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Abstract

Pathological spinal curvature encompasses a broad spectrum of deformities that arise from a com-
plex interplay of genetic, molecular, and biomechanical factors. This review synthesizes current
knowledge on the molecular underpinnings of spinal deformities, with a focus on the dysregula-
tion of non-coding RNAs, aberrant activation of the Wnt signaling pathway, inflammatory cyto-
kine imbalances, and epigenetic modifications. In parallel, the article provides a detailed overview
of both conventional and emerging imaging techniques used in the clinical assessment of spinal
curvature. Traditional radiographic methods, such as Cobb angle measurement and Ferguson’s
method, are critically compared with advanced modalities—including surface topography, ultra-
sound imaging, and computer-aided 3D reconstructions—that promise enhanced diagnostic ac-
curacy while minimizing radiation exposure. By bridging molecular insights with clinical imag-
ing advancements, this review underscores the importance of an integrated diagnostic approach
for early detection and effective management of scoliosis and related spinal deformities. The con-
vergence of these disciplines not only enriches our understanding of the pathogenesis of spinal
curvature but also lays the foundation for the development of personalized therapeutic strategies.
[GMJ.2025;14:¢3814] DOI:10.31661/gmj.v14i.3814
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Introduction

Humans depend on their spines for differ-
ent tasks, including bearing their weight.
These tasks are interrupted if the spine is not
in a normal state. A normal spine is centered
on the pelvis with two normal lumbar and

thoracic curves [1]. The presence of any other
curves in the coronal, sagittal, or axial planes
categorizes the spine as abnormal [2]. The
different spinal deformities are de-novo sco-
liosis, adolescent idiopathic scoliosis, hyper-
kyphosis, iatrogenic sagittal deformity, focal
deformity due to multiple degenerative disc
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disease with global deformity, and post-trau-
matic spinal deformity. The known etiologies
for spinal deformities include de-novo, de-
generation, and trauma [3].

Scoliosis is defined as an abnormal lateral cur-
vature of the spine—operationally determined
by a Cobb angle greater than 10 degrees—and
is consistently accompanied by various levels
of hyperlordosis and rotational deformities [4-
6]. Scoliosis encompasses several subtypes—
idiopathic, syndromic, neuromuscular, and
congenital—with adolescent idiopathic scoli-
osis (AIS) being the most common, affecting
approximately 1%-4% of adolescents global-
ly [7, 8]. Another common cause of scoliosis
is congenital spinal malformation, which aris-
es during embryogenesis and results in mixed
segmental vertebral deformities [9]. The eti-
ology of scoliosis is multifactorial, involv-
ing an interplay of both environmental and
genetic factors. For example, environmental
factors such as maternal alcohol consumption
and vitamin deficiencies during pregnancy are
implicated in the development of congenital
scoliosis. Additionally, genetic variations,
including single-nucleotide polymorphisms
(SNPs) in genes like LBX1, GPR126, BNC2,
and PAX1, have been associated with idio-
pathic scoliosis [10-19]. However, the precise
cellular and molecular mechanisms connect-
ing these etiological factors to scoliosis de-
velopment remain largely unclear. Therefore,
investigating the molecular pathogenesis of
scoliosis is essential for identifying novel mo-
lecular markers that enable early detection of
at-risk individuals and for advancing mecha-
nism-driven therapeutic strategies.

The population is growing older in different
areas, including the United States. Given the
higher prevalence among this group of indi-
viduals, this old population is expected to be
challenged with spinal deformities [20]. Given
the rising costs associated with managing spi-
nal deformities, early diagnosis and effective
treatment strategies are becoming increasing-
ly important. This narrative review explores
the molecular and cellular mechanisms under-
lying scoliosis, with a particular focus on the
role of non-coding RNAs and other molecular
regulators. Additionally, it summarizes the
currently available imaging techniques for as-
sessing pathological spinal curvatures, aiming
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to bridge the gap between molecular insights
and clinical applications.
Non-coding RNAs in Scoliosis

