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Abstract

Osteonecrosis of the jaw (ONJ) is a severe bone condition characterized by the progressive 
destruction of the jawbone, often associated with the long-term use of antiresorptive medica-
tions such as bisphosphonates. Early detection of ONJ remains a significant clinical challenge 
due to the subtle onset of symptoms and limitations in current diagnostic methods, which rely 
on clinical assessment and radiographic imaging. Conventional techniques, such as panoramic 
X-rays, computed tomography (CT), and magnetic resonance imaging (MRI), often fail to detect 
early-stage ONJ, delaying diagnosis until more advanced stages. Machine learning (ML) has 
emerged as a powerful tool for improving the early detection and diagnosis of ONJ by integrat-
ing clinical and radiographic data. ML algorithms, including supervised learning methods like 
random forests, support vector machines, and deep learning models such as convolutional neu-
ral networks, are particularly suited for analyzing complex datasets and identifying patterns that 
are undetectable by traditional methods. These models can enhance the sensitivity and specifici-
ty of ONJ detection, potentially leading to earlier interventions and improved patient outcomes.
This paper reviews the current state of ML applications in ONJ detection, emphasizing the inte-
gration of clinical and radiographic data. It discusses various ML approaches, their potential to 
improve diagnostic accuracy, and the challenges involved in data integration. Also, this review 
highlights future directions of ML as a diagnostic tool that has the potential to revolutionize 
ONJ detection, offering a path toward earlier, more accurate diagnosis and better patient care.
[GMJ.2024;13:e3623] DOI:10.31661/gmj.v13i.3623
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Introduction

Osteonecrosis of the jaw (ONJ) is a serious 
bone disorder characterized by the pro-

gressive destruction of jawbone tissue due to 

disrupted blood flow [1]. This condition often 
arises as a complication in patients receiving 
long-term bisphosphonate therapy or other an-
tiresorptive drugs, typically prescribed for os-
teoporosis, metastatic cancers, or bone-related 
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conditions [2]. ONJ typically manifests with 
symptoms such as exposed necrotic bone, jaw 
pain, and infections in the oral cavity. If left 
untreated, it can lead to severe complications, 
such as pathologic fractures, and greatly im-
pairing quality of life [3, 4].
The early detection of ONJ remains a signif-
icant clinical challenge due to the insidious 
onset of the disease [5]. Risk factors for ONJ 
include bisphosphonate use, prior dental sur-
gery, pre-existing periodontal disease, and 
systemic conditions like diabetes or immuno-
suppression [6]. Despite the clear association 
between these risk factors and ONJ, the dis-
ease often goes unnoticed in its initial stages 
because early symptoms are either non-spe-
cific or absent, delaying diagnosis until more 
advanced bone damage occurs [7]. This diag-
nostic gap highlights the urgent need for more 
sensitive detection strategies, particularly 
during the early stages of disease progression 
[8].
The current diagnosis of ONJ is typically 
based on a combination of clinical and radio-
graphic findings. Clinically, healthcare pro-
viders look for exposed necrotic bone in the 
oral cavity, but this symptom usually becomes 
apparent only in advanced stages [1, 8].
 Early-stage ONJ, however, often lacks visible 
clinical markers, further complicating timely 
diagnosis [5]. Radiographic techniques such 
as panoramic X-rays, computed tomography 
(CT), and magnetic resonance imaging (MRI) 
are the primary imaging modalities used to as-
sess bone health and detect signs of necrosis 
[9]. CT scans offer more detailed cross-sec-
tional imaging, allowing for the visualization 
of both cortical and trabecular bone, but they 
are typically reserved for more advanced cas-
es due to their higher cost and radiation expo-
sure [10]. 
on the other hand, MRI provides excellent 
soft tissue contrast and can detect early bone 
marrow changes, but its availability and ex-
pense limit its use in routine diagnostics [11]. 
Additionally, these imaging modalities are 
subject to interpretation variability, where the 
accuracy of diagnosis depends heavily on the 
expertise of the radiologist or clinician [11, 
12]. Overall, conventional diagnostic meth-
ods are limited in their ability to detect ONJ 
early, often leading to delays in treatment 

