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Abstract

Ovarian cancer is described as one of the most common types of cancer and the leading 
cause of cancer-related deaths due to the high aggressiveness of this malignancy. However, 
the current therapeutically strategies failed to confront ovarian cancer or are accompanied 
by significant adverse effects leading to the recurrence of the disease and/or affecting the 
quality of life of survivors. On the other hand, ovarian cancer is recognized as a heterogenous 
disorder that is specified by alteration in a variety of molecular and cellular markers. Thereby, 
researchers are keen to find a novel therapeutical strategy representing high efficacy and 
safety, as well as be able to modulate altered biomolecules and signaling pathways. Icariin is 
a phytoestrogen with desired properties that are suggested for several chronic complications, 
particularly different types of cancer. The aim of the present study was to reveal the ameliorative 
characteristics of icariin and then discuss the antitumoral activities of this phytochemical 
against ovarian cancer with an emphasis on the modified molecular signaling pathways.  
[GMJ.2022;11:e2809] DOI:10.31661/gmj.v11i.2809
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Introduction

Cancer remains one of the leading caus-
es of mortality and morbidity world-
wide; as per recent statistics, approxi-

mately two million new cases and more than 
600,000 deaths are projected to occur in the 
United States in 2022 [1]. Ovarian cancer 
is considered the third most common gyne-
cological tumor after cervical and uterine 

cancers; however, the remarkable aggres-
sivity has made it the leading cause of can-
cer deaths in women as well as the fourth 
rank of death among all fatal diseases in  
women [2-4]. Statistical studies state 
that annually over 240,000 new cases are  
diagnosed with ovarian cancer, and approxi-
mately 380,000 deaths occur per year world 
wide [5, 6]. 
World health organization has histologically 
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classified ovarian tumors based on histoge-
netic principles according to the tumor deri-
vation from coelomic surface epithelial cells, 
mesenchyme, and germ cells [7]. The major-
ity of malignant ovarian tumors are consid-
ered to be epithelial ovarian cancers, which 
are further divided into mucinous, serous, 
clear cell, mixed epithelial tumors, transi-
tional cell tumors (known as Brenner tum-
ors), carcinosarcoma, endometrioid, undif-
ferentiated carcinoma, and other histological  
types [8]. Moreover, some types, such as 
clear cell and endometrioid carcinomas, have 
been associated with endometriosis, anoth-
er gynecological disorder [8, 9]. Important-
ly, this most common type of ovarian can-
cer, epithelial ovarian cancer, has a 5-year 
survival rate of 45.6% and could be caused 
by hormone imbalance during physiolog-
ical processes such as ovulation and preg-
nancy, as well as exogenous estrogen and  
progesterone [10-12].
The primary and standard for ovarian cancer 
treatment broadly includes debulking sur-
gery to no residual disease followed by plat-
inum-based chemotherapy, accompanied by 
anti-angiogenic agents in a patient who has 
suboptimal debulked and advanced (stage III-
IV) ovarian cancer; however, the outcomes of 
the disease management are complicated be-
cause of different factors [13]. Firstly, ovarian 
cancer is considered a heterogeneous group 
of malignancies representing different etiolo-
gy and molecular biology, even in a similar 
histological class [14]. Secondly, it is docu-
mented that the early symptoms of this type of 
cancer are occult. Moreover, the identification 
of the tissue types and whether the tumor is 
benign or malignant is quite challenging [15]. 
Notably, the 5-year survival rate for ovarian 
cancers is reported to be 93% when diagnosed 
at an early stage but declines to just over 13% 
when diagnosed at an advanced stage [5]. 
The occultness of early symptoms, the poor 
prognosis of the disease in advanced stages, 
and the fact that about 70% of ovarian cancer 
diagnoses are made in advanced stages [15] 
ultimately lead to non-responsiveness to ther-
apeutic strategies and reduced rates of sur-
vival to the point where 63% of cases ends in 
death [15]. In addition to all this, the adverse 