Non-coding RNAs (ncRNAs) represent a cru-
cial class of regulatory transcripts that do not
encode proteins. They are broadly classified
into three major subclasses: long non-coding
RNAs (IncRNAs), microRNAs (miRNAs),
and circular RNAs (circRNAs) [21-24].
While the mechanism by which miRNAs reg-
ulate gene expression is relatively straightfor-
ward—guiding the RNA-induced silencing
complex (RISC) to target mRNAs through
base-pairing, leading to their degradation and/
or translational inhibition—IncRNAs and cir-
cRNAs exert regulatory effects at multiple
levels. LncRNAs can modulate gene expres-
sion through mechanisms such as DNA meth-
ylation, histone modification, recruitment of
transcription factors, miRNA sponging, and
regulation of mRNA stability. In contrast,
circRNAs influence gene expression by act-
ing as miRNA sponges, regulating transcrip-
tion, modulating alternative splicing, directly
interacting with RNA-binding proteins, and
facilitating protein translation through rolling
circle amplification [25-27]. ncRNAs serve
as pivotal regulators that coordinate essential
cellular processes, including cell proliferation,
programmed cell death, autophagy, differen-
tiation, metabolism, migration, and invasion
[28-33]. Consequently, it is not surprising that
ncRNAs are frequently dysregulated across
a wide array of diseases, including neoplas-
tic, inflammatory, and metabolic disorders
[34-39]. From a clinical perspective, the fre-
quent changes observed in ncRNA levels in
body fluids such as saliva, blood, and urine
during disease states highlight their potential
as promising biomarkers for early diagnosis
and prognosis [40-42].

A growing body of evidence indicates that
abnormal ncRNA expression plays a pivotal
role in the development of orthopedic disor-
ders, including osteosarcoma, osteoporosis,
osteoarthritis, and intervertebral disc degen-
eration [29, 32, 43-45]. Emerging evidence
also suggests that ncRNAs are dysregulated
in scoliosis and contribute functionally to its
pathogenesis [39, 46, 47].

Non-coding RNAs (ncRNAs) not only serve
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as biomarkers but also actively contribute
to scoliosis pathogenesis by modulating key
developmental signaling pathways. Several
studies have shown that dysregulated miR-
NAs in scoliosis—such as miR-122-5p and
miR-223-5p—can directly target components
of the TGF-B signaling cascade, which is
known to regulate extracellular matrix remod-
eling and chondrogenesis during spinal devel-
opment [48-51]. For instance, downregula-
tion of miR-1306-3p may relieve repression
on SMAD family genes, thereby amplifying
TGF-p signaling and altering growth plate
organization. Similarly, IncRNAs such as
ENST00000440778.1 have been implicated in
the regulation of osteogenic transcription fac-
tors (e.g., Runx2) and may act as competitive
endogenous RNAs (ceRNAs), sponging miR-
NAs like miR-27a-5p that target genes with-
in the Hedgehog and Notch pathways. These
pathways are essential for proper segmenta-
tion, vertebral ossification, and musculoskel-
etal coordination. Furthermore, circRNAs,
through their interactions with RNA-binding
proteins and modulation of mRNA stability,
influence not only the mechanical properties
of the spine but also cellular polarity and pro-
liferation within the vertebral growth plates.
By dissecting these mechanistic links, future
research may reveal ncRNA-based therapeu-
tic strategies to prevent or slow the progres-
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Figure 1. ncRNAs expression profiles in scoliosis
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sion of scoliosis [52-57].

Profiling ncRNA  expression through
whole-transcriptome sequencing, microarray,
or PCR array, followed by validation using re-
verse transcription (RT)-quantitative PCR, is
the most widely used approach for identifying
and confirming dysregulated ncRNAs in spe-
cific disease conditions [21, 39, 58, 59].
Several studies have utilized various molec-
ular techniques to explore gene and microR-
NA expression in different clinical condi-
tions, employing stringent filtering criteria
to identify deregulated molecules. One study
focused on AIS cases compared to healthy
children, using microarray and RT-PCR meth-
ods with filtering criteria of a fold change
greater than 2 and a P-value less than 0.05.
This analysis identified 546 mRNAs and 139
IncRNAs as deregulated, with 512 mRNAs
and 118 IncRNAs upregulated, including
TCONS00028768,  ENST00000440778.1,
and NRO024075. Additionally, 34 mRNAs
and specific IncRNAs (ENST00000414894.1
and ENST00000440778.1) were found to be
downregulated [37]. Another study, also com-
paring AIS cases with healthy children, ap-
plied a P-value less than 0.05 and a fold change
greater than 2 as filtering criteria, identifying
upregulated microRNAs such as miR-1226-
5p, miR-27a-5p, miR-223-5p, and miR-122-
5p, and downregulated microRNAs like miR-