[5]. Machine learning (ML) has emerged as 
a transformative tool in healthcare, with the 
potential to significantly enhance the early 
detection and diagnosis of osteonecrosis [13]. 
ML algorithms are designed to learn from 
large datasets, identifying patterns and rela-
tionships that may be undetectable by tradi-
tional methods [14].
By processing and analyzing both structured 
clinical data and unstructured radiographic 
images, ML models can identify subtle fea-
tures of ONJ in its early stages [11].  More-
over, ML algorithms can continuously im-
prove over time, as they are exposed to more 
data, further enhancing their predictive power 
[13].
The objective of this review is to critically as-
sess the role of ML in integrating clinical and 
radiographic data for the early detection of 
ONJ, limitations, and potential applications. 
Also, it will explore the challenges associ-
ated with the integration of multimodal data 
and offer insights into future directions for re-
search in this evolving field. 

1. Clinical and Radiographic Data 

In the diagnosis of ONJ, both clinical and ra-
diographic data play essential roles, each of-
fering unique insights that are critical for early 
detection or prediction [1, 5]. However, his-
topathology images or genetic polymorphism 
data have been used in some recent studies 
[15, 16].

2. Clinical Data

Clinical data for ONJ encompass a wide range 
of patient-specific factors [1]. Major elements 
include patient medical records, particularly 
regarding the use of antiresorptive medica-
tions such as bisphosphonates or denosum-
ab, which are strongly linked to ONJ devel-
opment [6, 8] Additional risk factors such as 
recent dental procedures (e.g., extractions or 
implants), trauma to the jaw, immunosup-
pressive conditions, and concurrent treat-
ments like chemotherapy or corticosteroids 
also contribute to the clinical risk profile [3, 
8]. Symptoms in ONJ often evolve gradual-
ly, with early signs including mild jaw pain 
or discomfort, swelling, and loose teeth. More 
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advanced stages are characterized by exposed 
necrotic bone, non-healing wounds, and lo-
calized infections [1, 8] However, early-stage 
ONJ often lacks overt clinical symptoms, 
complicating the diagnostic process and high-
lighting the importance of combining clinical 
assessments with imaging data for a more 
comprehensive evaluation [5].

3. Radiographic Data

Radiographic imaging serves as a critical tool 
for assessing the structural changes in the man-
dible associated with ONJ. Common imaging 
modalities include panoramic X-rays, com-
puted tomography (CT), and magnetic reso-
nance imaging (MRI) [11]. Each technique 
provides different diagnostic advantages, yet 
all are valuable for detecting bone alterations. 
Panoramic X-rays are frequently used as an 
initial imaging tool due to their wide avail-
ability and ability to visualize the entire man-
dible in one scan [17]. However, this modality 
has limitations in sensitivity, particularly for 
detecting early bone changes [11].
CT scans offer more detailed cross-sectional 
images of the bone, allowing for better visu-
alization of both cortical and trabecular bone 
structures. This technique is particularly use-
ful for identifying subtle features like early 
osteosclerosis or osteolysis that may not be 
evident on plain radiographs [10]. MRI, while 
less commonly employed due to its high cost 
and limited availability, excels in detecting 
early changes in the bone marrow that precede 
visible bone necrosis, offering a higher sensi-
tivity for detecting early-stage ONJ [11]. Ma-
jor diagnostic radiographic features of ONJ 
include areas of radiolucency, radiopacity, 
and the presence of sequestra [18].

