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Abstract

Background: Protein-based therapeutics offer remarkable precision and effectiveness, yet their 
immunogenic potential remains a significant challenge. Uricase, an enzyme used to treat hyper-
uricemia, is no exception, often eliciting immune responses due to its non-human origins and 
repeated administration requirements. Understanding the immunogenic mechanisms at play is 
crucial for enhancing therapeutic efficacy. Materials and Methods: This in silico study inves-
tigates the immunogenic landscape of uricase, focusing on the identification of linear, confor-
mational, and the underexplored quaternary epitopes. Using a comprehensive approach, we 
analyzed multiple uricase variants through structural alignments, epitope prediction algorithms, 
and network-based residue interaction models. Predictive tools, including BepiPred, Disco-
Tope, and SEMA, were employed to identify epitope regions, with a novel focus on quaternary 
epitopes formed by inter-chain interactions. Results: Our analysis reveals conserved structur-
al motifs across uricase variants, with linear and conformational epitopes localized in similar 
regions. The groundbreaking identification of quaternary epitopes—epitopes formed through 
interactions between protein chains—provides a novel insight into uricase immunogenicity. 
These epitopes, located in structurally prominent regions, likely play a critical role in the im-
mune response to uricase. Conclusion: This study marks a significant advance in understanding 
uricase immunogenicity, introducing quaternary epitopes as pivotal factors in immune recogni-
tion. The findings open new avenues for designing uricase variants with reduced immunogenic-
ity, offering potential improvements in therapeutic strategies for hyperuricemia management. 
[GMJ.2025;14:e3634] DOI:10.31661/gmj.v14i.3634
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Introduction

Protein-based therapeutics have garnered 
significant attention due to their high 

specificity and efficacy, even at low concen-
trations, making them superior to small mol-
ecule drugs in many therapeutic applications 
[1, 2]. However, a major limitation of protein 
drugs is their potential to trigger immune re-
sponses, primarily through the elicitation of 
anti-drug antibodies (ADAs) [3, 4]. These 
ADAs can accelerate drug clearance from the 
bloodstream, altering the pharmacokinetics 
and pharmacodynamics of the drug, which 
often leads to treatment failure or, in severe 
cases, adverse reactions [5, 6].
One such therapeutic protein facing immu-
nogenic challenges is uricase—an enzyme 
used to regulate uric acid levels in patients 
suffering from hyperuricemia [7-9]. Uricase 
plays a critical role in purine metabolism by 
converting uric acid into allantoin, a more 
soluble product, thereby facilitating its excre-
tion [10]. However, in humans and some pri-
mates, uricase has become nonfunctional due 
to pseudogenization, leading to elevated uric 
acid levels, particularly in individuals with 
hyperuricemia [8]. Excess uric acid results 
in the formation of crystals within joints and 
tissues, causing inflammatory conditions like 
gout [7, 11]. Elevated uric acid levels are also 
implicated in diseases such as cardiovascular 
disorders, neurodegenerative diseases, and 
metabolic syndrome [12, 13].
Despite the therapeutic promise of uricase, 
its immunogenicity presents a major hurdle 
in clinical applications. As uricase is derived 
from non-human sources (e.g., bacterial, fun-
gal, or porcine), the human immune system 
may recognize it as foreign, potentially induc-
ing harmful immune responses, including the 
formation of neutralizing antibodies that can 
compromise treatment efficacy [14-17]. This 
underscores the critical need to understand the 
epitopic landscape of uricase, as epitopes—
regions on the protein recognized by antibod-
ies—are central to immunogenicity [18, 19].
Epitopes can be classified into three catego-
ries: linear, which are continuous amino acid 
sequences; conformational, which arise from 
the three-dimensional folding of the protein; 
and quaternary, which involve interactions be-

