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Abstract

Myocardial infarction (MI), remains one of the leading causes of morbidity and mortality 
worldwide. As a result, understanding the underlying mechanisms of MI is crucial for de-
veloping effective therapeutic strategies. Epigenetics, which involves heritable changes in 
gene expression without altering the underlying DNA sequence, has emerged as a signifi-
cant factor in the pathogenesis and progression of MI. Key epigenetic mechanisms such as 
DNA methylation, histone modifications, and noncoding RNAs (ncRNAs) have been shown 
to regulate genes associated with inflammation, apoptosis, fibrosis, and cardiac repair. These 
epigenetic alterations contribute to the complex gene-environment interactions that influence 
clinical outcomes in MI patients. Recent research has identified specific epigenetic changes 
that can serve as biomarkers for MI risk stratification, offering potential for early diagnosis 
and personalized therapeutic interventions. Moreover, targeting these epigenetic modifica-
tions holds promise as a therapeutic strategy to reduce myocardial damage, enhance cardi-
ac function, and prevent adverse remodeling after MI. This review explores the mechanisms 
by which epigenetic regulation influences MI pathogenesis and discusses the therapeutic po-
tential of targeting these pathways to improve patient outcomes. By integrating epigenetic 
therapies into clinical practice, it may be possible to revolutionize the treatment of MI, ad-
dressing the disease at its molecular roots and offering more effective, durable interventions.
[GMJ.2024;13:e3474] DOI:10.31661/gmj.v13i.3474
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Introduction

Cardiovascular diseases (CVD) including 
myocardial infarction (MI)  are among the 

significant causes of morbidity and mortality 
in the world [1]. It basically means irrevers-

ible death of heart tissue owing to prolonged 
ischemia, usually caused by an imbalance in 
the myocardium between supply and demand 
for oxygen [2]. According to the World Health 
Organization (WHO), CVDs, among which 
myocardial infarction is one, were still esti-
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mated to cause 17.9 million deaths per year 
and remain the leading cause of death world-
wide [3]. This large global burden points at 
why effective interventions on the prevention 
and management of MI are needed [4, 5].  Epi-
genetics, which involves heritable changes in 
gene expression that do not alter the underly-
ing DNA sequence, has emerged as a crucial 
regulator of CVDs [6]. 
The principal epigenetic mechanisms iden-
tified in the regulation of gene expression 
include DNA methylation, histone modifi-
cations, and the activity of noncoding RNAs 
[7, 8]. These mechanisms play a critical role 
in regulating gene transcription, thereby sig-
nificantly influencing the pathophysiology of 
cardiovascular diseases [9, 10]. In the context 
of MI, these epigenetic alterations provide a 
foundational framework for complex gene-en-
vironment interactions that contribute to dis-
ease development and influence clinical out-
comes [11]. 
Animal studies examining the epigenetic land-
scape in MI have revealed significant factors 
that contribute to the exacerbation of the dis-
ease [12, 13]. However, there is limit clinical 
trials. This review aims to explore the major 
epigenetic mechanisms that contribute to the 
pathogenesis of MI and to identify potential 
biomarkers that can aid in the early diagnosis 
and prognosis of MI. Additionally, it presents 
the therapeutic potential of targeting these epi-
genetic pathways as a novel approach to treat-
ing this life-threatening condition. 

1. Epigenetic Mechanisms 

Epigenetic mechanisms are considered to in-
fluence the pathophysiology of MI through 
the regulation of gene expression without any 
alteration in the DNA sequence [7, 14]. 
Figure-1  showed a schematic of common 
Epigenetic mechanisms. As an example, DNA 
methylation has been described to alter the 
response of cardiac ischemic injury through 
silencing or activation of genes related to in-
flammation, fibrosis, and apoptosis involved 
in the process of myocardial infarction.

