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Abstract

Mesenchymal stromal/stem cells (MSCs) are a source of stem cells that can be easily harvested 
and differentiated into numerous cells. Over the past few decades, these cells have been 
introduced as promising therapeutic candidates for different diseases. Different studies have 
shown the role of these cells in regenerative medicine. Tumor growth is correlated with the 
interactions between MSCs and tumor cells in the tumor microenvironment. The precise 
key role played by MSCs in the progression of tumors is under question, and the effect of 
MSCs on the tumor is controversial it might involve the development of tumor initiation or 
prevent the spread of already existing ones. In this study, we reviewed the role of MSCs in 
the tumor microenvironment and their influence on promoting or inhibiting tumor progression. 
[GMJ.2022;11:e2637] DOI:10.31661/gmj.v11i.2637
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Introduction

In the past 20 years, few cells have re-
ceived as much interest as mesenchymal 
stem or stromal cells (MSCs). MSCs are 

intriguing for a variety of physiological and 
pathological reasons, including their role in 
cancer, autoimmunity, organ transplantation, 

and tissue repair, as well as their enigmatic 
identity [1, 2]. While the total effect of MSC 
appears to be primarily pro-tumorigenic, new 
studies on animal models reveal that MSCs 
could promote or restrict tumor growth. To-
day, several attempts have been made to 
develop new and safe methods for cancer 
treatment [3-6]. Nanotechnology and stem 
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cell-based therapies are instances of nov-
el approaches that drawing attention these  
days [7, 8]. A tumor development, which 
initiates with stable chronic inflammation, 
weakened immunity, and tissue remodeling is 
referred to as a"wound that never heals" [9] 
Besides MSCs play a significant role in this 
process. The Immunomodulatory effects of 
MSCs affecting adaptive and innate immunity 
are important ways in which these cells influ-
ence tumor initiation and development. These 
immunomodulatory effects could be exerted 
by secreted substances, cell-cell interactions, 
or secreted exosomes [2]. The plasticity and 
properties of MSCs, such as pro-immunogen-
ic, anti-inflammatory, and anti-tumorigenic 
effects, make these cells alluring therapeutic 
candidates in tumor therapy. It is also worth 
mentioning that the effects of MSCs on im-
mune cells are opposing, as these cells may 
both promote inflammation or exert immuno-
suppressive effects, which cause the progres-
sion of tumors [10]. A detailed understanding 
of the interaction between tumor cells, MSCs, 
and immune cells is necessary, especially 
in light of how tumor cells can manipulate 
MSCs to work in their favor and the mecha-
nisms underlying MSC plasticity that permit 
this to happen. In this study, we reviewed the 
role of MSCs in the tumor microenvironment 
and their role in promoting or inhibiting tu-
mor progression.

Mesenchymal stromal/stem cells

MSCs are mostly found in adipose tis-
sue and bone marrow. They are a source of 
stem cells that are relatively easy to access, 
and can differentiate into numerous cell 
types, such as adipocytes, chondrocytes, and  
osteoblasts [11]. MSCs can be defined 
as plastic adherent cells that are positive 
CD73, CD90, and CD105, but do not dis-
play CD11b, CD14, CD19, CD34, CD45, 
CD79a, or HLA-DR [12]. According to 
Chen et al. (2006), MSCs have well-estab-
lished roles in homing to injured tissues, 
suppressing innate and adaptive immune re-
sponses, and promoting angiogenesis. MSCs 
have a wide range of immune suppressive 

abilities, including stimulation of regulato-
ry T cells (Treg), suppression of the activ-
ity of T-cells, modulation of the production 
of cytokine, and prevention of dendritic cell  
development [13]. Due to these charac-
teristics, several research teams are now 
examining whether MSCs could be used 
to treat diseases associated with trans-
plantation, such as graft versus host dis-
ease, autoimmune disorders, and, also tar-
geted genetically engineered anticancer  
agents [14, 15]. The capacity of MSCs to mi-
grate to injured tissues has also been well-ex-
plained. The therapeutic effects of MSCs have 
been shown in the treatment of damaged kid-
neys, diabetes, bone injury, spinal cord injury, 
and myocardial infarction [12]. Tissue hom-
ing is linked to the production of different cy-
tokines and chemokines, including Chemok-
ine (C-C motif) ligand 8 (CCL8), CXCR2, 
CXCR1, CXCR4, matrix metalloprotein-
ase-2 (MMP-2), tumor necrosis factor-alpha 
(TNF)-α, and stromal cell-derived factor 1  
(SDF-1) [16, 17]. In addition to immune sup-
pression and tissue homing, MSCs can pro-
mote angiogenesis during ischemia and wound  
healing [18, 19]. Together, MSCs exert sev-
eral crucial features under physiological set-
tings, and their special abilities have been 
employed to treat a variety of illnesses.