tween different protein chains or subunits. Al-
though much attention has been given to lin-
ear and conformational epitopes, quaternary 
epitopes remain largely underexplored in the 
context of uricase immunogenicity. This study 
aims to address this gap by hypothesizing that 
uricase immunogenicity arises from a combi-
nation of linear, conformational, and quater-
nary epitopes. To investigate these epitopes, 
we employed an in silico approach, utilizing a 
range of computational tools and databases to 
predict potential epitopes on uricase. Through 
a comprehensive database search, we identi-
fied four uricase variants from distinct origins, 
all of which shared structural similarities de-
spite their sequence variations. These findings 
suggest a common structural framework that 
could potentially harbor immunogenic epi-
topes, thus raising the question of whether the 
immunogenicity observed across different uri-
case variants stems from conserved epitopic 
regions.This study investigates the epitopic 
landscape of uricase with a focus on identi-
fying linear, conformational, and quaternary 
epitopes that contribute to its immunogenic-
ity. Through detailed structural alignments 
and consensus epitope prediction methods, 
we aim to elucidate factors that could guide 
the design of less immunogenic uricase vari-
ants. By highlighting quaternary epitopes, 
which involve inter-chain interactions and are 
understudied in the context of uricase immu-
nogenicity, this research provides insights that 
could support the development of safer, more 
effective uricase-based therapeutics for clini-
cal application. 

Materials and Methods

Data Acquisition
Uricase structures were retrieved from the 
PDBFlex database [20] (https://pdbflex.org/) 
using the keyword “uricase.” PDBFlex col-
lates crystal structures with a minimum of 95% 
sequence identity, allowing for the examina-
tion of structural variations. These structures 
were analyzed and visualized using UCSF 
Chimera ver 1.15 (http:// www.cgl.ucsf.edu/
chimera/) [21], a molecular modeling system 
widely used for protein analysis. Correspond-
ing FASTA sequences were extracted for fur-
ther sequence-based analyses.
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Structural Alignment
The structural alignment of uricase variants 
was performed using the Matchmaker func-
tion within UCSF Chimera. This tool utilizes 
the BLOSUM 62 substitution matrix and the 
Smith-Waterman algorithm [22] algorithm to 
superimpose protein structures with high sen-
sitivity, ensuring the best scoring alignments 
are captured.

Sequence Property Analysis
Various B-cell epitope-related sequence prop-
erties were predicted using tools from the 
Immune Epitope Database (IEDB) (https://
www.iedb.org/), focusing on the following 
parameters: B-cell epitopes: hydrophilicity 
[23], flexibility [24], surface accessibility [25] 
and antigenicity [26].These properties were 
assessed to identify regions likely to elicit im-
mune responses.

Linear B-cell Epitope Prediction
Linear B-cell epitopes were predicted using 
multiple algorithms to enhance reliability: 
Bepipred [27-29] (threshold: 0.35), Bepipred 
2 [30] (threshold: 0.5), as provided by www.
iedb.org, and Bepipred 3 [31] (threshold: 
0.15), available through the IEDB and Health-
Tech DTU services.
Ellipro [32] (threshold: 0.5) was also used 
to predict linear epitopes based on structural 
data and machine learning techniques.
Each BepiPred version integrates different 
computational approaches, ranging from 
hidden Markov models (BepiPred-1.0) to 
advanced machine learning with protein lan-
guage models (BepiPred-3.0). Consensus epi-
topes were selected by combining predictions 
from these tools with physicochemical prop-
erties for robust identification of immunogen-
ic sites.

Conformational B-cell Epitope Prediction
Conformational (discontinuous) epitopes 
were identified using three complementary 
tools:
DiscoTope 3.0 [33] (DTU HealthTech) - This 
algorithm incorporates surface accessibility, 
residue clustering, and solvent accessibility 
to locate epitopes based on protein structures.
Ellipro [32] - A structural epitope prediction 
tool from IEDB that uses machine learning 

and geometric principles.
SEMA [34] (https://sema.airi.net) - This deep 
learning-based tool utilizes transfer learning 
to predict conformational epitopes, integrat-
ing both sequence and tertiary structure infor-
mation (threshold: 1.1).

Quaternary Epitope Localization
To localize quaternary epitopes, the confor-
mational epitopes on one chain of the uricase 
structure were first identified. Residues within 
a 6-angstrom radius of these epitopes on ad-
jacent chains were then selected as potential 
quaternary epitopes. This proximity-based 
method allows for the identification of epi-
topes formed through inter-chain interactions, 
which are critical for understanding the im-
munogenicity of protein complexes.