1.1. DNA Methylation
DNA methylation is an epigenetic process in 
which a methyl group is added to the 5' po-

sition of cytosine residues within CpG dinu-
cleotides in the DNA sequence [15, 16]. The 
event, for the most part, leads to repression of 
genes by preventing binding of transcription 
factors to DNA [16]. Alternatively, through 
recruiting proteins, compactly structures chro-
matin which makes DNA less accessible for 
transcription [17]. Unregulated DNA methyl-
ation could impact the risk of MI or disease 
progress [18, 19].  Abnormal methylation pat-
terns, such as hypermethylation or hypometh-
ylation, can alter gene expression, potential-
ly contributing to the development of MI by 
influencing genes involved in inflammation, 
vascular function, and lipid metabolism [12, 
18, 20].
Hypermethylation typically occurs in gene 
promoter regions and is associated with the 
silencing of gene expression. In the context 
of disease, hypermethylation can suppress the 
expression of critical genes [21]. In MI, the 
hypermethylation of certain genes is associat-
ed with an increased risk of MI and can exac-
erbate disease progression [12, 19].
Han et al.[12] demonstrated The progression 
of MI is influenced by the downregulation 
of energy metabolism genes and the upreg-
ulation of genes involved in immune regula-
tion, inflammation, and apoptosis, with hy-
permethylation of the Tnni3 gene potentially 
exacerbating the disease. Also, Chen et al. 
[22] showed there are significant genetic dif-
ferences in DNA methylation that are linked 
to disease progression. Moreover, Talens et 
al. [19] reported Women's risk of MI has been 
linked to DNA methylation at specific loci in-
fluenced by prenatal conditions, implying that 
epigenetic changes early in life could affect 
their likelihood of developing MI later on. On 
the other hand, Hypomethylation generally 
results in the activation or overexpression of 
genes, particularly those that are otherwise 
tightly regulated [12]. While gene activation 
is necessary for normal physiological pro-
cesses, aberrant hypomethylation can lead to 
the pathological overexpression of genes in-
volved in inflammation, immune responses, 
and fibrosis [23, 24]. Tarazón et al. [25] re-
ported genome-wide hypomethylation in the 
DNA of ischemic cardiomyopathy, alongside 
dysregulation in the processes involved in the 
addition, removal, and maintenance of methyl 
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groups. Also, Luttmer et al.[20] demonstrated 
that DNA hypomethylation is associated with 
hyperglycemia and low levels of high-density 
lipoprotein (HDL), both of which are linked to 
an increased risk of MI [26].
Indeed, these papers suggest that DNA meth-
ylation plays a crucial role in regulating gene 
expression, which impacts myocardial func-
tion and the response to injury, thereby in-
creasing the risk and progression of MI [12, 
22, 25]. Targeting these epigenetic modifica-
tions indeed offers a very promising therapeu-
tic strategy for mitigating damage from MI 
and bettering outcomes [17, 27]. 

1.2. Histone Modifications
Histone modifications are epigenetic reg-
ulators that perturb chromatin structure in 
gene-expression-impinging ways. Histones 

are the protein components of chromatin [28]. 
Histones can be modified at their tails by sev-
eral chemical modifications like acetylation, 
methylation, phosphorylation, ubiquitination, 
and sumoylation [11]. These modifications 
would then relax or compact chromatin struc-
ture, giving accessibility to specific regions of 
the genome and making them more or less ac-
cessible to other regulatory proteins, including 
transcription factors [7].  Acetylation of his-
tones, particularly on lysine residues, is typi-
cally associated with transcriptional activation 
[29]. The addition of acetyl groups neutralizes 
the positive charge on histones, reducing their 
affinity for DNA and allowing for a more re-
laxed chromatin structure that is accessible 
to transcription factors [29, 30]. Some stud-
ies demonstrated the dysregulation of histone 
acetylation can lead to aberrant expression 

Figure 1. (A) Histone Modifications: This panel illustrates various histone modifications, such as acetylation and methylation, that influ-
ence chromatin structure and gene expression by altering the accessibility of DNA to transcription factors. (B) DNA Methylation: This 
section highlights the process of DNA methylation, where methyl groups are added to the cytosine residues of CpG islands, leading to 
gene silencing or activation depending on the context and location within the genome. (C) Non-coding RNA: Depicted here are non-cod-
ing RNAs, including microRNAs and long non-coding RNAs, which regulate gene expression post-transcriptionally by targeting mRNA 
for degradation or inhibiting translation, playing a crucial role in cellular processes. (D) Chromatin Remodeling: This panel represents 
chromatin remodeling complexes that reposition, eject, or restructure nucleosomes, thereby modulating the accessibility of DNA to the 
transcriptional machinery and influencing gene expression patterns.