effects of common treatment methods, such 
as the invasiveness of surgery and the toxicity 
of chemotherapy on non-target tissues, which 
cause infertility [16, 17], anemia [18, 19], in-
fection [20, 21], bleeding [22], insomnia and 
depression [23-25], diarrhea, and constipa-
tion [26, 27] have led researchers to desire to 
find an alternative to the standard treatments 
strongly.
The design and development of novel phar-
maceuticals with fewer adverse effects and 
improved antitumoral activity are considered 
one of the main strategies to confront the pre-
vious insufficiencies of ovarian cancer thera-
peutic approaches [28, 29]. Nevertheless, this 
solution itself faces defects such as being cost-
ly, time-consuming approval processes, and a 
lack of ability to eliminate all the previous ad-
verse effects. Poly (ADP-ribose) polymerase 
(PARP) inhibitors, for example, benefits from 
homologous recombination deficiency, par-
ticularly in the carriers of breast cancer gene 
1 and 2 (BRCA1/2) mutation [30, 31]. Fur-
thermore, aurora kinase inhibitors in certain 
tumor types, such as epithelial ovarian can-
cer, have been suggested by extensive recent 
preclinical studies [32, 33]. In addition, the 
determined mutations (e.g., ARID1A muta-
tions) along with aberrant signaling pathways 
(e.g., phosphatidylinositol 3-kinase [PI3K]/
Akt/mTOR pathway) are considered the main 
characteristics of ovarian clear cell carcinoma 
and endometrioid ovarian carcinoma propos-
ing further therapeutic targets [34-37]. 
Fortunately, herbal compounds and tradition-
al Chinese medicine have been demonstrat-
ed in several studies to provide desired fea-
tures such as antitumor [38], anti-inflamma 
tory [39], antimicrobial [39], antioxidant [40], 
metabolism regulation [41], antidiabetic [42], 
antineurodegeneration [43], cardioprotective 
[44], enhancing the effects of chemotherapy 
[45], and reducing the destructive adverse ef-
fects of pharmaceuticals in non-target healthy 
tissues [46]. The present study aimed to as-
sess the antitumoral activity of herbal prod-
ucts against ovarian cancer, introduce Icariin, 
a novel dietary phytochemical with exten-
sive beneficial properties, and finally review 
its therapeutic performance against ovarian  
cancer.
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Phytochemicals Target Cancer Cells 
Survival and Proliferation

It is well known that cancer does not arise 
due to a single target disruption; however, it 
involves consecutive genetic and epigenetic 
changes, all of which lead to a myriad of al-
tered signaling pathways. Hence, full knowl-
edge of the complicated character of cancer 
still confronts a hard-to-estimate number of 
challenges [47]. In addition, the involvement 
of multiple signaling pathways via sequential 
genetic and epigenetic changes confirms that 
the proposed therapeutic approach must be 
capable of modulating the altered factors in 
addition to representing safety and reasona-
ble adverse effects, not to decrease the quality 
of life of survivors [29, 47-49]. Interestingly, 
phytochemicals, which are abundantly found 
in the daily diet and are inexpensively avail-
able to the public, propose the potential for 
such a function widely [50-56].
It is extensively reported that natural com-
pounds are capable of altering key regulators 
of tumor glycolysis signaling pathways, in-
cluding glucose transporters, phosphofruc-
tokinase, hexokinases, lactate dehydrogenase, 
and pyruvate kinase and thereby affecting 
tumor cells' energy sources to restrict their 
proliferation. Additionally, the synthesis, ac-
tivation, stabilization, and accumulation of 
hypoxia-inducible factor 1-α in cancerous 
cells are affected by phytochemicals via mod-
ulation of PI3K/Akt/mTOR and MAPK/ERK 
signaling pathways [47]. It is documented 
that phytochemicals can modulate apoptotic 
and autophagic signaling pathways in cancer, 
making these compounds promising thera-
peutic options [57]. Indeed, numerous studies 
demonstrated that phytochemicals affect cell 
survival signaling pathways in a pleiotropic 
and poorly specific approach; however, the 
modulation of reactive oxygen species (ROS) 
levels leads to activation of survival or a 
pro-apoptotic and pro-autophagic mechanism 
in the targeted tumor cell is common among 
all of them [58]. The regulatory role of the 
natural compounds on the crosstalk between 
apoptosis and autophagic flux could deter-
mine the destination of cancerous cells [59].
In addition to this antioxidative property of 