4. Data Integration Challenges

The integration of clinical and radiographic 
data for ONJ diagnosis presents several tech-
nical challenges, primarily because these two 
types of data are fundamentally different in 
both format and scale [19]. Clinical data, often 
structured as patient history, risk factors, and 
symptom descriptions, is typically categorical 
or numerical, whereas radiographic data is 
unstructured, consisting of high-dimension-

al image files that require preprocessing for 
analysis [20]. This disparity complicates the 
direct fusion of these data types into ML mod-
els designed to enhance early ONJ detection 
[13]. Furthermore, radiographic images need 
to undergo extensive preprocessing, including 
segmentation and feature extraction, to isolate 
the relevant areas of interest, such as bone ab-
normalities [14].
On the other hand, clinical data is often in-
complete or inconsistent, which can lead to 
gaps in the information provided to the mod-
el [19]. Another major challenge is aligning 
the timing of the data. Clinical symptoms 
may appear at different stages of the disease 
compared to radiographic changes, making 
it difficult to synchronize the data inputs ac-
curately. Moreover, the integration process 
must account for the fact that clinical and ra-
diographic features may not correlate directly 
with disease severity or progression [19, 21].
ML models that aim to combine these two 
data streams must be capable of handling 
these discrepancies and extracting meaning-
ful patterns from diverse and often discordant 
datasets [14]. Developing robust algorithms 
that can simultaneously analyze clinical risk 
factors and radiographic features requires so-
phisticated data fusion techniques capable of 
managing these complexities [20]. Table-1 
highlights primary diagnostic features and 
evaluates their potential for integration into 
ML models to improve detection and diagno-
sis.
Thus, while the combination of clinical and 
radiographic data offers the potential for more 
accurate and earlier ONJ diagnosis, the tech-
nical and methodological challenges associ-
ated with merging such heterogeneous data 
must be addressed to fully realize the benefits 
of an integrated approach. 

5. Overview of ML Approaches

ML has shown great potential in advancing 
the early detection and diagnosis of ONJ by 
enabling the analysis of large datasets and 
identifying patterns that may be difficult for 
clinicians to detect using traditional methods 
[13]. Several ML approaches, including su-
pervised, unsupervised, deep learning, and 
multimodal techniques, have been explored 
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for ONJ, each offering unique advantages in 
processing clinical and radiographic data.

5. 1. Supervised Learning
Supervised learning is a commonly used ML 
approach where the model is trained on la-
beled data, with both input features and their 
corresponding outcomes provided. Super-
vised learning models like random forests, 

support vector machines (SVMs), and neural 
networks (NNs) have been employed to pre-
dict ONJ occurrence based on clinical and ra-
diographic data [14, 22].
Random forests are ensemble-based models 
that combine multiple decision trees to im-
prove predictive accuracy and handle large, 
heterogeneous datasets [23]. They have been 
used to assess structured clinical data, such as 

Table 1. Clinical and Radiographic Features of ONJ and their Suitability ML Applications

Feature Description Role in Diagnosis ML Suitability
Clinical

Mandibular Pain 
Pain in the jaw, often 

exacerbated by pressure or 
chewing.

Primary symptom 
prompting clinical 

investigation of ONJ.

Moderate - Clinical 
symptoms are subjective 

but can be incorporated into 
multi-modal ML models.

Bone Exposures 
(Clinical)

Visible bone exposed in 
the oral cavity without 

healing over a long period.

A clear indication of 
ONJ in the clinical 

setting is often used as 
a primary diagnostic 

marker.

High - Easily identifiable 
in clinical records and 
photographs for ML 

classification.

Radiographic

Osteolysis 

Destruction of bone 
structure is typically seen 
in the advanced stages of 

ONJ.

Helps confirm the 
extent of bone damage 

and progression of 
ONJ.

High - Clear radiographic 
marker, frequently used 
in ML models for bone 
destruction detection.

Osteosclerosis 

Abnormal hardening of 
the bone may indicate 
a reactive process to 

necrosis.

Indicator of chronic 
disease or healing 

responses, aiding in 
staging ONJ severity.

High - Detectable in 
radiographs, useful in 

distinguishing stages of ONJ.

Cortical Erosion 
Thinning or wearing away 
of the cortical bone layer 

in the mandible.