4 GMJ.2024;13:e3474
www.gmj.ir

Amin A, et al. The Role of Epigenetics in Myocardial Infarction The Role of Epigenetics in Myocardial Infarction Amin A, et al.

of genes involved in endothelial function, 
inflammatory responses, and hypertrophic 
signaling, contributing to the pathogenesis 
of MI and heart failure [31, 32]. In contrast, 
histone deacetylation, mediated by histone 
deacetylases (HDACs), generally results in 
transcriptional repression and has been linked 
to maladaptive cardiac remodeling and fibro-
sis following MI [33–35]. HDACs activity 
plays a pivotal role in the specification of me-
sodermal cells into cardiomyoblasts, a process 
essential for cardiac healing and regeneration 
[36]. Also, HDACs improve diastolic function 
and reduce cardiac fibrosis by downregula-
tion miR-133a wich induce pressure overload 
[37]. Histone methylation, which can either 
activate or repress transcription depending on 
the specific amino acid residue and the num-
ber of methyl groups added, is also critically 
involved in cardiovascular health and disease 
[38]. For example, trimethylation of histone 
H3 at lysine 27 (H3K27me3) is associated 
with gene silencing and has been implicated in 
the suppression of protective genes in cardiac 
tissues, while H3K4me3, an activating mark, 
is often found at promoters of genes involved 
in cardiomyocyte survival and function [39, 
40]. Aberrant histone methylation patterns 
have been linked to a range of cardiovascular 
pathologies, including atherosclerosis, hyper-
tension, and cardiac hypertrophy [37, 38, 41, 
42]. Given their central role in gene regula-
tion, histone modifications represent promis-
ing therapeutic targets for the treatment and 
prevention of CVDs [33]. 

1.3. Non-coding RNAs (microRNAs, lncRNAs)
Non-coding RNAs, in the form of microR-
NAs (miRNAs) and long non-coding RNAs 
(lncRNAs), are key post-transcriptional regu-
lators that control the expression of targeted 
genes without being translated into proteins 
[27]. These molecules are critical regulators 
of various physiological processes, including 
the pathogenesis of MI [43]. 

1.4. microRNAs
miRNAs, which are short, around 22-nucle-
otide-long RNA molecules, usually function 
by binding to complementary sequences in 
the 3' untranslated regions of target mRNAs, 
leading to their degradation or translation 

blockage [44]. miRNAs have emerged as crit-
ical regulators of cardiac pathophysiology, 
influencing processes such as apoptosis, in-
flammation, fibrosis, and angiogenesis [10]. 
The dysregulation of specific miRNAs has 
been implicated in both the acute phase of 
MI and the subsequent remodeling and repair 
processes, making them potential biomarkers 
and therapeutic targets in CVDs [45]. Several 
miRNAs are notably upregulated or downreg-
ulated in response to MI. For instance, Takaya 
et al. [46] demonstrated miR-1 and miR-133, 
which are involved in cardiomyocyte differen-
tiation and proliferation, are typically down-
regulated following MI, leading to impaired 
cardiac function and increased susceptibility 
to arrhythmias [47]. Conversely, miR-21 and 
miR-29 have been found to be upregulated in 
the post-MI heart, where they contribute to 
fibrosis and adverse remodeling by targeting 
genes involved in extracellular matrix pro-
duction and inflammatory pathways [48, 49] 
The modulation of these miRNAs has shown 
promise in preclinical studies, where either 
inhibiting or mimicking their activity can mit-
igate the pathological effects of MI, highlight-
ing their therapeutic potential [50]. In addition 
to their roles as regulators of cardiac patholo-
gy, miRNAs also hold promise as biomarkers 
for the diagnosis and prognosis of MI [51]. 
Circulating levels of certain miRNAs increase 
significantly in the bloodstream shortly after 
myocardial injury, reflecting ongoing cardiac 
damage [52, 53]. These miRNAs offer poten-
tial as non-invasive biomarkers for early MI 
detection, risk stratification, and monitoring 
of therapeutic efficacy [51, 54]. 

