegypti (L.), Anopheles dirus (Peyton and Harrison), and Culex quinquefasciatus (Say). Parasitol Res. 114(12):4531-4543.
  40. Senthilkumar A, Jayaraman M, Venkatesalu V (2013) Chemical constituents and larvicidal potential of Feronia limonia leaf essential oil against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Parasitol Res. 112(3):1337-1342.
  41. Dharmagadda VS, Naik SN, Mittal PK, Vasudevan P (2005) Larvicidal activity of Tagetes patula essential oil against three mosquito species. Bioresour Technol. 96(11):1235-1240.
  42. Ali A, Tabanca N, Demirci B, Blythe EK, Ali Z, Baser KH, et al. (2015) Chemical composition and biological activity of four salvia essential oils and individual compounds against two species of mosquitoes. J Agric Food Chem. 63(2):447-456.
  43. Sutthanont N, Choochote W, Tuetun B, Junkum A, Jitpakdi A, Chaithong U, et al. (2010) Chemical composition and larvicidal activity of edible plant‐derived essential oils against the pyrethroid‐susceptible and‐resistant strains of Aedes aegypti (Diptera: Culicidae). J Vector Ecol. 35(1):106-115.
  44. Kumar S, Mishra M, Wahab N, Warikoo R (2014) Larvicidal, Repellent, and Irritant Potential of the Seed-Derived Essential oil of Apium graveolens Against Dengue Vector, Aedes aegypti L. (Diptera: Culicidae). Front Public Health. 2(2):147.
  45. Ravi Kiran S, Bhavani K, Sita Devi P, Rajeswara Rao BR, Janardhan Reddy K (2006) Composition and larvicidal activity of leaves and stem essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Bioresour Technol. 97(18):2481-2484.
  46. Vera SS, Zambrano DF, Méndez-Sanchez SC, Rodríguez-Sanabria F, Stashenko EE, Luna JED (2014) Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae). Parasitol Res. 113(7):2647-2654.
  47. Costa J, Rodrigues F, Angélico E, Silva M, Mota M, Santos N, et al. (2005) Chemical-biological study of the essential oils of Hyptis martiusii, Lippia sidóides and Syzigium aromaticum against larvae of Aedes aegypti and Culex quinquefasciatus. Rev Bras Farmacogn. 15(4):304-309.
  48. Moon H-I (2011) Larvicidal activity of major essential oils from stems of Allium monanthum Maxim. against Aedes aegypti L. J Enzyme Inhib Med Chem. 26(6):827-830.
  49. Autran E, Neves I, Da Silva C, Santos G, Da Câmara C, Navarro D (2009) Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper marginatum Jacq.(Piperaceae). Bioresour Technol. 100(7):2284-2288.
  50. Kiran SR, Bhavani K, Devi PS, Rao BR, Reddy KJ (2006) Composition and larvicidal activity of leaves and stem essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Bioresour Technol. 97(18):2481-2484.
  51. Thomas TG, Rao S, Lal S (2004) Mosquito larvicidal properties of essential oil of an indigenous plant, Ipomoea cairica Linn. Jpn J Infect Dis: 57(4):176-177.
  52. Perumalsamy H, Kim N-J, Ahn Y-J (2009) Larvicidal activity of compounds isolated from Asarum heterotropoides against Culex pipiens pallens, Aedes aegypti, and Ochlerotatus togoi (Diptera: Culicidae). J Med Entomol. 46(6):1420-1423.
  53. Pitasawat B, Champakaew D, Choochote W, Jitpakdi A, Chaithong U, Kanjanapothi D, et al. (2007) Aromatic plant-derived essential oil: an alternative larvicide for mosquito control. Fitoterapia. 78(3):205-210.
  54. Lima MA, de Oliveira FFM, Gomes GA, Lavor PL, Santiago GM, Nagao-Dias AT, et al. (2011) Evaluation of larvicidal activity of the essential oils of plants species from Brazil against Aedes aegypti (Diptera: Culicidae). Afr J Biotechnol. 10(55):11716-11720.
  55. Kulkarni RR, Pawar PV, Joseph MP, Akulwad AK, Sen A, Joshi SP (2013) Lavandula gibsoni and Plectranthus mollis essential oils: chemical analysis and insect control activities against Aedes aegypti, Anopheles sfttephensi and Culex quinquefasciatus. J Pest Sci. 86(4):713-718.
  56. de Lima GPG, de Souza TM, de Paula Freire G, Farias DF, Cunha AP, Ricardo NMPS, et al. (2013) Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol Res. 112(5):1953-1958.
  57. Morais SM, Cavalcanti ES, Bertini LM, Oliveira CLL, Rodrigues JRB, Cardoso JHL (2006) Larvicidal activity of essential oils from Brazilian Croton species against Aedes aegypti L. J Am Mosq Control Assoc. 22(1):161-164.
  58. Cheng S-S, Chua M-T, Chang E-H, Huang C-G, Chen W-J, Chang S-T (2009) Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresour Technol. 100(1):465-470.