MSCs and Metastasis

MSCs participate in several stages of tumor 
development. MSCs encourage the ability of 
tumor cells to invade and spread at the initial 
tumor location. Additionally, both human and 
mouse MSCs have been shown to promote 
the spread of breast cancer [20]. MSCs have 
been shown to go into tumor stroma and 
develop into cancer-associated fibroblast 
(CAF). Then, MSCs accelerated invasiveness, 
motility, and angiogenesis, while suppressing 
the apoptosis of cancer cells to promote colon 
cancer development and spread [21, 22]. 
Additionally, it was discovered that in mice, 
CAFs moved from the initial tumor site to 
the lung metastatic site [23]. Similar to the 
way MSCs contributed to the spread of breast 
cancer, it was shown that hypoxia-inducible 
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factors (HIFs) could transmit paracrine 
signals between breast cancer cells [24].

MSCs and Epithelial-mesenchymal 
transition (EMT)

N-cadherin, TWIST, SNAIL, and vimentin 
levels were shown to increase when MSCs 
were co-cultured with gastric cancer or 
human breast cells, but E-cadherin levels 
were found to decrease [25, 26]. Similar to 
this, human MSCs treated with TNF and 
interferon-gamma (IFN-γ) released higher 
levels of transforming Growth Factor-β 
(TGF-β). When Hepatocellular carcinoma 
cells were cultivated in conditioned media 
from IFN- and TNF-treated human MSCs 
significantly increased the invasion, 
migration, and expression of EMT markers in 
vitro and in vivo [27]. MSCs facilitated the 
spread of cancer cells to the lungs and bones 
via MSC-induced EMT [28]. Similarly, by 
enhancing the EMT process in MCF7 breast 
cancer cells, MSCs promoted the spread of 
breast cancer cells, whereas TGF-1 produced 
by MSCs enhanced EMT [29]. Additionally, 
MSCs were discovered to control EMT and 
tumor progression during the development of 
pancreatic cancer cells [30].

MSCs and Tumor Microenvironment 
(TME)

In the tumor microenvironment, MSCs 
support the proliferation and spread of tumor 
cells. MSCs are connected to numerous 
stages of the etiology of cancer. During tumor 
progression, a significant number of MSCs 
generated from bone marrow were attracted 
to the tumor stroma [31].

Immunomodulation
The immunomodulation effects of MSC 
in the tumor microenvironment have 
been proved by recent studies [32, 33]. 
According to reports, MSCs possess 
immunosuppressive or immunomodulatory 
qualities [34]. Immunomodulation is thought 
to be mediated by cytokines released by 
MSCs, including TGF-β [35], IL-10 [36], 

nitric oxide (NO) [37], prostaglandin E2  
(PGE2) [38], and indoleamine 
2,3-dioxygenase (IDO) [39]. Previous studies 
have shown that the immunomodulatory 
capabilities of MSCs allow them to 
avoid being rejected by the host immune  
system [40, 41]. MSCs' immunomodulatory 
abilities enable the treatment of a variety of 
inflammatory disorders [40]. Additionally, 
the rate of MSCs' immunological recognition 
influences the duration of their effects t [42]. 
A balance between the immunomodulatory 
components and the relative expression of 
immunogenic MSCs determines the rate 
of immune recognition and elimination 
of MSCs. Additionally, other reports 
have been published on MSC-related 
immunomodulation in tumor growth and 
progression. By promoting Treg cell activity, 
MSCs have been demonstrated to assist  
breast cancer cells [43]. TNF-α and IFN-γ 
stimulated the immunomodulatory activity  
of MSCs in melanoma. These cytokines 
promoted MSCs to express NO 
synthases [44]. It was discovered that the 
inflammatory cytokine IL-1α induces MSCs' 
immunomodulatory properties, allowing 
prostate cancer cells to evade immune 
surveillance [45].