24.5% Upregulated
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671-5p and miR-1306-3p [58]. A separate
analysis of patients with Friedreich's ataxia
used similar methods, applying a P-value less
than 0.05 and a fold change greater than 1.5.
This study revealed deregulated microRNAs
including miR-128-3p, miR-625-3p, miR-
130b-5p, miR-151a-5p, miR-330-3p, miR-
323a-3p, miR-142-3p, and miR-16-5p [60].
In addition, transcriptome sequencing and RT-
PCR were employed in a study of degenerate
disc tissues, using a fold change greater than 2
as the filtering criterion. This study identified
749 mRNAs, 70 circRNAs, 685 IncRNAs,
and 56 miRNAs as deregulated. Among these,
194 mRNAs, 185 IncRNAs, 35 circRNAs,
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and 53 miRNAs were upregulated, while 555
mRNAs, 500 IncRNAs, 35 circRNAs, and 3
miRNAs were downregulated [39, 47]. These
studies demonstrate the significant molecular
alterations observed in various conditions and
highlight the importance of rigorous filtering
criteria to identify key regulatory molecules
(Figure-1 and -2).

Recent research has emphasized the potential
of specific circulating circRNAs in serum as
diagnostic biomarkers for scoliosis-related
disorders. A study by Garcia-Giménez et al.
highlighted variations in circRNA abundance
between patients with AIS and healthy con-
trols [65]. Their findings demonstrated that
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Figure 2. Functionally characterized ncRNAs in scoliosis ([47, 52, 61-64]).
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the levels of three circRNAs—miR-122-5p,
miR-27a-5p, and miR-223-5p—were signifi-
cantly higher in patients with AIS compared
to healthy individuals. Furthermore, these
three circRNAs, along with miR-1306-3p,
showed potential as biomarkers for differenti-
ating AIS patients from normal controls [65].
Several studies have investigated the overall
variations in the three main types of non-cod-
ing RNAs in patients with scoliosis. Addition-
ally, enrichment analysis revealed that these
differentially expressed RNAs are involved in
key signaling pathways, such as FoxO, PI3K-
Akt, mTOR, EGFR, and Wnt, among others
[46].

In 2020, an extensive search was conducted
across the PubMed, EMBASE, and GEO da-
tabases to identify studies comparing gene,
miRNA, and IncRNA expression in patients
with AIS and normal control mesenchymal
stem cells (MSCs). The findings suggest that
non-coding RNAs may play a role in a com-
plex regulatory network. However, since these
interaction pathways were only investigated
in this study, further experimental validation
is necessary to confirm their accuracy [66].

Whnt Signaling Pathway

The Wnt signaling pathway was found to be
overactive in bone biopsies from scoliotic pa-
tients, as evidenced by a significant elevation
in active B-catenin levels [67]. Similar ob-
servations were made in a zebrafish scoliotic
model, where -catenin activity was associat-
ed with spinal deformity through the involve-
ment of the enzyme tyrosine kinase 7 [15].
While activation of the Wnt/B-catenin path-
way is known to increase bone mass, its over-
activation in idiopathic scoliosis impairs the
differentiation of osteoblasts into osteocytes
and disrupts matrix mineralization [68, 69].
Furthermore, Runx2, an early marker of bone
formation, was found to be decreased in bone
tissues from idiopathic scoliosis patients, indi-
cating that bone formation was hindered due
to the overexpression of the Wnt/B-catenin
signaling pathway [70, 71]. Excessive activa-
tion of the Wnt/B-catenin signaling pathway
may play a role in the progression of scoliosis
deformity by impairing the normal function
of muscles, intervertebral discs, and the verte-
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bral growth plate [72-74]. A possible explana-
tion for the asymmetrical muscle contraction
observed between the convex and concave
sides of a scoliotic curve involves cadmod-
ulin and its interaction with the Wnt/p-catenin
signaling pathway and sclerostin expression.
In patients with idiopathic scoliosis, cadmod-
ulin levels were found to be higher on the
convex side and lower on the concave side
of the paraspinal muscles [75]. Calmodulin,
when bound to calcium, activates myosin
light chain, thereby playing a key role in the
regulation of smooth muscle contraction [76].
Downregulation of cadmodulin was shown to
influence calcitonin levels, which subsequent-
ly affects blood calcium levels and the activa-
tion of G proteins [71, 77]. Downregulation
of calcitonin results in a decrease in scleros-
tin expression, which subsequently activates
the Wnt/B-catenin signaling pathway, thereby
promoting the osteoblastic differentiation of
bone marrow stem cells [78, 79]. Similarly, G
proteins activate the Wnt/B-catenin signaling
pathway and show increased expression in the
vertebral bodies on the convex side of the sco-
liotic spine [71, 80, 81].