1.5. LncRNAs
LncRNAs, which are transcripts longer than 
200 nucleotides that do not encode proteins, 
exert their effects through various mecha-
nisms, including chromatin remodeling, tran-
scriptional regulation, and post-transcriptional 
modulation [55] LncRNAs play an essential 
role in modulating the response to ischemic 
injury, promoting or inhibiting myocardial re-
pair, and affecting the outcome of MI through 
the control of diverse signaling pathways 
[56–58].  Several investigations showed Ln-
cRNA MALAT1 protect cardiomyocytes from 
ischemic injury by regulating apoptosis and 
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promoting angiogenesis, thereby enhancing 
cardiac repair [59, 60]. Conversely, lncRNAs 
such as ANRIL have been associated with ad-
verse outcomes in MI, contributing to inflam-
mation and atherosclerotic plaque formation, 
which exacerbates myocardial damage [61, 
62]. Moreover, Liu et al. [58] reported that the 
expression of the human homolog of mouse 
lncRNA (LncHrt) is reduced in patients with 
dilated cardiomyopathy. These findings sug-
gest that LncHrt functions as a crucial regula-
tor of cardiac metabolism, playing a vital role 
in maintaining heart function by modulating 
key metabolic signaling pathways. Addition-
ally, Du et al. [57] demonstrated that lncRNA 
(N1LR) acts as a protective factor against MI 
by regulating the TGF-β/Smads signaling 
pathway. Similarly, Niu et al. [56] highlighted 
the critical role of lncRNA (Oip5-as1) in pre-
venting excessive mitochondrial fission during 
MI.  LncRNAs represent a critical and largely 
untapped resource in the understanding and 
treatment of myocardial infarction. Their roles 
as regulators of gene expression and cellular 
processes position them as valuable biomark-
ers and therapeutic targets in CVDs [56–58]. 

1.6. Chromatin Remodeling 
Chromatin remodeling is a dynamic process 
that involves changes in chromatin architec-
ture, which subsequently controls the accessi-
bility of DNA to transcription factors and oth-
er regulatory proteins [63]. This process plays 
a crucial role in regulating gene expression, 
and its dysregulation has been implicated in 
various pathological conditions [63, 64] Chro-
matin remodeling is increasingly recognized 
as a critical factor influencing cardiac gene ex-
pression, contributing to both heart develop-
ment and response to ischemic injury. [65–67] 
During ischemia, the heart undergoes signif-
icant stress, leading to the activation of var-
ious chromatin remodeling complexes. [66, 
67] These complexes modify histones and 
alter nucleosome positioning, facilitating or 
repressing the transcription of genes involved 
in cardiomyocyte survival, inflammation, fi-
brosis, and apoptosis [65]. As an example, 
the SWI/SNF complex has been implicated 
in the regulation of genes that promote car-
diac hypertrophy and fibrosis, processes that 
are central to the maladaptive remodeling that 

follows MI [27, 68]. Understanding the mech-
anisms of chromatin remodeling in the heart 
not only provides insights into the molecular 
underpinnings of MI but also opens up new 
avenues for therapeutic intervention aimed at 
improving recovery and preventing heart fail-
ure. 

2. Epigenetic Biomarkers 

Epigenetic biomarkers have emerged as a 
promising frontier in the diagnosis, prognosis, 
and management of MI [69]. Unlike genetic 
mutations, epigenetic modifications do not 
change the DNA sequence but instead regulate 
gene expression in a dynamic and reversible 
manner [45]. 

2.1. Diagnostic Biomarkers
Epigenetic biomarkers have gained signifi-
cant attention for their potential in improving 
the diagnosis of MI [51]. Among these, DNA 
methylation patterns and specific miRNAs 
have emerged as promising candidates [45]. 
Modification of DNA methylation at spe-
cific CpG sites in genes such as GNAS and 
ZNF365 has been associated with MI, offering 
a potential tool for early diagnosis [70]. Also, 
circulating miRNAs been identified as sensi-
tive and specific markers of myocardial injury. 
These miRNAs are released into the blood-
stream following cardiomyocyte damage, pro-
viding a non-invasive means to detect MI [52, 
53]. The utility of these epigenetic biomarkers 
lies in their ability to complement traditional 
diagnostic approaches, such as cardiac tropo-
nin levels and electrocardiograms, by offering 
additional insights into the molecular events 
underlying MI [45, 51].