Early signs of bone 
weakening and necrosis 

in ONJ progression.

Moderate - Requires high-
quality imaging, but is 

useful for early detection 
algorithms.

Focal Sclerosis 

Increased bone density 
is seen in localized 

areas, often near necrotic 
regions.

A sign of localized 
bone death, used to 

differentiate between 
stages of necrosis.

High - Often used in 
radiographic analysis for 

ONJ detection in ML models.

Sequestrum 
Dead bone fragments 

detached from living bone, 
visible in radiographs.

Indicates severe 
necrosis and poor 

prognosis.

High - Clear radiographic 
marker for severe ONJ, 

useful in advanced detection 
models.

Persistent 
Alveolar Socket 

Non-healing extraction 
socket after tooth removal, 

which can indicate 
impaired healing.

Suggests compromised 
bone healing, a critical 
indicator of early ONJ.

Moderate - Radiographic 
evidence can be subtle, but 
useful for early-stage ONJ 

prediction models.

Inferior 
Alveolar Canal 
Enhancement 

Radiographic 
enhancement along the 
canal, suggests nerve 

involvement or advanced 
disease.

Helps distinguish 
between ONJ and other 
mandibular pathologies.

Moderate - Requires precise 
imaging, but is useful for 
advanced ONJ detection.
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patient risk factors and medical history, to pre-
dict the likelihood of ONJ development [24]. 
SVMs are another popular supervised learn-
ing technique that separates data into differ-
ent classes using hyperplanes [25]. For ONJ 
detection, SVMs can classify patients into 
"high-risk" or "low-risk" groups based on 
clinical and radiographic input. They are es-
pecially effective when dealing with small 
datasets, which is often the case with rare 
conditions, and are robust against overfitting 
in high-dimensional spaces [14, 24].
NNs, especially shallow networks, are ca-
pable of capturing complex, non-linear rela-
tionships between clinical features and ONJ 
risk [26, 27]. These models can be trained to 
predict disease presence based on clinical data 
inputs but have been less commonly applied 
to structured data in ONJ compared to their 
deep-learning counterparts [28].

5. 2. Unsupervised Learning
Unsupervised learning techniques, which 
work with unlabeled data, are particularly 
useful in scenarios where clear outcomes are 
not predefined, making them valuable for ex-
ploratory analysis [29].
Clustering algorithms such as k-means or hi-
erarchical clustering can be applied to group 
patients based on similarities in their clinical 
and radiographic profiles [30]. These tech-
niques allow for the identification of sub-
groups of patients who may be at higher or 
lower risk for ONJ, based on common clinical 
features or imaging characteristics. Clustering 
can also help uncover hidden patterns in pa-
tient data [24, 30].

5. 3. Deep Learning
Deep learning, a subset of machine learning 
that uses NNs with multiple layers, has revo-
lutionized the analysis of complex data types, 
particularly in medical imaging [31]. For 
osteonecrosis detection, convolutional NNs 
(CNNs) have been instrumental in analyzing 
radiographic images [27].
NNs are designed to automatically learn hi-
erarchical features from images, making 
them highly effective at detecting subtle 
bone changes that may indicate early stages 
of ONJ [13, 27]. These models can process 
radiographic images like panoramic X-rays, 

CT, or MRI scans to identify key diagnostic 
features [27, 32]. Advanced forms of CNNs, 
such as U-Net models, have also been used 
for segmentation tasks, where the goal is to 
delineate areas of necrotic bone from healthy 
tissue [15]. This automated segmentation 
helps clinicians focus on regions of interest 
in complex radiographic images, providing a 
more detailed assessment of ONJ progression 
[15, 33].

