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Abstract

Abnormal deposition of misfolded proteins is a neuropathological characteristic shared 
by many neurodegenerative disorders including Alzheimer’s disease (AD). Generation of 
excessive amounts of aggregated proteins and impairment of degradation systems for misfolded 
proteins such as autophagy can lead to accumulation of proteins in diseased neurons. Molecules 
that contribute to both these effects are emerging as critical players in disease pathogenesis. 
Furthermore, impairment of autophagy under disease conditions can be both a cause and a 
consequence of abnormal protein accumulation. Specifically, disease-causing proteins can 
impair autophagy, which further enhances the accumulation of abnormal proteins. In this 
short review, we focus on the relationship between the microtubule-associated protein tau and 
autophagy to highlight a feed-forward mechanism in disease pathogenesis. [GMJ.2020;9:e1681] 
DOI:10.31661/gmj.v9i0.1681
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Tau phosphorylation in physiology and dis-
ease 

Misfolded tau protein is deposited in a 
group of neurodegenerative diseases 

called tauopathies, which include common 
forms of dementia such as AD and fronto-
temporal dementia [1, 2]. Tau is a microtu-
bule-binding protein whose primary physio-
logical function is to regulate the assembly and 
stability of microtubules in neuronal axons [3]. 

However, tau detaches from microtubules and 
misfolds to form insoluble filaments in neuro-
fibrillary tangles in the brains of patients with 
tauopathies [4-9]. Mutations of the MAPT 
gene, which encodes tau, are associated with 
dominant, inherited forms of frontotemporal 
dementia, indicating that tau abnormality con-
tributes to disease pathogenesis [10]. Cellular 
and animal models of tauopathies suggest that 
elevated levels of tau protein are sufficient to 
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cause neurodegeneration [11]. Thus, abnor-
mal accumulation of tau is believed to cause 
neuron loss in diseased brains, and modula-
tion of this accumulation has been suggested 
as a strategy to delay or prevent disease on-
set and progression. Tau contains a number 
of phosphorylation sites, and phosphorylation 
regulates both its physiological functions and 
pathological changes [12]. Phosphorylation of 
tau regulates its ability to interact with micro-
tubules, its intracellular distribution, and its 
association with membranes [13]. Tau is na-
tively unfolded, and phosphorylation alters its 
conformational status. Phosphorylation also 
affects its cleavage and further post-transla-
tional modifications [9]. In the brains affected 
by thauopathy, tau is highly phosphorylated 
at certain sites and its phosphorylation status 
is associated with the severity of pathology 
[2, 6-8]. Conformational changes, mislocal-
ization, and changes in protein interactions 
caused by pathological phosphorylation of tau 
have been suggested to slow down its degra-
dation. A number of kinases, including pro-
line-directed Ser/Thr kinases (SP/TP kinases) 
such as c-Jun N-terminal kinases (JNKs), cy-
clin-dependent kinase 5 (Cdk5), glycogen syn-
thase kinase (GSK)-3β, and mitogen-activated 
protein kinase (MAPK), as well as non-SP/
TP kinases including adenosine monophos-
phate-activated protein kinase (AMPK), cal-
cium/calmodulin-dependent protein kinase II 
(CaMKII), checkpoint kinase 2, microtubule 
affinity-regulating kinase (MARK)/Par-1, 
NUAK family SNF1-like kinase 1 (NUAK1), 
p70S6K1, protein kinase A, and protein kinase 
C (PKC) phosphorylate tau [14-24]. Disrup-
tion of intracellular signaling involving these 
kinases may trigger hyperphosphorylation of 
tau in disease pathogenesis [25]. As described 
in the following section, some of these kinases 
also regulate autophagy. 

Mechanism and Regulation of Autophagy 
Autophagy, or “self-eating”, is a preserved in-
tracellular pathway via which accumulated or 
long-lived proteins and dysfunctional organ-
elles undergo lysosomal degradation. Autoph-
agy plays an essential role not only in cellular 
homeostasis and metabolism, but also in the 
physiopathology of several neurodegenerative 
disorders [26]. Autophagy can be categorized 