These findings reveal that the Wnt/B-catenin
signaling pathway plays a double-edged role
in bone biology. Under normal conditions, this
pathway helps regulate bone mass and sup-
ports the development of healthy bone cells.
However, in scoliosis, the same pathway be-
comes overactive and starts to interfere with
normal bone remodeling and coordination be-
tween the spine, muscles, and growth plates.
This overactivity may actually make the spi-
nal curvature worse over time. Therefore, it is
important to better understand when and how
this pathway switches from being helpful to
becoming harmful. For example, this may de-
pend on where in the body it is active, how
it interacts with proteins like sclerostin and
calmodulin, or how it responds to hormones
like calcitonin. Clarifying these details could
help explain why Wnt signaling supports bone
health in some cases but contributes to spinal
deformities in others [82-84]. While the Wnt
signaling pathway has been widely studied
for its role in skeletal development and spinal
morphogenesis, recent studies have empha-
sized the crosstalk between Wnt signaling and
inflammatory processes. In particular, dys-
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regulation of Wnt activity can influence, and
be influenced by, pro-inflammatory cytokines
such as TNF-a, IL-6, and IL-1p, suggesting a
bidirectional interaction between bone remod-
eling pathways and immune responses. This
molecular interplay sets the stage for explor-
ing how inflammatory cytokines may directly
or indirectly contribute to the onset and pro-
gression of spinal curvature in scoliosis [85,
86].

Inflammatory Cytokines and Scoliosis

Cytokines are a group of small proteins re-
leased by immune cells that play a pivotal role
in intercellular signaling, regulation of inflam-
matory responses, and control of cell growth.
In the pathophysiology of scoliosis, inflamma-
tion is regarded as a crucial factor influencing
disease progression. Numerous studies have
highlighted that alterations in the levels of
specific cytokines are strongly associated with
the onset, progression, and severity of scolio-
sis. For instance, variations in the expression
of pro-inflammatory cytokines such as tumor
necrosis factor-alpha (TNF-a), interleukin-6
(IL-6), and interleukin-17 (IL-17) have been
observed in individuals with scoliosis, poten-
tially contributing to abnormal spinal curva-
ture and impaired bone remodeling [87-90].
Furthermore, alterations in the levels of an-
ti-inflammatory cytokines in scoliosis patients
point to a complex network of inflammation
regulation throughout the progression of the
disease. This network appears to involve not
only an imbalance between pro-inflammatory
and anti-inflammatory factors but may also be
influenced by the patients' genetic predispo-
sitions, immune status, and various environ-
mental factors [91-93]. Therefore, gaining a
deeper understanding of the role of cytokines
in scoliosis is crucial for uncovering the dis-
ease's pathogenesis and identifying potential
therapeutic targets, which could have substan-
tial theoretical and practical implications.

However, it remains unclear whether inflam-
matory shifts are a cause of spinal deformity
or a consequence of biomechanical stress due
to curvature. Some studies suggest that chron-
ic spinal loading and vertebral asymmetry in
scoliosis may stimulate localized inflamma-
tion, particularly in paraspinal tissues, thereby
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elevating pro-inflammatory cytokine expres-
sion [94-96]. Conversely, other evidence pro-
poses that a pre-existing immune dysregula-
tion or systemic inflammatory tendency—per-
haps genetically predisposed—may initiate or
accelerate spinal curvature via its effects on
bone metabolism and matrix remodeling [49].
A deeper exploration into this bidirectional
relationship could help clarify whether cyto-
kine alterations are primary drivers or second-
ary amplifiers of scoliosis, thereby informing
targeted anti-inflammatory strategies for early
intervention.