  59. Cheng S-S, Huang C-G, Chen Y-J, Yu J-J, Chen W-J, Chang S-T (2009) Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Bioresour Technol. 100(1):452-456.
  60. Lucia A, GONZALEZ AUDINO P, Seccacini E, Licastro S, Zerba E, Masuh H (2007) Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae. J Am Mosq Control Assoc. 23(3):299-303.
  61. Liu XC, Liu Q, Chen XB, Liu QZ, Liu ZL (2015) Larvicidal activity of the essential oil of Youngia japonica aerial parts and its constituents against Aedes albopictus. Z Naturforsch C. 70(1-2):1-6.
  62. Leyva M, del Carmen Marquetti M, Tacoronte JE, Scull R, Tiomno O, Mesa A, et al. (2009) Actividad larvicida de aceites esenciales de plantas contra Aedes aegypti (L.)(Diptera: Culicidae). Revista Biomed. 20(1):5-13.
  63. Krishnamoorthy S, Chandrasekaran M, Raj GA, Jayaraman M, Venkatesalu V (2015) Identification of chemical constituents and larvicidal activity of essential oil from Murraya exotica L. (Rutaceae) against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 114(5):1839-1845.
  64. de Morais SM, Facundo VA, Bertini LM, Cavalcanti ESB, dos Anjos Júnior JF, Ferreira SA, et al. (2007) Chemical composition and larvicidal activity of essential oils from Piper species. Biochem Syst Ecol. 35(10):670-675.
  65. Choochote W, Chaiyasit D, Kanjanapothi D, Rattanachanpichai E, Jitpakdi A, Tuetun B, et al. (2005) Chemical composition and anti-mosquito potential of rhizome extract and volatile oil derived from Curcuma aromatica against Aedes aegypti (Diptera: Culicidae). J Vector Ecol. 30(2):302.
  66. Cheng SS, Chang HT, Lin CY, Chen PS, Huang CG, Chen WJ, et al. (2009) Insecticidal activities of leaf and twig essential oils from Clausena excavata against Aedes aegypti and Aedes albopictus larvae. Pest Manag Sci. 65(3):339-343.
  67. Kuo P-M, Chu F-H, Chang S-T, Hsiao W-F, Wang S-Y (2007) Insecticidal activity of essential oil from Chamaecyparis formosensis Matsum. Holzforschung. 61(5):595-599.
  68. Costa J, Rodrigues F, Sousa E, Junior D, Campos A, Coutinho H, et al. (2010) Composition and larvicidal activity of the essential oils of Lantana camara and Lantana montevidensis. Chem Nat Compd. 46(2):313-315.
  69. Benelli G, Govindarajan M, Rajeswary M, Senthilmurugan S, Vijayan P, Alharbi NS, et al. (2017) Larvicidal activity of Blumea eriantha essential oil and its components against six mosquito species, including Zika virus vectors: the promising potential of (4E,6Z)-allo-ocimene, carvotanacetone and dodecyl acetate. Parasitol Res. 116(4):1175-1188.
  70. Lima TC, da Silva TK, Silva FL, Barbosa-Filho JM, Marques MO, Santos RL, et al. (2014) Larvicidal activity of Mentha x villosa Hudson essential oil, rotundifolone and derivatives. Chemosphere. 104:37-43.
  71. Govindarajan M, Benelli G (2016) Artemisia absinthium-borne compounds as novel larvicides: effectiveness against six mosquito vectors and acute toxicity on non-target aquatic organisms. Parasitol Res. 115(12):4649-4661.
  72. Amazonas Maciel Magalhães L, da Paz Lima M, Ortiz Mayo Marques M, Facanali R, Pinto ACdS, Pedro Tadei W (2010) Chemical composition and larvicidal activity against Aedes aegypti larvae of essential oils from four Guarea species. Molecules. 15(8):5734-5741.
  73. Alvarez Costa A, Naspi CV, Lucia A, Masuh HM (2017) Repellent and Larvicidal Activity of the Essential Oil From Eucalyptus nitens Against Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J Med Entomol. 54(3):670-676.
  74. Tiwary M, Naik SN, Tewary DK, Mittal PK, Yadav S (2007) Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. J Vector Borne Dis. 44(3):198-204.
  75. de Almeida RR, Souto RN, Bastos CN, da Silva MH, Maia JG (2009) Chemical variation in Piper aduncum and biological properties of its dillapiole-rich essential oil. Chem Biodivers. 6(9):1427-1434.
  76. Benelli G, Rajeswary M, Govindarajan M (2016) Towards green oviposition deterrents? Effectiveness of Syzygium lanceolatum (Myrtaceae) essential oil against six mosquito vectors and impact on four aquatic biological control agents. Environ Sci Pollut Res Int. 25(11):10218-10227.
  77. Govindarajan M, Sivakumar R, Rajeswari M, Yogalakshmi K (2012) Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitol Res. 110(5):2023-2032.