into three classes based on the mechanism by 
which cytoplasmic contents are targeted to 
the lysosome for degradation: microautopha-
gy, macroautophagy and chaperone-mediated 
autophagy [27]. Macroautophagy enables the 
bulk degradation of cytosolic contents trans-
ferred to the lysosome by autophagosomes, 
whereas microautophagy is a process which 
results in the direct engulfment of cytoplas-
mic contents through lysosomal invagination. 
Chaperone-mediated autophagy degrades 
the cytosolic proteins that have the penta-
peptide motifs. These proteins bind to heat 
shock cognate protein 70 and form complexes 
that are recognizable to a lysosomal chaper-
one-mediate autophagy receptor, LAMP2A. 
Consequently, the proteins are unfolded and 
translocated to the lysosome through lyso-
somal lumen [28]. In this article, we focus 
on macroautophagy, which is the major and 
well-known type of autophagy. Hereafter, we 
refer to macroautophagy simply as “autoph-
agy”. The process of autophagy begins with 
formation of the phagophore, a cup-shaped 
double-membrane structure that surrounds au-
tophagic substrates destined for degradation. 
Both edges of the phagophore elongate and 
close to form an isolated vacuole named an 
autophagosome. Thereafter, autophagosomes 
are transported toward the perinuclear region 
via dynein microtubule motors to fuse with 
lysosomes and to generate autolysosomes, 
which ultimately leads to degradation of their 
contents by lysosomal enzymes [29, 30]. Au-
tophagy is a conserved catabolic process that 
degrades cytoplasmic components in response 
to a lack of amino acids. Consequently, it is 
regulated by several signaling pathways that 
mediate nutrition sensing and stress respons-
es. Mechanistic target of rapamycin (mTOR)  
plays critical roles in autophagic regulation 
in two different complexes mTORC1 and 
mTORC2. The primary function of mTORC2 
is to modulate cellular morphology and cell 
migration, while mTORC1 plays a central 
role in the maintenance of energy homeosta-
sis. mTORC1 suppresses autophagy and is 
regulated by upstream regulatory proteins that 
reflect the cellular levels of nutrients, growth 
factors, energy, and oxygen [31]. Inhibition 
of mTORC1 due to cellular stress, nutrient 
depletion, or low levels of energy or oxygen 



2 GMJ.2020;9:e1681
www.gmj.ir

Defective Autophagy in Tauopathy Pathogenesis Samimi N, et al.

GMJ.2020;9:e1681
www.gmj.ir

3

induces autophagy to promote cell survival by 
maintaining cellular homeostasis. Overactiva-
tion of mTORC1 signaling has been detected 
in AD brains and an animal model of AD [32, 
33]. AMPK signaling regulates autophagy 
in response to energy depletion [34]. Even a 
slight decrease in the cellular ATP/AMP ratio 
activates AMPK. Activation of AMPK can di-
rectly induce autophagy by inhibiting mTOR 
signaling and indirectly by stimulating ULK1 
phosphorylation [34]. The inositol signaling 
pathway regulates autophagy independently 
of mTOR [35]. In this pathway, a reduction in 
the intracellular 1,4,5-inositol trisphosphate 
level induces autophagy. 

Autophagy-Mediated Degradation of Tau
Tau degradation can be mediated by both the 
ubiquitin-proteasome pathway and autophagy 
pathway depending on its post-translation-
al modifications, such as its phosphorylation 
state, folding, and solubility. Molecular chap-
erones recognize specific tau species and tar-
get them for proteasome-mediated degradation 
[36, 37]. Induction of chaperones results in 
the selective clearance of tau phosphorylated 
at proline-directed sites such as pS202/T205 
and  pS396/S404 as well as conformationally 
altered tau [37]. Interestingly, tau phosphory-
lated at non-SP/TP sites (pS262/S356) evades 
this mechanism and remains stable [37]. On 
the other hand, a wide range of tau species 
can be degraded by autophagy. Induction of 
autophagy reduces the levels of tau phosphor-
ylated at S262/356 that are not directed to pro-
teasome [38, 36]. Dolan et al. demonstrated 
that tau truncated at D421 is predominantly 
degraded by autophagy, while full-length tau 
is more prone to proteasomal degradation 
[39]. Another study suggested that induction 
of autophagy by trehalose in a mouse model 
of tauopathy decreases the amounts of insolu-
ble tau and tau phosphorylated at T212/S214 
(AT100) [40]. Altogether, long-lived or aggre-
gation-prone tau species, such as phosphory-
lated tau, are more likely to be degraded by the 
autophagy pathway, while soluble monomeric 
and non-phosphorylated tau are degraded by 
the ubiquitin-proteasome pathway [41, 42]. 
Thus, inhibition of autophagy may impair the 
degradation of high molecular weight tau spe-
cies that accumulate in AD brains [43, 44].