Epigenetics

Epigenetics refers to modifications in gene
expression that do not involve changes to the
underlying DNA sequence and can be passed
on through both mitotic and meiotic cell di-
visions [97]. The primary epigenetic mech-
anisms include DNA methylation, histone
modification, non-coding RNA involvement,
and chromatin remodeling, all of which play a
crucial role in regulating gene expression and
influencing cellular function and development
[97]. Epigenetic modifications impact gene
expression at various stages, including rep-
lication, transcription, and translation. These
alterations are associated with the develop-
ment of numerous conditions, such as cancer,
neurodegenerative diseases, and autoimmune
disorders [98, 99]. Recent studies on adoles-
cent idiopathic scoliosis (AIS) suggest that
genetic variations contribute to only about
2%-3% of the causative factors, implying
that other factors, such as epigenetic modifi-
cations, may play a more significant role in
the development of scoliosis [100].

Chromatin Remodeling

Chromosomes are composed of nucleoso-
mal units, in which DNA is coiled around
histones. This structure facilitates the highly
condensed and organized arrangement of the
genome within the cell nucleus [101]. Chro-
matin remodeling complexes (remodelers)
alter the structure of nucleosomes by utiliz-
ing the energy from ATP hydrolysis. These
complexes are crucial for processes such as
transcription, DNA replication, and repair.
Moreover, the ongoing remodeling of chro-
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matin is largely dependent on these complex-
es, which facilitate the dynamic regulation of
chromatin structure and function [101]. This
mechanism safeguards genes by keeping es-
sential gene regions protected when they are
not actively in use, while also controlling
the precise duration of gene exposure during
replication and transcription. Such regulation
helps preserve genomic stability and prevents
interference with vital gene functions [101].
Chromatin remodeling is a vital epigenetic
process that controls gene expression and has
been linked to a range of disorders, such as
cerebro-oculo-facial-skeletal syndrome and
Williams-Beuren syndrome. It is also impli-
cated in tumorigenesis and the invasion of
cancer cells [102, 103].

DNA Methylation

DNA methylation in the human genome pre-
dominantly occurs at the cytosine residue of
the CpG dinucleotide, which is commonly lo-
cated in the promoter regions of genes, serv-
ing as a key marker for the initiation of gene
transcription [97]. Under normal conditions,
DNA methylation maintains a dynamic equi-
librium, where the silencing of specific genes,
driven by physiological requirements, reg-
ulates gene expression and supports homeo-
stasis [104, 105]. In pathological conditions,
abnormal DNA methylation can interfere with
gene expression, resulting in the dysregulated
expression of crucial downstream products.
This disruption can initiate irregular cell pro-
liferation or apoptosis, thereby contributing to
the development of scoliosis.

Differential Methylation of Key Loci

Impairments in key enzymes or fundamental
elements necessary for proper spinal growth
and development may underlie the pathogen-
esis of spinal dysplasia, potentially predispos-
ing individuals to the initiation or progres-
sion of scoliosis. Cartilage oligomeric matrix
protein (COMP), an integral constituent of
the extracellular matrix, plays a pivotal role
in cartilage formation. Multiple investiga-
tions have demonstrated a marked decrease
in COMP secretion among patients with ad-
olescent idiopathic scoliosis (AIS) relative
to unaffected individuals [106]. The investi-
gation assessed both the methylation profiles
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and gene expression levels of COMP across
five CpG sites within the COMP locus in indi-
viduals diagnosed with adolescent idiopathic
scoliosis (AIS) and in healthy control subjects
[107].

Shi et al. (2018) reported that the promoter re-
gion of the PITX1 gene exhibited hypermeth-
ylation in individuals with AIS, which was as-
sociated with a marked downregulation of its
downstream gene products relative to healthy
controls [108]. Methylation at six CpG sites
within the promoter region of the PITX1 gene
was found to be positively correlated with
scoliosis severity. PITX1, a transcription fac-
tor belonging to the RIEG/PITX family, plays
a crucial role in the basal transcriptional reg-
ulation of prolactin as well as in hormonally
driven modifications of prolactin activity. No-
tably, dysregulated expression of PITX1 has
been implicated in a range of skeletal pathol-
ogies [109-111]. In patients with congenital
scoliosis (CS), elevated methylation levels
in the KAT6B gene promoter were observed,
along with a significant reduction in KAT6B
expression [112].