  78. Govindarajan M, Rajeswary M, Benelli G (2016) Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors. Ecotoxicol Environ Saf. 129:85-90.
  79. Nagella P, Ahmad A, Kim S-J, Chung I-M (2012) Chemical composition, antioxidant activity and larvicidal effects of essential oil from leaves of Apium graveolens. Immunopharmacol Immunotoxicol. 34(2):205-209.
  80. Chung I-M, Seo S-H, Kang E-Y, Park S-D, Park W-H, Moon H-I (2009) Chemical composition and larvicidal effects of essential oil of Dendropanax morbifera against Aedes aegypti L. Biochem Syst Ecol. 37(4):470-473.
  81. Santos RP, Nunes EP, Nascimento RF, Santiago GMP, Menezes GHA, Silveira ER, et al. (2006) Chemical composition and larvicidal activity of the essential oils of Cordia leucomalloides and Cordia curassavica from the Northeast of Brazil. J Braz Chem Soc. 17(5):1027-1030.
  82. Mora FD, Avila JL, Rojas LB, Ramirez R, Usubillaga A, Segnini S, et al. (2010) Chemical composition and larvicidal activity of Eugenia triquetra essential oil from Venezuelan Andes. Nat Prod Commun. 5(6):965-968.
  83. Benelli G, Rajeswary M, Vijayan P, Senthilmurugan S, Alharbi NS, Kadaikunnan S, et al. (2017) Boswellia ovalifoliolata (Burseraceae) essential oil as an eco-friendly larvicide? Toxicity against six mosquito vectors of public health importance, non-target mosquito fishes, backswimmers, and water bugs. Environ Sci Pollut Res Int. 25(11):10264-10271.
  84. Govindarajan M, Kadaikunnan S, Alharbi NS, Benelli G (2016) Acute toxicity and repellent activity of the Origanum scabrum Boiss. & Heldr. (Lamiaceae) essential oil against four mosquito vectors of public health importance and its biosafety on non-target aquatic organisms. Environ Sci Pollut Res Int. 23(22):23228-23238.
  85. Barbosa JD, Silva VB, Alves PB, Gumina G, Santos RL, Sousa DP, et al. (2012) Structure-activity relationships of eugenol derivatives against Aedes aegypti (Diptera: Culicidae) larvae. Pest Manag Sci. 68(11):1478-1483.
  86. Souza LGdS, Almeida MCS, Monte FJQ, Santiago GMP, Braz-Filho R, Lemos TLG, et al. (2012) Chemical constituents of Capraria biflora (Scrophulariaceae) and larvicidal activity of essential oil. Quim Nova. 35(11):2258-2262.
  87. Santos HS, Santiago GM, de Oliveirac JP, Arriaga A, Marques DD, Lemos TL (2007) Chemical composition and larvicidal activity against Aedes aegypti of essential oils from Croton zehntneri. Nat Prod Commun. 2(12):1233-1236.
  88. Marques MM, Morais SM, Vieira ÍG, Vieira MG, Silva ARA, De Almeida RR, et al. (2011) Larvicidal activity of Tagetes erecta against Aedes aegypti. J Am Mosq Control Assoc. 27(2):156-158.
  89. Gbolade A, Lockwood G (2008) Toxicity of Ocimum sanctum L. essential oil to Aedes aegypti larvae and its chemical composition. J Essent Oil-Bear Plants. 11(2):148-153.
  90. Cheng S, Lin C, Chung M, Liu Y, Huang C, Chang S (2013) Larvicidal activities of wood and leaf essential oils and ethanolic extracts from Cunninghamia konishii Hayata against the dengue mosquitoes. Ind Crops Prod. 47:310-315.
  91. Fayemiwo KA, Adeleke MA, Okoro OP, Awojide SH, Awoniyi IO (2014) Larvicidal efficacies and chemical composition of essential oils of Pinus sylvestris and Syzygium aromaticum against mosquitoes. Asian Pac J Trop Biomed. 4(1):30-34.
  92. Raj GA, Chandrasekaran M, Krishnamoorthy S, Jayaraman M, Venkatesalu V (2015) Phytochemical profile and larvicidal properties of seed essential oil from Nigella sativa L. (Ranunculaceae), against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 114(9):3385-3391.
  93. Govindarajan M, Rajeswary M, Benelli G (2016) delta-Cadinene, Calarene and .delta-4-Carene from Kadsura heteroclita Essential Oil as Novel Larvicides Against Malaria, Dengue and Filariasis Mosquitoes. Comb Chem High Throughput Screen. 19(7):565-571.
  94. Santos GK, Dutra KA, Lira CS, Lima BN, Napoleao TH, Paiva PM, et al. (2014) Effects of Croton rhamnifolioides essential oil on Aedes aegypti oviposition, larval toxicity and trypsin activity. Molecules. 19(10):16573-16587.