Interaction Network Analysis
To further explore the interaction network of 
quaternary epitopes, residue interaction net-
works were constructed based on a 6-ang-
strom cutoff distance between Cα atoms in 
the protein structures. The RINalyzer [35] 
plugin for Cytoscape 3.9.1 [36]was used to 
generate residue interaction networks from 
the Protein Data Bank (PDB) structures. 
RINalyzer established a connection between 
Cytoscape and UCSF Chimera [21], allowing 
for the extraction and visualization of interac-
tion data. Interface residue subnetworks, de-
fined by residues from different chains within 
6-angstrom proximity, were isolated for fur-
ther analysis. These subnetworks specifically 
included residues involved in conformational 
epitope formation, enhancing the identifica-
tion of quaternary epitopes.

Table 1. Four Representative Structures for Uri-
cases

PDB ID Cluster 
Members** Organism

4D12 102 Aspergillus flavus

2YZE 51 Arthrobacter 
globiformis

4MB8 3 unclassified 
Mammalia

5M98 15 Danio rerio
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Results

Structural Analysis of Uricase Variants
Using the PDBFlex database, we identified 
four representative uricase structures from 
distinct organisms. These structures (Table-1) 
were selected to minimize redundancy, as 
PDBFlex clusters structures with over 95% 
sequence identity. The chosen uricase en-
zymes were sourced from Aspergillus flavus, 
Arthrobacter globiformis, Mammalia, and 
Danio rerio, representing a diverse range of 
uricases for in-depth analysis. 

Structural Alignment and Conservation
Despite variations in amino acid sequences, 
the overall structural topology of the uricase 
enzymes remained highly conserved. The 
uricases adopted a homotetrameric structure, 
forming a tightly enclosed tunnel through 
which uric acid catalysis occurs (Figure-1). 
Structural alignment using UCSF Chimera 
revealed significant conformational similarity 
across the four variants.

Physicochemical Properties of Uricase Se-
quences
To investigate immunogenic determinants, 
we analyzed the physicochemical properties 
of the uricase sequences, focusing on param-
eters such as antigenicity, beta-turn propen-
sity, hydrophilicity, flexibility, and surface 
accessibility. These properties play a crucial 

role in B-cell epitope localization. As shown 
in Figure-2, the profiles exhibited consistent 
fluctuations across all four sequences, reflect-
ing similar trends in regions likely to elicit im-
mune responses. 

Consensus Epitope Identification
Linear and conformational epitopes were 
predicted using multiple computational al-
gorithms, including BepiPred (versions 1, 2, 
and 3) and Ellipro. Consensus epitopes were 
defined as regions receiving positive predic-
tions from at least two algorithms. Table-2 
lists the consensus epitopes for each uricase 
variant. Uricases show consistent topologies, 
despite variations in amino acid arrangements 
(Figure-1). Through the location of consensus 
B-cell epitopes in the enzyme structures and 
the concurrent alignment of these structures, 
it was observed that B-cell epitopes are pre-
sented in analogous topologies on the enzyme 
surfaces (Figure-3). This is also evident in 
Table-1, where the positions of epitopes are 
approximately similar despite variations in se-
quence of peptides.

Quaternary Epitope Characterization
A novel aspect of this study was the character-
ization of quaternary epitopes formed through 
inter-chain interactions within the uricase 
complexes. Using a network-based approach, 
residues located within 6-angstrom proximity 
across different chains were identified as po-

Figure 1. The conformational confluence of the studied uricases is depicted through structural alignment. Four enzyme variants are dis-
tinctly color-coded for clarity. The left panel illustrates the structural alignment of these four uricases, offering two distinct views for com-
prehensive analysis. The middle and right panels present schematic representations of these enzymes, providing a visual overview of their 
structural features. These images were meticulously crafted using UCSF Chimera version 1.15.
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tential quaternary epitopes. The residue inter-
action networks were constructed using RIN-
alyzer in Cytoscape, with a focus on interface 
residues that form part of the immunogenic 
landscape (Table-3). 
The construction of each network involved 
a systematic process of selecting predefined 
epitopes, identifying residues within a 6-ang-
strom radius around them, and extracting 
subnetworks comprising interface residues. 
Through the integration of Chimera and Cy-
toscape, the selected clusters (Table-3) were 
efficiently visualized and mapped to the rele-
vant molecular structure (Figure-4). 
Consequently, each structure encompasses 
multiple epitopic regions that arise from the 
folding of multiple chains. In contrast, the 
monomers do not exhibit such epitopic re-
gions.
The identification of quaternary epitopes 
adds an important dimension to understand-
ing the immunogenic properties of uricase, 
particularly in the context of protein-protein 
interactions. These findings could inform the 
development of next-generation therapeutic 
uricases with reduced immunogenicity. 