Mechanisms that Regulate Both the Genera-
tion of Neurotoxic Tau and Autophagy
Several kinases involved in autophagic regu-
lation are also tau kinases or their regulators. 
GSK-3β phosphorylates tau at multiple sites 
and plays critical roles in tau toxicity [45]. 
Upregulation of the mTOR pathway not only 
downregulates autophagy but also elevates 
phosphorylation of tau via GSK-3β [46]. S6K 
downstream of mTOR also phosphorylates 
tau or affects degradation of tau; however, its 
roles in accumulation of tau remain controver-
sial [32, 38]. Lithium is a well-known GSK-
3β inhibitor and stimulates autophagy through 
the inositol signaling pathway [47]. AMPK 
and members of the AMPK-related family of 
kinases, such as MARK/Par-1 and NUAK1, 
phosphorylate tau at S262 and S356 in the mi-
crotubule-binding repeats and induce its accu-
mulation [48, 24]. MARK4 inhibits mTORC1 
activity and thus upregulates autophagy 
[49]. A sustained increase in the intracellular 
Ca2+ level activates Ca2+-sensitive tau kinases 
such as CaMKII and PKC [50]. It also induces 
activation of calpains, which cleave and thus 
activate the tau kinases GSK-3 and Cdk5 [51]. 
In addition, calpain cleaves the N-terminus of 
tau to generate neurotoxic fragments [52]. Al-
though elevation of the intracellular Ca2+ level 
can induce or inhibit autophagy via several 
pathways [53], disruption of Ca2+ homeostasis 
has been implicated in disease pathogenesis 
and may affect these pathways to promote ac-
cumulation of tau.

Autophagy Impairment Caused by Pathologi-
cal Tau Species
Accumulation of abnormal tau species may 
occur upstream of autophagic defects un-
der disease conditions. Autophagy-mediated 
degradation requires stepwise maturation of 
autophagy vacuoles, which requires microtu-
bule-dependent transport [54]. Tau regulates 
microtubule stability, while abnormal tau spe-
cies can disrupt it. It has been reported that 
overexpression of tau impedes vesicle and 
organelle trafficking by disrupting the inter-
actions between microtubules and motor pro-
teins [55]. Expression of human wild-type or 
mutant tau causes deficits in axonal transport 
in transgenic mice [56, 57] and Drosophila 
[58], as well as presynaptic defects in Caenor-
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habditis elegans [59]. These defects in mem-
brane trafficking in neurons may impair the 
trafficking and maturation of autophagic ves-
icles. Neuronal autophagy is highly compart-
mentalized [60], and deficits in axonal trans-
port caused by tau may significantly impact 
functionally distinct compartments such as 
synapses. Synaptic activity regulates autopha-
gy in neurons, especially at synaptic terminals 
[54]. Synaptic dysfunction is one of the earli-
est pathological manifestations in AD and oth-
er tauopathies, and tau induces early synaptic 
deficits that precede synapse and neuron loss 
[61]. Abnormal tau species are missorted to 
pre- and postsynaptic terminals under disease 
conditions. It has been reported that tau in the 
presynaptic terminal reduces vesicle mobil-
ity and release rates via structural changes, 
Ca2+ dysregulation [62], or direct association 
with synaptic vesicles [63, 64]. Tau disrupts 
the trafficking of postsynaptic receptors and 
thus suppresses postsynaptic neuronal activity 
[65]. Synaptic activity increases tau accumu-
lation in lysosomes, and induction of synaptic 
activity stimulates the autophagic degradation 
of pathological tau levels, in mouse models 

Figure 1. A possible feed-forward cycle between pathological tau species and inhibition of autophagy.

of tauopathy [66]. These studies suggest that 
accumulation of abnormal tau caused by im-
paired autophagy can, in turn, suppress au-
tophagic activity directly or indirectly (Fig-
ure-1).

Conclusion

Accumulating evidence highlights the dis-
ruption of autophagy as a common theme in 
age-related neurodegenerative diseases with 
proteinopathy including AD [67]. This re-
view focused on tau protein; however, other 
proteins deposited in diseased brains, such as 
α-synuclein and TDP-43, are also reported to 
interact with the autophagy pathway [68-70]. 
Enhancement of autophagy holds promise as 
a mechanism-based therapy to delay the on-
set and slow down the progression of diseas-
es caused by abnormal protein accumulation 
[67]. However, autophagy has unique func-
tions and regulatory mechanisms in neurons. 
Fine-tuning of autophagy is essential for 
normal neuronal development and functions 
such as synaptic transmission and memory 
formation [54]. Overactivation of autophagy 
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