  95. Ali A, Tabanca N, Ozek G, Ozek T, Aytac Z, Bernier UR, et al. (2015) Essential Oils of Echinophora lamondiana (Apiales: Umbelliferae): A Relationship Between Chemical Profile and Biting Deterrence and Larvicidal Activity Against Mosquitoes (Diptera: Culicidae). J Med Entomol. 52(1):93-100.
  96. Carvalho Kda S, SL ES, de Souza IA, Gualberto SA, da Cruz RC, Dos Santos FR, et al. (2016) Toxicological evaluation of essential oil from the leaves of Croton tetradenius (Euphorbiaceae) on Aedes aegypti and Mus musculus. Parasitol Res. 115(9):3441-3448.
  97. Dias CN, Alves LP, Rodrigues KA, Brito MC, Rosa Cdos S, do Amaral FM, et al. (2015) Chemical Composition and Larvicidal Activity of Essential Oils Extracted from Brazilian Legal Amazon Plants against Aedes aegypti L. (Diptera: Culicidae). Evid Based Complement Alternat Med. 2015:490765-490772.
  98. Oliveira GL, Cardoso SK, Lara CR, Jr., Vieira TM, Guimaraes EF, Figueiredo LS, et al. (2013) Chemical study and larvicidal activity against Aedes aegypti of essential oil of Piper aduncum L. (Piperaceae). An Acad Bras Cienc. 85(4):1227-1234.
  99. Cruz RC, Silva SL, Souza IA, Gualberto SA, Carvalho KS, Santos FR, et al. (2017) Toxicological Evaluation of Essential Oil From the Leaves of Croton argyrophyllus (Euphorbiaceae) on Aedes aegypti (Diptera: Culicidae) and Mus musculus (Rodentia: Muridae). J Med Entomol. 54(4):985-993.
  100. da Silva Ramos R, Rodrigues AB, Farias AL, Simoes RC, Pinheiro MT, Ferreira RM, et al. (2017) Chemical Composition and In Vitro Antioxidant, Cytotoxic, Antimicrobial, and Larvicidal Activities of the Essential Oil of Mentha piperita L. (Lamiaceae). ScientificWorldJournal. 2017:4927214.
  101. Liu XC, Liu Q, Chen XB, Zhou L, Liu ZL (2015) Larvicidal activity of the essential oil from Tetradium glabrifolium fruits and its constituents against Aedes albopictus. Pest Manag Sci. 71(11):1582-1586.
  102. Govindarajan M, Sivakumar R, Rajeswary M, Yogalakshmi K (2013) Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Exp Parasitol. 134(1):7-11.
  103. Liu ZL, He Q, Chu SS, Wang CF, Du SS, Deng ZW (2012) Essential oil composition and larvicidal activity of Saussurea lappa roots against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res. 110(6):2125-2130.
  104. Liu XC, Zhou L, Liu Q, Liu ZL (2015) Laboratory Evaluation of Larvicidal Activity of the Essential oil of Allium tuberosum Roots and its Selected Major Constituent Compounds Against Aedes albopictus (Diptera: Culicidae). J Med Entomol. 52(3):437-441.
  105. Conti B, Leonardi M, Pistelli L, Profeti R, Ouerghemmi I, Benelli G (2013) Larvicidal and repellent activity of essential oils from wild and cultivated Ruta chalepensis L.(Rutaceae) against Aedes albopictus Skuse (Diptera: Culicidae), an arbovirus vector. Parasitol Res. 112(3):991-999.
  106. Govindarajan M, Rajeswary M, Senthilmurugan S, Vijayan P, Alharbi NS, Kadaikunnan S, et al. (2017) Curzerene, trans-beta-elemenone, and gamma-elemene as effective larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus: toxicity on non-target aquatic predators. Environ Sci Pollut Res Int. 25(11):10272-10282.
  107. Giatropoulos A, Pitarokili D, Papaioannou F, Papachristos DP, Koliopoulos G, Emmanouel N, et al. (2013) Essential oil composition, adult repellency and larvicidal activity of eight Cupressaceae species from Greece against Aedes albopictus (Diptera: Culicidae). Parasitol Res. 112(3):1113-1123.
  108. Govindarajan M, Benelli G (2016) Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotoxicol Environ Saf. 133:395-402.
  109. Cheng SS, Liu JY, Huang CG, Hsui YR, Chen WJ, Chang ST (2009) Insecticidal activities of leaf essential oils from Cinnamomum osmophloeum against three mosquito species. Bioresour Technol. 100(1):457-464.
  110. Koutsaviti K, Giatropoulos A, Pitarokili D, Papachristos D, Michaelakis A, Tzakou O (2015) Greek Pinus essential oils: larvicidal activity and repellency against Aedes albopictus (Diptera: Culicidae). Parasitol Res. 114(2):583-592.
  111. Govindarajan M, Sivakumar R, Rajeswary M, Veerakumar K (2013) Mosquito larvicidal activity of thymol from essential oil of Coleus aromaticus Benth. against Culex tritaeniorhynchus, Aedes albopictus, and Anopheles subpictus (Diptera: Culicidae). Parasitol Res. 112(11):3713-3721.