Discussion

Therapeutic proteins, such as protein-based 
drugs, are biologically active agents designed 
to treat various medical conditions by mim-
icking or augmenting the physiological activ-
ities of endogenous proteins or targeting pro-
teins involved in pathological processes [37]. 
Uricase, a key oxidoreductase enzyme, plays 
a critical role in purine metabolism by catalyz-
ing the conversion of uric acid into the more 
soluble compound, allantoin, facilitating the 
excretion of excess purine metabolites [38]. 
While uricase shows substantial therapeutic 
potential [39, 7, 40], its clinical application is 
often hindered by immunogenic responses in 
the host due to its non-human origin and the 
need for repeated administrations [41].
Uricases are found in various sources, includ-
ing bacteria (e.g., Pseudomonas aeruginosa, 
Arthrobacter globiformis, Bacillus subtilis), 
fungi, and mammalian tissues. Commercial 
uricases, derived from Aspergillus flavus and 
porcine liver, have encountered significant 
limitations, such as short half-life, hyper-
sensitivity reactions, and pronounced immu-

Figure 2. Physicochemical properties of four studied   enzymes. Each graph contains one property related to four sequences. The X-ax-
es in all graphs are amino acid numbers and the Y-axes are related scores. The horizontal red line defines the threshold.
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nogenicity. To address these challenges, the 
development of polyethylene glycol-modified 
uricase (PEG-uricase or Pegloticase) has im-
proved its solubility and half-life, while at-
tempting to reduce immunogenicity [42-44]. 
However, hypersensitivity reactions remain 
prevalent in both bacterial and mammalian 
uricases [44], with side effects ranging from 
gastrointestinal disturbances to fever and nau-
sea [45, 46].
The immunogenicity of uricase is thought to 
arise from specific epitopes, particularly con-
formational and quaternary epitopes, formed 
through the complex folding of the enzyme 
and its multimeric assembly. Understanding 
these structural elements of uricase that in-
teract with the immune system is crucial not 
only for designing safer uricase therapies but 
also for informing broader protein engineer-
ing approaches. Therefore, detailed investi-
gations into the structural elements of uricase 
that interact with the immune system are cru-
cial to understanding and mitigating immune 
responses. This study focuses on identifying 
the epitopic determinants that contribute to 
uricase immunogenicity, with particular em-
phasis on quaternary epitopes, which remain 
largely underexplored.
Antibody recognition, a key component of 
the humoral immune response, is mediated by 
B-cells that identify specific regions of anti-

gens known as epitopes [47]. Accurate identi-
fication of these epitopes is essential for vac-
cine design, diagnostic tools, and therapeutic 
antibody development [48-50]. While exper-
imental methods for epitope mapping—such 
as X-ray crystallography, pepscan, and phage 
display—are effective, they are resource-in-
tensive and often imprecise in pinpointing 
epitope locations [51]. In contrast, in silico 
approaches provide a faster, cost-effective 
means of epitope identification, employing 
various algorithms to predict linear, confor-
mational, and quaternary epitopes based on 
sequence and structural data [52].
In this study, four structurally similar uricase 
enzymes were analyzed, revealing conserved 
topological features across diverse sources. 
This observation aligns with previous reports 
of conserved structural motifs within urate 
oxidase [53, 54, 17]. Through in silico anal-
ysis, we identified key regions likely respon-
sible for immunogenic responses, thereby 
offering potential targets for modifying the 
uricase structure to reduce its immunogenic-
ity. Our study focused on both linear and con-
formational epitopes, with particular empha-
sis on the novel identification of quaternary 
epitopes—formed by inter-chain interactions 
within the uricase multimeric structure. Con-
formational epitopes, consisting of spatially 
adjacent amino acid residues, were identified 