phytochemicals, these bioactive compounds 
are capable of targeting the signaling path-
way related to toll-like receptor4 (TLR4), a 
well-known pattern recognition receptor that 
plays a remarkable role in the host immune 
system in which its triggering is followed by 
the secretion of pro-inflammatory cytokines 
and chemokines and the activation of both 
innate and adaptive immunity, leading to an-
ti-inflammatory responses and cancer preven-
tion [60]. More importantly, the combined 
administration of phytochemicals with chem-
otherapeutics, known as polychemotherapy, 
could enhance anticancer activity by inhib-
iting chemoresistance via downregulation of 
oncogene pathways, including transforming 
growth factor –β (TGF- β), matrix metallopro-
teinase (MMP)-2, PI3K/Akt, EMT, NF-κB, 
and AP-1, augmentation of apoptosis induc-
tion in cancer cells, and suppression of cancer 
metastasis and proliferation [61]. In addition, 
the effects of selected phytochemicals or their 
combination on Nrf2 and NF-κB activities 
represent cancer prevention and therapy prop-
erties [62]. Furthermore, the Janus kinase 
(JAK)/signal transducer and activator of tran-
scription (STAT) signaling pathway, which its 
aberrant activation leads to tumorigenesis, is 
suppressed by phytochemicals leading to im-
peding cancer cell growth [63].

Phytochemicals Against Ovarian Cancer

Similar to the mentioned content in the 
previous section about phytochemicals' 
potential therapeutic role through modulation 
of several signaling pathways in all types 
of cancers, many studies have stated 
these beneficial effects in ovarian cancer. 
Resveratrol, for instance, is recognized as a 
preventive and therapeutic agent for ovarian 
cancer since it is capable of targeting a variety 
of oncogenic and oncosuppressive pathways, 
including cancerous cell proliferation, 
metastasis, autophagy, apoptosis, and 
sensitization [64]. Furthermore, quercetin, 
a well-known phytoestrogen, is reported to 
be able to attenuate metastatic features of 
human ovarian cancer cells by inactivation of 
PI3k/Akt, Ras/Raf pathways, and epidermal 
growth factor receptor expression, which 
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are involved in ovarian tumor cell survival 
and proliferation along with modulating the 
levels of migration and adhesion signaling 
molecules such as occludin, claudin-4, and  
claudin-11 [65]. Similarly, the decrement 
in antiapoptotic molecules (e.g., Bcl-2 and 
Bcl-xL) but the increment in pro-apoptotic 
molecules (e.g., Bad, Bax, Bid, caspase-3, 
and caspase-9) revealed that quercetin 
could inhibit the growth and survival of 
metastatic ovarian cancer cells [66]. Also, 
such a function has been reported following 
the interplay of quercetin and micro 
RNAs [67]. The regulation of ovarian cancer 
cells carcinogenesis through modulation of 
the Wnt/β-catenin signaling pathway [68], 
suppression of ovarian cancer cells metastasis 
via affecting the JAK/STAT3 pathway [69], 
and disrupting tumor proliferation, growth, 
and angiogenesis via downregulation of 
PI3K/Akt and MEK/ERK1/2 axes are desired 
properties of curcumin [70]. Fortunately, the 
findings are not limited to the mentioned 
examples, and many further studies have 
provided similar reports regarding other 
phytochemicals [71-73].

Icariin, A Novel Phytochemical with 
Favored Medicament Properties

The dried leaf of Epimedium, an 
herbaceous plant belonging to the family of 
Berberidaceae, is known as Epimedii herba. 
This plant is abundantly found in different 
parts of Asia as well as Europe [74]. E. herba 
has been prescribed for over 2000 years in 
Eastern Asia countries by traditional Chinese 
medicine practitioners for its therapeutic 
functions [75]. Chronic disorders such as 
female sterility, chronic bronchitis, general 
edema, leucopenia, kidney disorders, viral 
myocarditis, and hypertension are among the 
most important conditions that E. herba can 
provide a beneficial alleviating role [74, 75]. 
The therapeutic properties of E. herba are 
attributed to bioactive compounds, including 
flavonoids, terpenoids, and other chemicals 
such as steroids, acids, lignans, alkaloids, and 
anthraquinones [76]. It has been determined 
that there are 53 different flavonoids in 
this plant, including baohuoside I [76],  