  112. Liu XC, Dong HW, Zhou L, Du SS, Liu ZL (2013) Essential oil composition and larvicidal activity of Toddalia asiatica roots against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res. 112(3):1197-1203.
  113. Liu XC, Liu Q, Zhou L, Liu ZL (2014) Evaluation of larvicidal activity of the essential oil of Allium macrostemon Bunge and its selected major constituent compounds against Aedes albopictus (Diptera: Culicidae). Parasit Vectors. 7:184.
  114. Govindarajan M, Benelli G (2016) alpha-Humulene and beta-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus (Diptera: Culicidae). Parasitol Res. 115(7):2771-2778.
  115. Conti B, Canale A, Bertoli A, Gozzini F, Pistelli L (2010) Essential oil composition and larvicidal activity of six Mediterranean aromatic plants against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res. 107(6):1455-1461.
  116. Conti B, Benelli G, Flamini G, Cioni PL, Profeti R, Ceccarini L, et al. (2012) Larvicidal and repellent activity of Hyptis suaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res. 110(5):2013-2021.
  117. Benelli G, Flamini G, Fiore G, Cioni PL, Conti B (2013) Larvicidal and repellent activity of the essential oil of Coriandrum sativum L. (Apiaceae) fruits against the filariasis vector Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res. 112(3):1155-1161.
  118. Osanloo M, Amani A, Sereshti H, Shayeghi M, Sedaghat MM (2017) Extraction and chemical composition essential oil of Kelussia odoratissima and comparison its larvicidal activity with Z-ligustilide (major constituent) against Anopheles stephensi. J Entomol Zool Stud. 5(4):611-616.
  119. Vatandoost H, Dehkordi AS, Sadeghi S, Davari B, Karimian F, Abai M, et al. (2012) Identification of chemical constituents and larvicidal activity of Kelussia odoratissima Mozaffarian essential oil against two mosquito vectors Anopheles stephensi and Culex pipiens (Diptera: Culicidae). Exp Parasitol. 132(4):470-474.
  120. Sanei-Dehkordi A, Gholami S, Abai MR, Sedaghat MM (2018) Essential Oil Composition and Larvicidal Evaluation of Platycladus orientalis against Two Mosquito Vectors, Anopheles stephensi and Culex pipiens. J Arthropod Borne Dis. 12(2):101-107.
  121. Golfakhrabadi F, Khanavi M, Ostad SN, Saeidnia S, Vatandoost H, Abai MR, et al. (2015) Biological activities and composition of Ferulago carduchorum essential oil. J Arthropod Borne Dis. 9(1):104-115.
  122. Sedaghat M, Dehkordi AS, Abai M, Khanavi M, Mohtarami F, Abadi YS, et al. (2011) Larvicidal Activity of Essential Oils of Apiaceae Plants against Malaria Vector, Anopheles stephensi. Iran J Arthropod Borne Dis. 5(2):51-59.
  123. Soleimani-Ahmadi M, Abtahi SM, Madani A, Paksa A, Abadi YS, Gorouhi MA, et al. (2017) Phytochemical profile and mosquito larvicidal activity of the essential oil from aerial parts of Satureja bachtiarica Bunge against malaria and lymphatic filariasis vectors. J Essent Oil-Bear Plants. 20(2):328-336.
  124. Senthilkumar A, Venkatesalu V (2010) Chemical composition and larvicidal activity of the essential oil of Plectranthus amboinicus (Lour.) Spreng against Anopheles stephensi: a malarial vector mosquito. Parasitol Res. 107(5):1275-1278.
  125. Sedaghat MM, Sanei-Dehkordi A, Vatandoost H, Abai MR (2016) Chemical Compositions of the Peel Essential Oil of Citrus aurantium and its Natural Larvicidal Activity against the Malaria Vector Anopheles stephensi (Diptera: Culicidae) in Comparison with Citrus paradisi. J Arthropod Borne Dis. 10(4):577 - 585.
  126. Soleimani-Ahmadi M, Sanei-Dehkordi A, Turki H, Madani A, Abadi YS, Paksa A, et al. (2017) Phytochemical Properties and Insecticidal Potential of Volatile Oils from Tanacetum persicum and Achillea kellalensis Against Two Medically Important Mosquitoes. J Essent Oil-Bear Plants. 20(5):1254-1265.
  127. Osanloo M, Sereshti H, Sedaghat MM, Amani A (2017) Nanoemulsion of Dill essential oil as a green and potent larvicide against Anopheles stephensi. Environ Sci Pollut Res Int. 25(7):6466-6473.
  128. Soleimani-Ahmadi M, Gorouhi MA, Azani S, Abadi Y, Paksa A, Rashid G, et al. (2017) Larvicidial Effects of essential oil and methanol extract of Achillea wilhelmsii C. Koch (Asteraceae) against Anopheles stephensi Liston (Diptera: Culicidae), a malaria vector. J Kerman Univ Med Sci. 24(1):58-67.