5. 4. Multimodal Machine Learning
Multimodal machine learning integrates mul-
tiple data types primarily clinical and radio-
graphic data into a unified predictive model 
[20]. Multimodal ML approaches are designed 
to address the limitations of single-modali-
ty models by combining structured clinical 
data with unstructured radiographic images, 
allowing for a more comprehensive analysis 
[20, 34].
• Hybrid models: These models incorporate 
both clinical and radiographic features as in-
puts, enabling them to leverage the comple-
mentary strengths of each data type [35]. In 
hybrid models, the two data types are pro-
cessed simultaneously, allowing the model to 
make more informed predictions. Feature ex-
traction techniques are used to reduce the di-
mensionality of radiographic images, making 
them more manageable for analysis alongside 
clinical data to predict osteonecrosis [36].
• Ensemble models: Ensemble methods, which 
combine the predictions of multiple different 
models to improve overall accuracy [37, 38]. 
This method helps to mitigate the weaknesses 
of any single model by pooling the strengths 
of multiple approaches, resulting in more ro-
bust and reliable predictions [13, 39]. 

6. Clinical Applications of ML in ONJ 

Recent research highlights the promising role 
of ML in detecting and predicting ONJ by in-
tegrating clinical and radiographic data [14, 
24]. Table-2 outlines various ML algorithms, 
their input data types (clinical, radiographic, 
or combined), and perform¬¬ance metrics 
such as accuracy, sensitivity, and/or area un-
der the curve (AUC), providing a comprehen-
sive evaluation of each model’s effectiveness 
in ONJ detection or prediction. Ariji et al, 
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[40]. developed a deep learning-based detec-
tion model using panoramic radiographs to 
automatically classify radiolucent lesions of 
the mandible. This model achieved a sensi-
tivity of 0.88, showcasing ML's effectiveness 
in detecting various mandibular conditions, 
including dentigerous cysts. Also, Gürses 
et al [14]. employed an ML-based approach 
to detect medication-related ONJ (MRONJ) 
using cone beam computerized tomography 
(CBCT) images. They developed an SVM al-
gorithm to differentiate between healthy and 
MRONJ by analyzing changes in both trabec-

ular and cortical bone. The model achieved 
a high accuracy of 0.999, with strong sensi-
tivity, specificity, and precision in identifying 
MRONJ. These results align with other stud-
ies that have used ML algorithms for osteone-
crosis detection [39, 40].
Also, Matthies et al, [15] demonstrated the 
U-Net models, as advanced forms of CNNs, 
combined with shifted-excitation Raman dif-
ference spectroscopy, can accurately differ-
entiate antiresorptive MRONJ from viable 
bone, thereby enhancing both diagnosis and 
treatment.

Table 2. Comparison of ML Models for the Detection or Prediction of ONJ
Study Input Data Algorithm Performance Metrics Applied for
Ariji et al. [40] Radiographic NN Sensitivity:0.88 detection

Gürses et al. [14] Radiographic SVM Accuracy:99.9% 
Sensitivity:99.8% detection

Matthies et al. [15] histopathology 
image NN Accuracy:100%

Sensitivity:100% detection

Kim et al.[24] Clinical 

RF AUC: 0.97
Sensitivity: 100%

prediction
ANN AUC: 0.91

Sensitivity: 100%

SVM AUC: 0.88
Sensitivity:81.8%

LR AUC:0.84
Sensitivity: 100%

Humbert-Vidan et al., 
[41]

Clinical and 
Radiographic RF Accuracy: 77% prediction

Kwack et al. [13] Clinical and 
Radiographic

Deep 
Learning 

(generalized 
linear model)