ginkgetin [77], quercetin [78], robinetin [75], 
apigenin [75], luteolin [79], hyperin [77], and 
icariin [80].
Icariin, 2- (4′- methoxylphenyl)- 3- 
rhamnosido- 5- hydroxyl- 7- glucosido- 8- 
(3′- methyl- 2-butylenyl)-4- chromanone, 
is a well-known pentenylated flavonoid 
glycoside monomer derived from E. herba 
[80]. This phytoestrogen was first isolated 
and identified in 1990 and is believed to exert 
several favored biological characteristics, 
including antiosteoporosis, antidepression, 
anti-inflammatory, antioxidant, and antitumor 
activities [81, 82]. The modulation of various 
signaling pathways such as MiR-223-3p/ 
NALP3, IGF-1, TLR4/ NF-κB, PI3K/Akt, 
NFκB/ NALP3, Wnt1/ β-catenin, and Nrf-2 
are documented as the basic mechanisms by 
which icariin possess its pharmacological and 
therapeutical functions [77].
The inhibition of interleukin-1β (IL-1 β)/ 
TGF-β-mediated activation of renal fibroblasts 
is the mechanism involved in the attenuation 
of renal fibrosis in chronic renal disease by 
icariin [83]. Furthermore, icariin can suppress 
cystitis induced by cyclophosphamide 
chemotherapy by the upregulation of 
the Nrf-2/HO-1 signaling pathway as 
well as the downregulation of the NF-кB  
pathway [84]. The neuroprotective 
characteristics of this phytochemical against 
Alzheimer's and Parkinson's diseases are 
mediated by affecting several biomolecules 
and molecular pathways such as amyloid 
precursor protein, β-site amyloid precursor 
protein cleaving enzyme 1 (BACE1), 
insulin-degrading enzyme, ERK1/2, GSK-
3, NF-κB, Nrf2, and PI3K [80]. The 
inhibition of myocardial apoptosis, the 
prevention of inflammation on endothelial 
cells, the improvement of the immune 
system function, and the activation of HO1/
Nrf2 signaling pathways are reported as 
the modulatory mechanisms by which 
icariin exerts its therapeutical properties 
against cardiovascular disorders [85, 86]. 
Furthermore, the antimicrobial function of 
this phytoestrogen, such as ameliorating 
Escherichia coli lipopolysaccharide-mediated 
endometritis, is suggested to be performed 
by inhibiting oxidative stress and inflamma 
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tion [87]. In addition, the desired effects 
of icariin on the skeletal system, such 
as the alleviation of osteoarthritis and 
inhibition of RANKL-induced osteoclast 
genesis, are mediated by the regulatory 
role on the autophagy of chondrocytes, 
modification of PI3K/AKT/mTOR signaling, 
inhibition of reactive oxygen species (ROS) 
levels, and reduction in the expression of  
NOX1 and NOX4 [88, 89]. Moreover, the 
immunoregulatory and anti-inflammatory 
properties of icariin have introduced 
this phytochemical as a novel promising 
medicament to confront disorders related to 
the immune system, including inflammatory 
bowel diseases, asthma, multiple sclerosis, 
rheumatoid arthritis, lupus nephritis, 
atherosclerosis, and cancer via the restoration 
of aberrant signaling pathways, modulation of 
the functions and activation of immune cells, 
and regulation of the release of inflammatory 
factors [90]. 
Many studies have demonstrated the therapeutic 
function of icariin on several types of cancers, 
each of which was achieved by affecting a 
variety of cellular regulatory mechanisms. The 
amelioration of benign prostatic hyperplasia 
is demonstrated, which was achieved through 
the activation of the AMPK pathway as well 
as its antiproliferative (revealed histological 
manifestations), pro-apoptotic (upregulated 
Bax and downregulated Bcl-2), antioxidative 
(reduced malondialdehyde, catalase 
exhaustion, and decreased glutathione 
depletion), and anti-inflammatory (reduced 
IL-6 and tumor necrosis factor [TNF]-α 
levels) properties [91]. Moreover, icariin-
induced upregulation of miR-7 expression 
and subsequent inhibition of PI3K/AKT and 
Raf1/ERK1/2 signaling pathways leads to 
suppression of benign prostatic hyperplasia 
cells proliferation, migration, and promotion 
of apoptosis [92]. The inhibition of SIRT6/
NF-κB by icariin cause redox-mediated 
apoptosis in triple-negative breast cancer 
cells [93]. Furthermore, the suppression of 
autophagy and the regulation of the MELK-
mediated PI3K/Akt signaling pathway are 
recognized as another mechanism by which 
icariin induces apoptosis in MCF-7 breast 
cancer cells [94, 95]. Modification of the 

mTOR/PI3K/Akt signaling pathway by 
icariin leads to both apoptosis and autophagy 
and, finally, inhibition of the growth of human 
cervical cancer cells [96]. The reduction of 
TLR4/MyD88/NF-κB and Wnt/β-catenin 
pathways upon icariin administration leads 
to the alleviation of cervical cancer [97]. In 
lung cancer, it is demonstrated that icariin 
is able to target the miR‑205‑5p/PTEN axis 
leading to the modulation of the PI3K/Akt 
signaling pathway and inhibition of tumor  
progression [98]. The activation of the 
mitochondrial apoptotic pathway is reported 
as another mechanism that enables icariin 
to treat lung cancer [99]. In addition, the 
therapeutic effects of icariin on other types 
of cancer such as gastric, pancreatic, colon, 
and human oral squamous cell carcinoma are 
reported [100-103].