  129. Osanloo M, Sedaghat MM, Esmaeili F, Amani A (2018) Larvicidal Activity of Essential Oil of Syzygium aromaticum (Clove) in Comparison with Its Major Constituent, Eugenol, against Anopheles stephensi. J Arthropod Borne Dis. 12(Accepted manuscripts).
  130. Sanei-Dehkordi A, Soleimani-Ahmadi M, Akbarzadeh K, Salim Abadi Y, Paksa A, Gorouhi MA, et al. (2016) Chemical Composition and Mosquito Larvicidal Properties of Essential Oil from Leaves of an Iranian Indigenous Plant Zhumeria majdae. J Essent Oil-Bear Plants. 19(6):1454-1461.
  131. Khanavi M, Vatandoost H, Khosravi Dehaghi N, Sanei Dehkordi A, Sedaghat MM, Hadjiakhoondi A, et al. (2013) Larvicidal activities of some Iranian native plants against the main malaria vector, Anopheles stephensi. Acta Med Iran. 51(3):141-147.
  132. Mozaffari E, Abai MR, Khanavi M, Vatandoost H, Sedaghat MM, Moridnia A, et al. (2014) Chemical Composition, Larvicidal and Repellency Properties of Cionura erecta (L.) Griseb. Against Malaria Vector, Anopheles stephensi Liston (Diptera: Culicidae). J Arthropod Borne Dis. 8(2):147-155.
  133. Sedaghat MM, Dehkordi AS, Khanavi M, Abai MR, Mohtarami F, Vatandoost H (2011) Chemical composition and larvicidal activity of essential oil of Cupressus arizonica E.L. Greene against malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Pharmacognosy Res. 3(2):135-139.
  134. Pandey SK, Upadhyay S, Tripathi AK (2009) Insecticidal and repellent activities of thymol from the essential oil of Trachyspermum ammi (Linn) Sprague seeds against Anopheles stephensi. Parasitol Res. 105(2):507-512.
  135. Medhi SM, Reza S, Mahnaz K, Reza AM, Abbas H, Fatemeh M, et al. (2010) Phytochemistry and larvicidal activity of Eucalyptus camaldulensis against malaria vector, Anopheles stephensi. Asian Pac J Trop Med. 3(11):841-845.
  136. Rajkumar S, Jebanesan A, Nagarajan R (2011) Effect of leaf essential oil of Coccinia indica on egg hatchability and different larval instars of malarial mosquito Anopheles stephensi. Asian Pac J Trop Med. 4(12):948-951.
  137. Khanavi M, Najafi B, Sadati SN, Abai MR, Vatandoost H (2016) Chemical Constitute and Larvicidal Activity of Fractions of Ajuga chamaecistus tomentella Plant against Malaria Vector Anopheles stephensi. J Arthropod Borne Dis. 11(1):116-123.
  138. Mahnaz K, Alireza F, Hassan V, Mahdi S, Reza AM, Abbas H (2012) Larvicidal activity of essential oil and methanol extract of Nepeta menthoides against malaria vector Anopheles stephensi. Asian Pac J Trop Med. 5(12):962-965.
  139. Maheswaran R, Ignacimuthu S (2013) Bioefficacy of essential oil from Polygonum hydropiper L. against mosquitoes, Anopheles stephensi and Culex quinquefasciatus. Ecotoxicol Environ Saf. 97:26-31.
  140. Govindarajan M (2011) Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pac J Trop Med. 4(2):106-111.
  141. Ali A, Demirci B, Kiyan HT, Bernier UR, Tsikolia M, Wedge DE, et al. (2013) Biting deterrence, repellency, and larvicidal activity of Ruta chalepensis (Sapindales: Rutaceae) essential oil and its major individual constituents against mosquitoes. J Med Entomol. 50(6):1267-1274.
  142. Kyarimpa CM, Böhmdorfer S, Wasswa J, Kiremire BT, Ndiege IO, Kabasa JD (2014) Essential oil and composition of Tagetes minuta from Uganda. Larvicidal activity on Anopheles gambiae. Ind Crops Prod. 62:400-404.
  143. Matasyoh JC, Wathuta EM, Kariuki ST, Chepkorir R (2011) Chemical composition and larvicidal activity of Piper capense essential oil against the malaria vector, Anopheles gambiae. J Asia-Pac Entomol. 14(1):26-28.
  144. Mdoe FP, Cheng SS, Msangi S, Nkwengulila G, Chang ST, Kweka EJ (2014) Activity of Cinnamomum osmophloeum leaf essential oil against Anopheles gambiae s.s. Parasit Vectors. 7:209.
  145. Kweka EJ, Senthilkumar A, Venkatesalu V (2012) Toxicity of essential oil from Indian borage on the larvae of the African malaria vector mosquito, Anopheles gambiae. Parasit Vectors. 5:277.
  146. Zhu L, Tian YJ (2011) Chemical composition and larvicidal effects of essential oil of Blumea martiniana against Anopheles anthropophagus. Asian Pac J Trop Med. 4(5):371-374.