Accuracy: 82%
AUC: 0.83 prediction

Choi et al. [16] estrogen receptor 1 
polymorphisms

RF AUC:0.8
prediction

SVM AUC:0.76

Reber et al. [39]
Clinical and 

Radiographic

LR Accuracy: 75%
Sensitivity: 90%

prediction

SVM Accuracy: 76%
Sensitivity: 96%

RF Accuracy: 71%
Sensitivity: 77%

AdaBoost Accuracy: 75%
Sensitivity: 93%

ANN Accuracy: 77%
Sensitivity: 90%

NN: Neural Network; SVM: Support Vector Machine; AUC: The area under the ROC curve serves as an 
indicator of the accuracy of a quantitative diagnostic test.
RF: Random Forest; LR: Logistic Regression; RF: Random Forest; AdaBoost: Adaptive Boosting; ANN: 
Artificial Neural Network
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Furthermore, several studies have developed 
ML-based models to predict osteonecrosis by 
analyzing complex clinical data and identify-
ing high-risk factors and patterns [13, 16, 24, 
39, 41]. For example, Reber et al, [39] com-
pared the ML methods for the prediction of 
osteoradionecrosis. They reported the accura-
cy of the NN model (77%) is higher than other 
models however it is close to the SMV model 
(76%). On the other hand, the sensitivity of 
SNM is higher than the NN model. (96% Vs. 
90%). Moreover, Choi et al [16]. predicted 
osteonecrosis via ML models by using estro-
gen receptor 1 polymorphism data as a novel 
approach. 

6. 1. Limitations
Despite these promising developments, cur-
rent research faces several limitations. A sig-
nificant challenge is the availability of large, 
high-quality datasets. Many studies rely on 
small datasets, which limits the robustness 
and generalizability of ML models [14, 22]. 
Additionally, while the algorithms perform 
well on test data, their interpretability remains 
a concern. Clinicians require models that not 
only predict outcomes but also provide clear 
insights into the decision-making process, an 
area where current ML models fall short [13, 
42].
Moreover, the clinical application of these 
models remains limited [13]. Most of the 
studies are still at the experiential stage, with 
little integration into routine clinical work-
flows. To bridge this gap, future research must 
focus on developing user-friendly tools that 
clinicians can readily adopt and trust in their 
decision-making processes. 

7. Future Directions and Research Gaps

As ML continues to advance, the potential for 
improving the early detection and diagnosis of 
ONJ is significant [39, 42]. However, several 
research gaps and challenges remain, partic-
ularly in the areas of data integration, dataset 
availability, and clinical translation.

7. 1. Data Integration Advances
Emerging machine learning technologies, 
such as federated learning and reinforcement 
learning, offer new opportunities for improv-

ing data integration in ONJ detection.
• Federated Learning: Traditional ML mod-
els often require centralized data, which can 
be challenging in healthcare due to concerns 
over patient privacy and data sharing [43]. 
Federated learning is an approach where mod-
els are trained across multiple decentralized 
data sources (e.g., hospitals or clinics) with-
out sharing raw data. Instead, each institution 
trains a local model and only shares model 
updates, ensuring that patient data remains se-
cure [44]. To utilize in the diagnosis of ONJ, 
federated learning could enable the integra-
tion of clinical and radiographic data from 
multiple institutions, leading to more robust 
and generalized models. 
• Reinforcement Learning: While most ML 
applications in ONJ are based on supervised 
learning, reinforcement learning (RL) offers 
the potential for improving decision-making 
processes in clinical care [14 ,45]. In RL, the 
model learns by interacting with an environ-
ment and receiving feedback in the form of 
rewards or penalties based on its actions [46]. 
To detect ONJ, RL could be used to develop 
personalized treatment strategies, guiding cli-
nicians on the best diagnostic and therapeutic 
steps based on real-time patient data. 
7. 2. Need for Larger, Diverse Datasets
A major limitation in current ONJ research 
is the lack of large, well-curated datasets that 
combine clinical and radiographic data. ML 
models thrive on vast amounts of labeled data 
to achieve higher accuracy and generaliza-
tion, yet the rarity of ONJ and the difficulties 
in labeling early-stage cases pose challenges 
[47,48].
• Curated and Labeled Datasets: The develop-
ment of larger, more comprehensive datasets 
that combine clinical and radiographic data is 
essential for the future success of ML in ONJ 
detection.[21,40] Such datasets must include 
a broad range of patient demographics, clin-
ical presentations, and imaging modalities to 
ensure that ML models can generalize across 
different populations [21].
• Diverse Data Sources: Future datasets must 
encompass a diversity of clinical presenta-
tions, ethnic backgrounds, and geographic re-
gions. ONJ may present differently depending 
on patient comorbidities, dental health, and 
medication history, all of which can vary by 
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population [13]. Collaborative efforts across 
global institutions are essential for generating 
larger, more representative datasets. Federat-
ed learning facilitates these multi-institutional 
collaborations by allowing data sharing across 
organizations without compromising patient 
privacy [49].
• Longitudinal Data: There is also a need for 
longitudinal datasets that track patients over 
time, allowing ML models to better predict 
the onset and progression of ONJ [16]. This 
would help address one of the key challenges 
in early detection, where static snapshots of 
clinical and radiographic data may miss subtle 
changes that indicate the early stages of the 
disease.