Angiogenesis
It was discovered that vascular endothelial 
growth factor (VEGF) expression by MSCs 
correlates to the angiogenesis of pancreatic 
cancer [46]. MSCs accelerate tumor growth 
in living organisms by enhancing the 
neovascularization around tumors [47]. 
Several soluble substances, including IFN-γ, 
TNF-α, VEGF, macrophage inflammatory 
protein 2 (MIP-2), leukemia inhibitory factor 
(LIF), and macrophage colony-stimulating 
factor (M-CSF), are secreted by MSCs to 
stimulate angiogenesis [48].

Migration
EMT is a crucial step in the migration of 
cancer cells and can potentially promote 
carcinogenesis [49]. By causing cancer 
cells to separate from the initial tumor 
location, EMT encourages cancer cell 
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migration and subsequent cancer cell  
spread [49, 50]. MSCs in the TME promote 
tumor cell metastasis by inducing tumor cell 
EMT after being drawn to the tumor site. By 
co-culturing breast cancer cells and MSCs, the 
expression of SNAIL family members SNAIL 
(SNAI1) and SLUG (SNAI2) and vimentin  
increased [51], whereas E-cadherin expression  
decreased [52]. MSCs may have an impact 
on cancer cells through a variety of pathways, 
including the CXCR4 and estrogen receptor 
(ER) pathways in breast cancer [53], IL-6  
and CCL5 [54], and CXCR2 [54]. By 
increasing MMP2 and MMP9 expression, 
MSCs also accelerate the invasion and 
migration of prostate cancer cells [55].

Stemness
MSCs' multilineage capacity hastens the 
development of tumors. For example, MSCs 
altered the capacity of breast cancer stem cells 
to self-renew through cytokine networks, 
such as CXCL-7 and IL-6 [56]. MSCs 
associated with human ovarian cancer altered 
the synthesis of bone morphogenetic proteins 
to promote carcinogenesis [57]. Several 
signaling pathways, including those involving 
TGF-β, WNT [58], signal transducer and 
activator of transcription 3 (STAT3), Janus 
kinase 2 (JAK2), and IL-6, [59], in addition 
to bone morphogenetic protein signaling, 
increased the stemness of tumor cells. When 
MSCs are driven by cancer cells, they can 
establish a niche for cancer stem cells and 
cause carcinogenesis by producing a lot of 
PGE2 [60].

MSCs inhibit cancer progression

Studies have shown that MSCs have an 
inhibitory effect on tumor growth in addition 
to their effects on cancer progression. The 
MSCs' interaction with tumor cells boosted 
the recruitment of granulocytes, monocytes, 
and T lymphocytes as proinflammatory 
agents. Increased infiltration of inflammatory 
cells promoted the opportunity for these 
immune cells to interact with the surrounding 
tissues. These immune cells, together with the 
nearby inflamed tissues, trigger anticancer 