  147. Zhu L, Tian Y (2013) Chemical composition and larvicidal activity of essential oil of Artemisia gilvescens against Anopheles anthropophagus. Parasitol Res. 112(3):1137-1142.
  148. Karunamoorthi K, Girmay A, Fekadu S (2014) Larvicidal efficacy of Ethiopian ethnomedicinal plant Juniperus procera essential oil against Afrotropical malaria vector Anopheles arabiensis (Diptera: Culicidae). Asian Pac J Trop Biomed. 4(Suppl 1):S99-s106.
  149. Pavela R, Kaffkova K, KUMŠTA M (2014) Chemical Composition and Larvicidal Activity of Essential Oils from Different Mentha L. and Pulegium Species against Culex quinquefasciatus Say (Diptera: Culicidae). Plant Protect Sci. 50(1):36-42.
  150. Benelli G, Pavela R, Canale A, Cianfaglione K, Ciaschetti G, Conti F, et al. (2017) Acute larvicidal toxicity of five essential oils (Pinus nigra, Hyssopus officinalis, Satureja montana, Aloysia citrodora and Pelargonium graveolens) against the filariasis vector Culex quinquefasciatus: Synergistic and antagonistic effects. Parasitol Int. 66(2):166-171.
  151. Pavela R (2014) Insecticidal properties of Pimpinella anisum essential oils against the Culex quinquefasciatus and the non-target organism Daphnia magna. J Asia-Pac Entomol. 17(3):287-293.
  152. Yu J, Liu X-Y, Yang B, Wang J, Zhang F-Q, Feng Z-L, et al. (2013) Larvicidal activity of essential extract of Rosmarinus officinalis against Culex quinquefasciatus. J Am Mosq Control Assoc. 29(1):44-48.
  153. Pavela R (2009) Larvicidal property of essential oils against Culex quinquefasciatus Say (Diptera: Culicidae). Ind Crops Prod. 30(2):311-315.
  154. Pushpanathan T, Jebanesan A, Govindarajan M (2008) The essential oil of Zingiber officinalis Linn (Zingiberaceae) as a mosquito larvicidal and repellent agent against the filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res. 102(6):1289-1291.
  155. Dua VK, Kumar A, Pandey AC, Kumar S (2013) Insecticidal and genotoxic activity of Psoralea corylifolia Linn.(Fabaceae) against Culex quinquefasciatus Say, 1823. Parasit vectors. 6(1):30.
  156. Senthilkumar A, Kannathasan K, Venkatesalu V (2008) Chemical constituents and larvicidal property of the essential oil of Blumea mollis (D. Don) Merr. against Culex quinquefasciatus. Parasitol Res. 103(4):959-962.
  157. de Castro DS, da Silva DB, Tiburcio JD, Sobral ME, Ferraz V, Taranto AG, et al. (2016) Larvicidal activity of essential oil of Peumus boldus Molina and its ascaridole-enriched fraction against Culex quinquefasciatus. Exp Parasitol. 171:84-90.
  158. Tabari MA, Youssefi MR, Esfandiari A, Benelli G (2017) Toxicity of beta-citronellol, geraniol and linalool from Pelargonium roseum essential oil against the West Nile and filariasis vector Culex pipiens (Diptera: Culicidae). Res Vet Sci. 114:36-40.
  159. Pitarokili D, Michaelakis A, Koliopoulos G, Giatropoulos A, Tzakou O (2011) Chemical composition, larvicidal evaluation, and adult repellency of endemic Greek Thymus essential oils against the mosquito vector of West Nile virus. Parasitol Res. 109(2):425-430.
  160. Michaelakis A, Papachristos D, Kimbaris A, Koliopoulos G, Giatropoulos A, Polissiou MG (2009) Citrus essential oils and four enantiomeric pinenes against Culex pipiens (Diptera: Culicidae). Parasitol Res. 105(3):769-773.
  161. Evergetis E, Michaelakis A, Kioulos E, Koliopoulos G, Haroutounian S (2009) Chemical composition and larvicidal activity of essential oils from six Apiaceae family taxa against the West Nile virus vector Culex pipiens. Parasitol Res. 105(1):117-124.
  162. Zhao H, Ji G, Liu F, Werdin Gonzalez JO, Jesser EN, Yeguerman CA, et al. (2017) Polymer nanoparticles containing essential oils: new options for mosquito control. Environ Sci Pollut Res Int. 24(20):17006-17015.
  163. Rouis Z, Laamari A, Abid N, Elaissi A, Cioni PL, Flamini G, et al. (2013) Chemical composition and larvicidal activity of several essential oils from Hypericum species from Tunisia. Parasitol Res. 112(2):699-705.
  164. Soltani A, Vatandoost H, Oshaghi MA, Ravasan NM, Enayati AA, Asgarian F (2015) Resistance Mechanisms of Anopheles stephensi (Diptera: Culicidae) to Temephos. J Arthropod Borne Dis. 9(1):71-83.