 Table 2. The Consensus Epitopes Defined for each Uricase
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using advanced computational algorithms 
such as DiscoTope, Ellipro, and SEMA. Al-
though conformational epitope prediction is 
well-established, few tools accurately predict 
quaternary epitopes, particularly in proteins 
with complex multimeric structures [55]. By 
leveraging interaction networks and structural 
modeling, we successfully mapped quaterna-
ry epitopes—critical regions that span mul-
tiple chains within the uricase structure. Our 
findings suggest that these epitopes could play 
a pivotal role in the immune response to uri-
case, as they likely provide unique interaction 
points for antibodies that are specific to the 
enzyme’s multimeric configuration.
The potential clinical implications of these 
quaternary epitopes are significant. In partic-
ular, quaternary epitopes in uricase may influ-
ence antibody-mediated immune responses 
due to their unique structural characteristics, 
which could enable new avenues for design-
ing uricase variants with reduced immunoge-
nicity.
Quaternary epitopes have been previously 
characterized in proteins composed of mul-
tiple chains, such as glycoproteins found in 
various viruses [56, 57]. These viral epitopes 
are often critical in antibody-mediated neu-
tralization, as demonstrated in studies on gly-
coproteins of several viral pathogens [58-61]. 

Antibodies that specifically target quaternary 
epitopes play a crucial role in neutralizing vi-
ruses [61, 62, 59], highlighting the potential 
importance of similar epitopes in the immu-
nogenicity of therapeutic proteins like uri-
case. Drawing from this viral glycoprotein 
analogy, the quaternary epitopes observed in 
uricase may elicit a robust antibody response 
due to their unique inter-chain interactions, 
underscoring the potential of targeting these 
epitopes in future immunogenicity-reducing 
strategies.
While this study has advanced our under-
standing of uricase epitopes, it is important 
to note its limitations. One primary limitation 
is the study’s focus on B-cell epitope predic-
tion, specifically linear, conformational, and 
quaternary epitopes, without the inclusion of 
T-cell epitope analysis. The role of T-cell epi-
topes in uricase immunogenicity, though pre-
viously documented [53, 17, 14], remains an 
essential aspect for future studies to address, 
as T-cell responses are critical to the immuno-
genic profile of therapeutic proteins. Explor-
ing T-cell epitopes could yield further insights 
into the overall immune response to uricase 
and enhance therapeutic designs.
Additionally, while computational predictions 
offer valuable insights, they require experi-
mental validation to confirm the immunoge-

Figure 3. Location of consensus B-cell epitopes on the structural alignment of four uricase enzymes. The structural alignment of four uri-
case enzymes highlights the location of consensus B-cell epitopes. The enzymes are represented by ribbons, with colors resembling those 
in Figure 1. The B-cell epitopes are distinguished by their red coloration. Despite differences in the amino acid sequences, the overlapping 
positions of the epitopes are clearly evident in the structural alignment. This observation demonstrates the common location of these epi-
topes among the different uricase enzymes despite variations in their amino acid sequences.
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Table 3. List of Quaternary Epitopes Defined on the Surface of each Structure