immunity by producing several chemokines 
that induce the expression of appropriate 
chemokine receptors on T cells and their 
activation [61]. Additionally, MSCs were 
shown by Aarif and colleagues to reduce 
target cell AKT activity in Kaposi's sarcoma, 
which inhibited tumor growth in vivo. 
However, they found that Kaposi's sarcoma 
tumors were unresponsive to MSC injection 
when the Kaposi's sarcoma tumor cells were 
modified to consistently express active AKT. 
According to their research, MSCs effectively 
block AKT signaling to have anti-tumorigenic  
effects [62]. Similarly, Qiao et al. showed 
that MSCs block the Wnt pathway, which is 
essential for tumorigenesis, by suppressing 
breast cancer cell growth [63]. Additionally, 
Lu and colleagues demonstrated that the 
treatment of MSCs increased the expression 
of caspase 3 and p21 mRNA in tumor cells in 
their study. By inducing cancer cell apoptosis 
and G0/G1 phase stop, their results showed 
that MSCs can prevent cancer growth in 
vitro and in vivo [64]. Moreover, it has 
been demonstrated that MSCs can block 
tumor angiogenesis by causing endothelial 
cell death and capillaries deterioration [65]. 
Gu and colleagues recently revealed that a 
lncRNA C5orf66AS1/micro- RNA1273p/
dual-specificity phosphatase 1 (DUSP1)/
ERK axis was able to inhibit the malignancy 
of hepatocellular cancer stem cells 
(CSCs) [66]. Considering that exosomes 
play a role in the tumor-suppressing and 
oncogenic functions of MSCs, they treated 
hepatocellular CSCs with MSC-exosome 
and discovered that the CSCs' capacity  
for self-renewal, angiogenesis-stimulating, 
invasion, migration, and proliferation were 
significantly reduced through the lncRNA 
C5orf66AS1/microRNA1273p/DUSP1 axis 
and preventing the phosphorylation. Similar 
outcomes were observed in vivo, showing 
that exosomes slowed the xenograft growth 
created by CSCs in nude mice. Their research 
provides new perspectives on the significance 
of MSCs and the substances they produce for 
the advancement of cancer, particularly the 
CSCs stem cell quality. As modified, MSCs 
tend to move to tumor sites; they are widely 
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populated. For instance, bone morphogenetic 
protein 4 (BMP4), nanoparticles, TNF-
related apoptosis-inducing ligand (TRAIL), 
and other chemicals that can restrict 
cancer cell development were employed to 
change MSCs, which decreased cancer cell 
growth and metastasis while also inducing 
apoptosis [67, 68]. These results suggested 
that migration and multiplication of cancer 
cells can be inhibited by modified MSCs, 
suggesting that MSCs may one day be used 
as a cancer treatment.

MSCs promote cancer progression

MSCs, immunological cells, adipocytes, 
cancer-associated fibroblasts, and endothelial 
cells are only a few of the stromal cells found 
in TME [69]. MSCs in particular show a 
significant affinity for tumor sites, which can 
accelerate or arrest disease spread. However, 
the exact method is unknown. MSCs have 
Toll-like Receptors (TLRs), which are present 
in many different cell types. TLRs can 
recognize "danger" signals, and their 
activation draws a range of cells, including 
immune cells and MSCs, to the damaged 
area. Whereas TLR4 stimulation caused 
MSCs to produce proapoptotic and 
inflammatory factors (such as TRAIL, GM-
CSF, and IL-17,), TLR3 activation caused 
certain factors with largely tumor-supportive 
immunosuppressive effects (such as IL10 and 
IL1RA). TLR4-primed MSCs, known as 
MSC1, showed anti-tumorigenic effects, 
whereas x TLR3-primed MSCs displayed a 
tumor-supportive effect [70]. Additionally, it 
has been shown that MSC1 causes a reduction 
in tumor growth while MSC2 promotes 
metastasis and tumor growth, according to 
Ruth and colleagues [71]. MSCs can transition 
between MSC1 and MSC2 depending on the 
used TLR agonist. In other words, the used 
agonist affects the polarization of MSCs. In 
this regard, studies have shown that TLR4 
induces the polarization of MSCs into the 
MSC1, which is pro-inflammatory and is 
essential for early injury responses, but 
exposure to a TLR3 agonist induces the 
polarization of MSCs toward the 