2.2. Prognostic Biomarkers
Prognostic biomarkers are essential for pre-
dicting the outcomes of patients with MI 
and guiding therapeutic decisions [54]. DNA 
methylation signatures and miRNA profiles 
have shown promise in this area. Qin et al. 
[71] showed DNA methylation has been 
linked to adverse cardiac remodeling and poor 
prognosis following MI. They also identified 
DNA methylation prognostic genes, such as 
FKBP5, UBE2E2, and AUTS, which are as-
sociated with cellular senescence, myocyte 
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inflammation, and HDL levels, contributing to 
the adverse outcomes of MI [71]. Similarly, 
elevated levels of miR-21 and miR-29 in cir-
culation have been associated with increased 
fibrosis and a higher risk of heart failure [48, 
49]. Also, Scărlătescu et al. [72] the measure-
ment the level of miR-223-3p, miR-142-3p 
and miR-146a-5p could be useful as prognos-
tic markers for adverse events of MI. More-
over, Zheng et al. [73] and Chen et al. [74] 
demonstrated that lncRNAs increased in pa-
tients with MI and may serve as potential bio-
markers for predicting patient prognosis and 
cardiac fibrosis. These biomarkers not only 
provide insights into the likelihood of adverse 
outcomes but also help stratify patients based 
on their risk profile, enabling more personal-
ized treatment strategies [54, 71]. The identifi-
cation of reliable prognostic biomarkers could 
lead to improved long-term management of 
MI patients, reducing the incidence of compli-
cations and enhancing survival rates.

2.3. Methodological Approaches
The identification and validation of epigenetic 
biomarkers involve a range of advanced tech-
nologies and methodologies [75]. DNA meth-
ylation analysis typically utilizes techniques 
such as bisulfite sequencing, which converts 
unmethylated cytosines to uracil, allowing for 
the precise mapping of methylation sites [70] 
. Other approaches, such as methylation-spe-
cific PCR and pyrosequencing, are also em-
ployed for more targeted analyses [76–78] 
. For miRNA profiling, next-generation se-
quencing (NGS) and quantitative real-time 
PCR (qRT-PCR) are commonly used to iden-
tify and quantify miRNAs in both tissue sam-
ples and circulating fluids [79–81]. Addition-
ally, high-throughput methods like microarray 
analysis facilitate the simultaneous examina-
tion of multiple miRNAs, enabling the discov-
ery of novel biomarkers [69,82] .Validation of 
these biomarkers requires robust statistical 
analysis and replication in independent co-
horts to ensure their reliability and clinical 
utility  [9, 45, 69]. The integration of bioinfor-
matics tools is also crucial for analyzing large 
datasets and identifying relevant epigenetic 
patterns associated with MI.
3. Therapeutic Potential of Targeting Epi-
genetics

3.1. Pharmacological Modulators
The modulation of epigenetic mechanisms 
through pharmacological agents represents 
a promising approach to treating MI [83].  
Drugs targeting DNA methyltransferases and 
HDACs are at the forefront of this therapeu-
tic strategy [84]. DNA methyltransferases 
inhibitors, such as 5-azacytidine, prevent the 
addition of methyl groups to DNA, thereby 
reactivating the expression of silenced cardi-
oprotective genes [85]. These inhibitors have 
shown potential in preclinical models of MI 
by reducing cardiac fibrosis and improving 
myocardial function [86]. On the other hand, 
HDAC inhibitors by preventing the deacetyl-
ation of histones, leading to a more relaxed 
chromatin structure and enhanced expression 
of genes involved in cell survival, angiogen-
esis, and anti-inflammatory pathways [87] 
. Preclinical studies have demonstrated that 
HDAC inhibitors can reduce infarct size, pre-
vent adverse remodeling, and improve overall 
cardiac function after MI [88, 89]. Therapies 
targeting non-coding RNAs show significant 
potential in treating CVDs [90]. Preclinical 
studies have demonstrated that blocking or 
mimicking specific ncRNAs can effective-
ly inhibit the progression of atherosclerotic 
plaques, limit myocardial necrosis, and pre-
vent adverse cardiac remodeling [46, 91, 92] 
furthermore, other ncRNAs such Small inter-
fering RNA (siRNA) significantly reduced 
plasma level of lipoprotein(a) that is useful 
in management of CVDs [93, 94]. However, 
substantial challenges remain, particularly 
the unpredictable long-term effects in a di-
verse human population, making the design 
of appropriate clinical trials difficult [90]. The 
ongoing research into these pharmacological 
modulators highlights their potential to modu-
late epigenetic landscapes in MI.