Structure Cluster of Quaternary Epitopes

4D12

TYR.69.D, LYS.17.D, VAL.18.D, GLU.276.A, VAL.277.A, PHE.278.A

VAL.151.D, LEU.152.D, LYS.153.D, SER.154.D, ALA.220.D, HIS.118.A, SER.119.A, PHE.120.A, 
ILE.121.A

ALA.225, GLN.228, ALA.229, TYR.232.C, TYR.46.A, ALA.49.A

GLY.161.C, PHE.162.C, LEU.163.C, ASN.51.A, SER.52.C, ILE.154.C

ASN.51.C, SER.52.C, ILE.54.C, VSL.55.C, GLY.161.A, PHE.162.A, LEU.163.A 

2YZE

ARG.26.D, LEU.27.D, VAL.28.D, PHE.269.A, TYR.270.A, ALA.271.A

LEU.220.B, ALA.221.B, GLN.223.B, GLN.224.B, TYR.227.B, HIS.56.A, THRR.57.A, GLY.59.A 

LEU.156.D, LYS.157.D, SER.158.D, ALA.215.D, HIS.123.A, ALA.124.A

LYS.29.D, VAL.30.D, GLU.267.A, VAL.268.A

THR.69.B, TYR.171.A, THR.172.A 

GLY.165.B, PHE.166.B, PRO.167.B, ASN.61.A, ALA.62.A, VAL.64.A

ASN.61.B, ALA.62.B, VAL.64.B, GLY.165.A, PHE.166.A, PRO.167.A

4MB8

PRO.233.C, SER.234.C, GLN.236.C, LYS.237.C, TYR.240.C, ASP.56.A, TYR.57.A, GLY.60.A

VAL.28.D, LEU.29.D, HIS.30.D, ILE.31.D, GLU..280.A, VAL.281.A, LEU.282.A, LEU.283.A

ASN.62.C, SER.63.C, ILE.65.C, ILE.66.C, GLY.172.A, PHE.173.A, ILE.174.A

GLY.172.C, PHE.173.C, ILE.174.C, ASN.62.A, SER.63.A, ILE.65.A, ILE.66.A

ASP.24.C, MET.25.C, VAL.26.C, ASN.287.A, PRO.288.A

THR.70.C, PHE.178.A, THR.179.A

HIS.127.D, TYR.226.D, HIS.127.A, TYR.226.A

LEU.163.D, LYS.164.D, THR.165.D, ALA.223.D, HIS.129.A, ALA.130.A

5M98

GLY.167.C, PHE.168.C, LEU.169.C, ASN.57.A, SER.58.A, ASP.59.A, ILE.60.A

ASN.57.C, SER.58.C, ASP.59.C, ILE.60.C, ILEU.61.C, GLY.167.A, PHE.168.A, LEU.169.A

VAL.23.D, LEU.24.D, HIS.25.D, ILE.26.D, LYS.75.D, GLU.274.A, VAL.275.A, TYR.276.A, LEU.277.A

SER.228.C, GLN.230.C, LYS.231.C, TYR.234.C, ASP.51.A, TYR.52.A, GLY.55.A

THR.65.C, ILE.267.B, THR.174.A, PHE.173.A

LYS.159.D, THR.160.D, HIS.124.A

LYS.22.D, PRO.278.A

GLU.274.D, ILEU.26.A

TYR.220.D, HIS.122.A

HIS.122.D, TYR.220.A

PHE.173.B, ILE.276.A

nicity of the predicted epitopes. Follow-up 
studies utilizing techniques such as en-
zyme-linked immunosorbent assays (ELISA) 
and other immunoassays will be essential for 
verifying the immune recognition and rele-
vance of these epitopes. This study serves as a 
stepping stone, and further experimental work 
is needed to fully elucidate the immunogenic 

profile of uricase.
Herein we emphasize the importance of qua-
ternary epitopes as critical determinants in 
uricase immunogenicity. By integrating com-
putational tools, we provide a comprehensive 
analysis of uricase’s epitopic landscape, high-
lighting regions that could be targeted to de-
sign less immunogenic uricase variants.

Quaternary Epitope Insights in Uricase Immunogenicity Rahbar MR, et al.
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Conclusion

This study represents a significant step for-
ward in understanding the immunogenicity of 
uricase by integrating computational tools to 
predict B cell epitopes, both linear and con-
formational, across uricase sequences. The 
application of multiple prediction algorithms, 
alongside analyses of physicochemical prop-
erties, provided robust evidence for epitope 
localization and its relationship to structur-
al characteristics. Importantly, our research 
highlights the previously underexplored role 
of quaternary epitopes, which are formed 
by interactions across multiple polypeptide 
chains, thus offering a novel perspective on 
uricase’s immunogenic potential.
The identification of these epitopes offers crit-
ical insights that could inform the design of 
less immunogenic uricase variants, thereby 
improving therapeutic applications. Although 

our methodology involves multiple tools and 
steps, there is scope for further development 
to streamline and automate the process. Fu-
ture studies should aim to experimentally 
validate these computational predictions and 
assess the clinical relevance of quaternary 
epitopes in the context of immune responses. 
Such advancements will be crucial for the de-
velopment of optimized uricase therapies with 
minimized immunogenicity.
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Figure 4. The location of quaternary epitopes on the surface of uricases. The surface location of quaternary epitopes on uricases is 
illustrated in the left panel. The interaction network of epitopic residues is depicted, where the entire structure is transparent except for 
the quaternary epitopes. These quaternary epitopes consist of residues originating from at least two different chains. In the network rep-
resentation, each node corresponds to an amino acid, with diamond nodes representing residues from chain A, ellipses denoting chain 
B, hexagons indicating chain C, and rectangles representing chain D. The nodes and chains are color-coded differently to facilitate visual 
differentiation.
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