immunosuppressive MSC2, which is required 
for assisting in the healing of tissue injury. It 
might aid in explaining why MSCs play a 
variety of roles in different cancer types. Also, 
MSCs interact with a variety of immune cells, 
including B cells, T cells, macrophages, 
dendritic cells, NK cells, and neutrophils, and 
secrete several mediators and soluble factors, 
including IL-1, IDO, IL-4, IFNs, and  
PGE2 [72]. It was also demonstrated that 
inhibiting the antitumor MSCs decreased the 
activation of T cells and proliferation during 
adaptive immunological responses. To rewire 
macrophages, MSCs release PGE2, which 
then binds to prostaglandin EP2 and EP4 
receptors to cause the production of the IL-
10, which is an anti-inflammatory cytokine, 
which in turn inhibits T cells [73]. MSCs also 
induced a Th2-polarized immune response. In 
this regard, anti-inflammatory Th2 cells and 
their related cytokines such as IL-4 increased 
while inflammatory Th1 cells and their related 
cytokines such as IFN-γ decreased [74]. 
Additionally, it has been demonstrated that 
MSCs inhibit the activation of T cells by 
secreting TGF-1 (an immunosuppressive 
cytokine), which binds to the glycoprotein a 
repetition predominant (GARP) produced on 
MSCs [75]. Furthermore, MSCs produce 
IDO which could inhibit allogeneic T-cell 
responses by decomposing tryptophan [39]. 
Notably, tryptophan catabolism sparked the 
emergence of Treg cells in CD4+ naive T  
cells [76]. By inhibiting effector T cell 
responses, these cells decreased anti-tumor 
immunity. Recent research has shown an 
entirely new way for MSCs to control the 
immune system. It is because MSCs recruit 
myeloid-derived suppressor cells (MDSCs) 
(inhibitory immune cells), which reduce anti-
cancer T cell activity [77]. MSCs can inhibit 
B cell functions in the adaptive immune 
response in addition to T cell functions. By 
preventing B cell terminal development, 
humoral chemicals made by MSCs suppressed 
B cell activity [78]. Galectin-9 expression 
was enhanced by IFN-activated MSCs, which 
reduced the release of immunoglobulin upon 
antigen stimulation and decreased the 
proliferation of B cells [79]. When considered 
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together, MSCs exert potent inhibitory effects 
on the adaptive immune response, which is 
heavily abused by cancer cells within TME. 
MSCs suppressed innate immune cells in 
addition to suppressing adaptive immune 
responses, weakening initial anti-cancer 
immune responses. MSCs' production of IL-6 
and PGE2 inhibited NK cell activity. 
Additionally, MSCs mostly prevented NK 
cells from producing IFN-γ, which reduced 
their ability to fight cancer [80]. Furthermore, 
dendritic cells (DCs), which function to 
deliver antigens, are intimately associated 
with anti-cancer activity. It has been 
demonstrated that the presence of PGE2 
produced by MSCs hindered the maturation 
and function of DCs [81]. Additionally, MSCs 
inhibited the growth and functionality of DCs 
produced from monocytes, with lower 
expression of the costimulatory markers 
CD80/CD86, hence restricting the ability of 
allogeneic T cells to also stimulate [82]. 
Moreover, MSCs directly decreased 
macrophage activity within the TME. It has 
been demonstrated that MSC-derived 
conditioned medium (CM) can decrease anti-
cancer immunity by reducing the phagocytic 
activity of macrophages [83]. Elevated levels 
of IL-10 also induce MSCs to produce PGE2, 
which in turn causes the transition of M1 
macrophages to M2 macrophages (a pro-
tumorigenic state) [84]. Besides, MSCs had 
an impact on neutrophil activity. Co-culturing 
of MSCs with neutrophils could develop an 
immunosuppressive function in CD11b+ 
Ly6G+ neutrophils which in turn inhibit the 
proliferation of T cells and promotes tumor 
growth in a breast tumor model [85]. Similar 
to this, in gastric cancer, IL6-STAT3-ERK1/2 
signaling controlled neutrophil chemotaxis, 
survival and activation, and promotes tumor 
development [86]. Together, the evidence 
presented above suggested that MSCs might 
suppress the anti-tumor immune response, 
which led to the development of tumors. 
Moreover, MSCs were able to promote 
angiogenesis and the proliferation of cancer 
cells. For instance, MSCs increased the levels 
of pro-angiogenic factors such as IL-6, 
TGF-β, VEGF, and MIP-2 in breast and 