7. 3. Clinical Translation
While machine learning models have shown 
promising results in research, translating 
these technologies into clinical practice pres-
ents several challenges, particularly around 
ethics, explainability, and regulatory approval 
[21, 50].
• Ethical Concerns: As ML models are in-
creasingly used to influence clinical deci-
sions, ethical issues such as data privacy, pa-
tient consent, and potential biases in the mod-
el become critical [51]. The use of patient data 
for training models raises concerns about data 
security where sensitive medical histories are 
involved. Ensuring that ML models are trans-
parent and that patients understand how their 
data is being used is essential for maintaining 
trust in these technologies [49].
• Model Explainability: One of the primary 
barriers to the clinical adoption of ML models 
is the "black box" nature of many algorithms, 
particularly deep learning models [50]. While 
these models may offer high accuracy in de-
tecting ONJ from radiographic images, they 
often provide little insight into how they ar-
rived at a particular decision [14]. Techniques 
such as saliency maps, which highlight the 
parts of an image that contributed most to a 
CNN’s decision, can help make deep learning 
models more interpretable and thus more clin-
ically acceptable [52].
• Regulatory Approval: Bringing ML-based 
diagnostic tools from research to the clinic 
also requires navigating complex regulato-
ry landscapes. In most countries, medical AI 

systems must be rigorously validated and 
approved by regulatory bodies [53, 54]. This 
process can be lengthy and requires robust ev-
idence that the model is safe, effective, and 
reliable across different clinical settings. For 
ONJ detection, ML models must undergo ex-
tensive validation in prospective clinical trials 
before they can be routinely used in practice 
[54].
• Integration into Clinical Workflows: For ML 
models to be adopted in clinical settings, they 
must be seamlessly integrated into existing 
workflows. This includes ensuring that the 
tools are easy to use, provide real-time anal-
ysis, and complement rather than disrupt clin-
ical decision-making [55]. For diagnosis of 
ONJ, ML tools must fit within the diagnostic 
processes used by dentists and oral surgeons, 
offering clear guidance without requiring ex-
tensive additional training [32 ,40]. 

Conclusion

ML holds immense potential for enhancing 
the early detection and prediction of ONJ by 
integrating clinical and radiographic data. By 
analyzing complex, multimodal datasets, ML 
models can identify subtle patterns and early 
signs of ONJ that are often missed by tradi-
tional diagnostic methods. Techniques such as 
NNs and SVM that combine clinical risk fac-
tors with radiographic imaging have shown 
promise in improving diagnostic accuracy and 
enabling earlier intervention. However, de-
spite these advancements, several limitations 
remain. The integration of heterogeneous clin-
ical and radiographic data presents technical 
difficulties, including differences in data for-
mat, scale, and timing. Additionally, the scar-
city of large, well-curated datasets limits the 
development of robust and generalizable ML 
models. Addressing these gaps will require 
concerted efforts in data standardization, the 
creation of longitudinal and multi-institution-
al datasets, and the adoption of techniques like 
federated learning, which can protect patient 
privacy while enabling collaborative research 
across institutions. Also, Ethical concerns, 
including data privacy, patient consent, and 
potential biases in training datasets, must be 
addressed to ensure that ML systems are used 
responsibly. Moreover, Regulatory approval 
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