3.2. Gene Therapy Approaches
Gene therapy represents a cutting-edge strat-
egy for epigenetic modification in myocar-
dial infarction, with the potential to achieve 
long-lasting effects on gene expression [95] 
.In this method, the CRISPR-Cas9 system has 
emerged as a powerful tool for precise epigen-
etic editing [96]. By targeting the epigenetic 
regulators of key genes involved in myocar-
dial injury and repair, CRISPR-Cas9 can be 
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used to activate or silence specific genes to 
promote cardioprotection [96, 97]. Addition-
ally, CRISPR-based approaches can modify 
histone marks to either activate or repress 
gene expression in cardiomyocytes, poten-
tially reducing cell death and promoting tis-
sue repair [96]. While still in its early stages, 
the application of CRISPR-Cas9 for epigen-
etic editing in MI holds significant promise, 
offering a targeted and potentially curative 
approach to mitigating the damage caused by 
ischemic injury [97].

4. Challenges and Opportunities

Despite the exciting potential of targeting epi-
genetics in MI, several challenges must be ad-
dressed to translate these therapies from the 
laboratory to clinical practice [98, 99]. One 
of the primary challenges is the specificity of 
epigenetic therapies. Since epigenetic mod-
ifications are widespread and occur in many 
different cell types, ensuring that therapeutic 
interventions target only the affected cardiac 
cells without off-target effects is crucial [99]. 
Another challenge is the delivery of epigene-
tic drugs or gene therapy vectors to the heart 
in a safe and efficient manner [100]. Current-
ly, systemic delivery methods may lead to 
unintended effects in non-cardiac tissues, ne-
cessitating the development of more targeted 
delivery systems. Additionally, the long-term 
effects of epigenetic modifications are not yet 
fully understood, raising concerns about po-
tential unforeseen consequences [90, 100]. 
However, these challenges also present op-
portunities for innovation. Advances in nan-
otechnology could enable more precise deliv-
ery of epigenetic modulators to the heart [15, 
101]. Furthermore, the ongoing development 

of more specific and tunable epigenetic edit-
ing tools could enhance the safety and effica-
cy of these therapies. As research progresses, 
overcoming these challenges will be critical 
for realizing the full therapeutic potential of 
epigenetic interventions in MI. 

Conclusion

Epigenetics plays a pivotal role in the patho-
genesis, progression, and potential treatment 
of MI. Through mechanisms such as DNA 
methylation, histone modifications, and 
non-coding RNAs, epigenetic alterations sig-
nificantly influence gene expression, affect-
ing processes like inflammation, fibrosis, and 
cardiomyocyte survival. These modifications 
provide a deeper understanding of the mo-
lecular underpinnings of MI, offering novel 
insights into both diagnostic and prognostic 
biomarkers. Moreover, the therapeutic po-
tential of targeting epigenetic mechanisms, 
whether through pharmacological agents or 
gene therapy approaches like CRISPR-Cas9, 
holds promise for improving MI outcomes. 
However, translating these epigenetic inter-
ventions into clinical practice presents chal-
lenges, including specificity, delivery, and 
long-term safety. Due to these challenges 
through innovative research and technological 
advancements will be crucial in harnessing the 
full therapeutic potential of epigenetics in the 
treatment of MI, potentially leading to more 
effective and personalized approaches to car-
diovascular care.
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