  165. Assis CR, Linhares AG, Oliveira VM, Franca RC, Carvalho EV, Bezerra RS, et al. (2012) Comparative effect of pesticides on brain acetylcholinesterase in tropical fish. Sci Total Environ. 441:141-150.
  166. Arredondo-Jimenez JI, Valdez-Delgado KM (2006) Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico. Med Vet Entomol. 20(4):377-387.
  167. Cheng S, Lin R, Zhang N, Yuan S, Zhou X, Huang J, et al. (2018) Toxicity of six insecticides to predatory mite Amblyseius cucumeris (Oudemans) (Acari: Phytoseiidae) in- and off-field. Ecotoxicol Environ Saf. 161:715-720.
  168. Word Health Organization W.(2016) World Malaria Report. Available from: http://apps.who.int/iris/bitstream/10665/252038/1/9789241511711-eng.pdf?ua=1.
  169. Ma K, Li X, Hu H, Zhou D, Sun Y, Ma L, et al. (2017) Pyrethroid-resistance is modulated by miR-92a by targeting CpCPR4 in Culex pipiens pallens. Comp Biochem Physiol B Biochem Mol Biol. 203:20-24.
  170. Goindin D, Delannay C, Gelasse A, Ramdini C, Gaude T, Faucon F, et al. (2017) Levels of insecticide resistance to deltamethrin, malathion, and temephos, and associated mechanisms in Aedes aegypti mosquitoes from the Guadeloupe and Saint Martin islands (French West Indies). Infect Dis Poverty. 6(1):38.
  171. Safi NH, Ahmadi AA, Nahzat S, Ziapour SP, Nikookar SH, Fazeli-Dinan M, et al. (2017) Evidence of metabolic mechanisms playing a role in multiple insecticides resistance in Anopheles stephensi populations from Afghanistan. 16(1):100.
  172. Keyal U, Huang X, Bhatta AK (2016) Antifungal effect of plant extract and essential oil. Chin J Integr Med. 23(3):233-239.
  173. Donsì F, Ferrari G (2016) Essential oil nanoemulsions as antimicrobial agents in food. J Biotechnol. 233:106-120.
  174. Oliveira Fde A, Andrade LN, de Sousa EB, de Sousa DP (2014) Anti-ulcer activity of essential oil constituents. Molecules. 19(5):5717-5747.
  175. Langeveld WT, Veldhuizen EJ, Burt SA (2014) Synergy between essential oil components and antibiotics: a review. Crit Rev Microbiol. 40(1):76-94.
  176. Osanloo M, Amani A, Sereshti H, Shayeghi M, Sedaghat MM (2017) Extraction and chemical composition essential oil of Kelussia odoratissima and comparison its larvicidal activity with Z-ligustilide (Major Constituent) against Anopheles stephensi. Journal of Entomology and Zoology Studies. 5(4):611- 616.
  177. Govindarajan M, Rajeswary M, Senthilmurugan S, Vijayan P, Alharbi NS, Kadaikunnan S, et al. (2017) Curzerene, trans-β-elemenone, and γ-elemene as effective larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus: toxicity on non-target aquatic predators. Environ Sci Pollut Res Int. 1-11.
  178. Vatandoost H, Sanei Dehkordi A, Sadeghi SM, Davari B, Karimian F, Abai MR, et al. (2012) Identification of chemical constituents and larvicidal activity of Kelussia odoratissima Mozaffarian essential oil against two mosquito vectors Anopheles stephensi and Culex pipiens (Diptera: Culicidae). Exp Parasitol. 132(4):470-474.
  179. Alçiçek A, Bozkurt M, Çabuk M (2004) The effect of a mixture of herbal essential oils, an organic acid or a probiotic on broiler performance. S Afr J Anim Sci. 34(4):217-222.
  180. Helander IM, Alakomi H-L, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ, et al. (1998) Characterization of the action of selected essential oil components on Gram-negative bacteria. J Agric Food Chem. 46(9):3590-3595.
  181. Lucia A, Zerba E, Masuh H (2013) Knockdown and larvicidal activity of six monoterpenes against Aedes aegypti (Diptera: Culicidae) and their structure-activity relationships. Parasitology research. 112(12):4267-4272.
  182. Rajashekar Y, Shivanandappa T (2017) Mode of Action of the Natural Insecticide, Decaleside Involves Sodium Pump Inhibition. PLoS One. 12(1):e0170836.
  183. Perumalsamy H, Jang MJ, Kim J-R, Kadarkarai M, Ahn Y-J (2015) Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. Parasit vectors. 8(1):237.
  184. Samber N, Khan A, Varma A, Manzoor N (2015) Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharm Biol. 53(10):1496-1504.
  185. Wongsariya K, Phanthong P, Bunyapraphatsara N, Srisukh V, Chomnawang MT (2014) Synergistic interaction and mode of action of Citrus hystrix essential oil against bacteria causing periodontal diseases. Pharm Biol. 52(3):273-280.