prostate cancers. These elements accelerated 
the growth of solid tumors by promoting 
tumor cell proliferation and angiogenesis 
[87]. Likewise, Li et al. found that MSC 
treatment significantly decreased Smad7 
mRNA expression while significantly 
increasing TGF-1 and microvessel density in 
hepatocellular cancer. Their research 
suggested that the TGF-1/Smad pathway may 
be used by MSCs to induce angiogenesis 
[88]. LncRNA H19 has recently been shown 
to be involved in MSC-mediated angiogenesis, 
according to Yuan et al. [89]. They discovered 
that LncRNA H19 knockdown in MSCs 
inhibited angiogenesis by interacting with 
histone methyltransferase EZH2 and 
activating the angiogenesis inhibitor gene 
VASH1, resulting in increased production of 
angiogenesis inhibitors and decreased 
secretion of angiogenesis factors. 
Additionally, MSCs accelerated the spread of 
cancer cells and hasten the growth of tumors. 
Co-culturing of MSCs with breast cancer 
cells could cause metastasis and significant 
overexpression of EMT-specific markers, 
proto-oncogenes (JUN, FYN), and oncogenes 
(FOS, NCOA4), and finally alterations in 
shape and growth pattern [25]. Notably, tumor 
metastasis is highly dependent on CSCs. 
According to evidence, MSCs produce 
various tumor-supportive mediators, which 
facilitate CSC proliferation and tumor 
progression [56]. The mesenchymal niche 
may also be involved in the spread of cancer. 
MSCs may be able to migrate to tumor 
locales, including primary and pre-metastatic 
sites, according to newly available  
information [90]. Tumor-secreted substances 
may reach nearby tissues [91], where they 
draw MSCs to aid in creating the mesenchymal 
niche, which promotes the migration of 
cancer cells. Breast cancer cells interact with 
CCR5 to increase cancer cell metastasis, 
invasion, and motility [92]. This causes MSCs 
to produce CCL5 (RANTES). MSCs could 
potentially stop tumor cells from going 
through the apoptotic process. As is well 
known, tumor development is influenced by 
hypoxia, starvation, and inflammation. MSCs 
maintain their survival through autophagy 
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and the secretion of various anti-apoptotic 
molecules, including nitric oxide (NO), 
hepatocyte growth factor (HGF), SDF-1, 
TGF-α, basic fibroblast growth factor (bFGF), 
Platelet-derived growth factor (PDGF), and 
VEGF, [93]. B-cell lymphoma 2 (Bcl-2) 
expression can be increased by VEGF and 
bFGF, for instance, while TGF-β and PDGF 
can increase gene expression of bFGF and 
VEGF, respectively [94, 95]. Leukemia cells 
have been demonstrated to be protected from 
spontaneous apoptosis by SDF-1 [96]. The 
angiogenic and anti-apoptotic effects were 
also enhanced by HGF [97]. NO was also 
believed to have a dual role in regulating 
apoptosis. Simply said, NO is proapoptotic at 
high levels but not at low doses. MSCs also 
promote tumor growth by altering their 
metabolic state. In lymphoblastic leukemia, 
MSCs-derived PGE2 stimulated cAMP-PKA 
signaling in tumor blasts and blocked wild-
type p53's ability to prevent tumor growth, 
which encouraged leukemogenesis [98]. 
MSCs can generate lactate under oxidative 
stress in the TME, and when cancer cells take 
up lactate, they make ATP to aid in their 
migration [99]. MSCs, in particular have been 
seen to differentiate into CAFs in vitro, which 
may contribute to tumor heterogeneity and be 
essential for the development of cancer and 
drug resistance [100]. According to increasing 
evidence, noncoding RNAs are also 
implicated in drug resistance and  
cancer [101]. A recent study found that  
TGF-1 released by MSCs accelerated the 
growth of gastric cancer by activating the 
SMAD2/3 pathway and the MACC1-AS1/

miR-145-5p/fatty acid oxidation (FAO) axis 
in cancer cells [102]. Additionally, MSCs 
dramatically stimulated the regulation of 
LINC01133 in nearby tumor cells in triple-
negative breast cancer, which boosts the 
spread of CSC-like phenotypic traits and 
hence supports cancer cell development 
[103]. These results demonstrated that MSCs 
contribute to the development of cancer in 
many ways. A possible technique for the 
therapy of cancer is to target MSCs.

Conclusion

The incredible diversity and plasticity of 
MSCs' involvement in tumor development 
are one of the most striking features of 
MSCs. Nearly every characteristic of cancer, 
including immune system evasion, pro-
survival, anti-apoptosis, metastasis, and 
angiogenesis has been linked to MSCs. In 
vitro and mouse models, targeting MSCs 
as a component of anti-cancer therapy can 
considerably reduce tumor growth and 
metastasis and improve therapeutic features. 
There is a ton of information on MSCs' 
ability to promote tumor growth, but there is 
also evidence that MSCs can also slow the 
growth of tumors. Together, MSCs are critical 
modulators of therapy response and significant 
regulators of tumor growth. This makes these 
cells a desirable therapeutic target, deserving 
additional basic and translational research.
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