Therapeutic Properties of Icariin on 
Ovarian Cancer 

Similar to the other types of cancer mentioned 
earlier, icariin can prevent the proliferation 
and progression of ovarian cancer. Indeed, 
a multi-dimensional spectrum-effect 
relationship study, a scientific method based 
on the fingerprint of traditional Chinese 
medicines, determines the correlations 
between fingerprint and activity and 
proposes the antitumor activity of icariin 
against ovarian cancer [104]. Furthermore, 
a study based on network pharmacology 
suggested that icariin can target a variety 
of signaling biomolecules such as MMP-9, 
PIK3CA, STAT3, TNF, ERBB2, PIK3CA, 
mTOR, KDR, IL-2, and F2 in ovarian cancer 
SKOV3 cell line all of which leading to the 
induction of apoptosis and inhibition of 
proliferation through the suppression of PI3K/
Akt signaling pathway [105]. Similarly, a 
most recent network pharmacology-directed 
experimental investigation demonstrated 
that in SKOV3 cells, icariin could induce 
apoptosis via affecting pro-apoptotic markers, 
including Bcl-xL, Bax, and caspase-3 as 
well as disrupting the activation of the  
NF-κB pathway and modulation of PI3K/Akt 
pathway [106].
In vitro studies have revealed that the functions 
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of icariin on ovarian cancer cell lines are 
achieved through the modulation of autophagy 
and the promotion of apoptosis mediated by 
several signaling pathways [107]. In ovarian 
cancer A2780 cells, icariin downregulated 
the miR-21 expression, upregulated PTEN 
and RECK protein expression, and reduced 
pro-apoptotic Bcl-2 protein levels suggesting 
the regulatory role of icariin on ovarian 
cancer cells proliferation, apoptosis by 
modification of miR-21 expression, and 
the mentioned downstream proteins [107]. 
Furthermore, increased levels of apoptosis, 
higher levels of ROS, and altered cell cycle 
have resulted after the administration of 
icariin on OVCAR-3 ovarian cancer cells 
suggesting the cytotoxicity and apoptosis 
of this phytochemical against ovarian 
cancer cells [108]. Similar results regarding 
the cytotoxicity of icariin against ovarian 
cancer cells have been reported in SKOV-3  
cells [109]. Furthermore, a recent study stated 
that the inhibition of proliferation, the stalled 
cell cycle, and the promotion of apoptosis 
via disruption of the TNKS2/Wnt/ β-catenin 
pathway mediated by the upregulation of 
miR-1-3p could be achieved after treatment of 
ovarian SKOV-3 cells with icariin [110].
In addition to the typical ovarian tumors, 
icariin can be considered a good choice for 
phenotypes that are more difficult to respond 
to and/or do not respond to the current 
chemotherapeutic strategies in the clinic. In 
the multidrug-resistant phenotype of SKVCR 
cells, for example, Jiang et al. revealed that 

icariin could activate the mTOR signaling 
pathway, followed by autophagy inhibition, 
apoptosis promotion, and suppression 
of ovarian cancer cell proliferation and 
tumorigenesis [111]. Also, these findings 
suggest that the antitumor activity of icariin 
represents a solution for multidrug-resistance 
types of ovarian cancer [111]. In addition, 
icariin could enhance the chemosensitivity 
of a common chemotherapeutic (cisplatin)-
resistant phenotype of SKVCR cells via 
the inhibition of autophagy, induction 
of apoptosis, promoting G1/S cell cycle 
transition, and activation of the Akt/mTOR/
ATG5 pathway [112].

Conclusion

The current study revealed that reviewed 
investigations suggest promising therapeutical 
properties of icariin against ovarian cancer, 
which resulted from the regulatory role of 
this phytochemical on different signaling 
pathways determining the proliferation and 
growth or apoptosis and death of tumoral 
cells. Nevertheless, the current knowledge 
is limited to cellular studies. Hence, further 
experimental and clinical investigations are 
crucially required to assess the final safety and 
efficacy of icariin.
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