Correlation analysis showed a positive asso-
ciation between elevated KAT6B methyla-
tion and an increased Cobb angle in patients
with CS. Further research has confirmed that
the KAT6B gene encodes a component of the
histone acetyltransferase and MOZ/MORF
protein complexes [113]. The MOZ/MORF
protein complex is crucial for the early me-
tabolism of skeletal and neuronal cells. As
a result, abnormal DNA methylation at the
KAT6B gene locus is thought to play a role
in the pathogenesis of CS [114]. Collectively,
these findings suggest that abnormal methyl-
ation of genes critical for bone formation and
development plays a pivotal role in the onset
and progression of scoliosis.

Aberrant DNA methylation at specific ge-
nomic loci holds promise as a predictive bio-
marker for scoliosis progression. In a 2018
study, Meng et al. reported that methylation
levels at the cg01374129 locus were signifi-
cantly reduced in patients with progressive
AIS compared to those with non-progres-
sive forms of the condition [115]. Regression
analysis revealed that hypomethylation at the
cg01374129 locus could serve as an inde-
pendent prognostic marker for scoliosis pro-
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gression. Specifically, the methylation level
at this locus showed a sensitivity of 76.4%
and a specificity of 85.6% in distinguishing
between progressive and non-progressive
scoliosis cases. These findings suggest that
DNA methylation status holds considerable
promise as a novel prognostic biomarker. The
cg01374129 locus is situated in proximity
to the gene encoding hyaluronan synthase 2
(HAS2), a key enzyme involved in the for-
mation of intervertebral discs and vertebral
bodies during development, as demonstrated
in rat models. Aberrant methylation at this site
may impair the normal development of these
spinal components, thereby contributing to
the progression of scoliosis [116].

The progression of scoliosis may also be mod-
ulated by key components of major signaling
pathways. It has been observed that the pro-
moter region of the PCDH10 gene is hyper-
methylated in individuals with AIS, leading to
reduced expression of PCDH10 compared to
healthy controls. Furthermore, higher methyl-
ation levels of PCDH10 have been positively
associated with increased Cobb angle mea-
surements, indicating a link between epigen-
etic regulation and the severity of spinal cur-
vature [117].

PCDHI10 is a downstream target of p53, a
pivotal regulator of cell migration; however,
it does not appear to play a direct role in carti-
lage development [118].

Alternatively, some studies have focused on
DNA methylation changes occurring spe-
cifically within the skeletal muscle tissue
surrounding the spine in individuals with
scoliosis. For instance, a 2020 investigation
analyzed DNA methylation patterns in deep
paravertebral muscle samples obtained from
both the convex and concave sides in patients
with AIS [119].

Methylation of the estrogen receptor 2 (ESR2)
promoter was notably elevated on the concave
side of the paravertebral muscles in patients
with AIS when compared to the convex side.
Correlation analysis revealed a strong associ-
ation between variations in ESR2 promoter
methylation and the development of AIS, al-
though no direct link was found with the se-
verity of the curvature. This study is the first
to explore the potential role of local tissue
DNA methylation in scoliosis pathogenesis.
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Additionally, Janusz et al. investigated the
deep paravertebral and superficial dorsal mus-
cles in idiopathic scoliosis patients, focusing
on the regulation of differentially methylated
regions (T-DMRs) in the estrogen receptor 1
(ESR1) gene [120].

Functional consequences of promoter hyper-
methylation may further elucidate the mech-
anistic basis of scoliosis development. For
instance, reduced expression of PITXI1 or
KAT6B due to hypermethylation may im-
pair osteoblast—osteoclast balance by down-
regulating transcription factors and histone
acetyltransferases essential for skeletal ho-
meostasis, potentially leading to bone mod-
eling defects [108, 121]. Likewise, HAS2
downregulation due to altered methylation at
cg01374129 could disturb intervertebral disc
(IVD) homeostasis, as hyaluronan is a key
component for maintaining disc hydration and
viscoelasticity [122]. These epigenetic disrup-
tions could translate into vertebral instability
and progressive curvature, linking molecular
alterations to biomechanical outcomes in sco-
liosis.

Methylation Level Differences and Pathway
Regulation

Differentially methylated regions (DMRs) at
various loci frequently display variations be-
tween individuals with scoliosis and healthy
controls. As a result, research has expanded
beyond focusing solely on abnormal meth-
ylation at specific loci to explore the broader
implications of widespread methylation alter-
ations across the genome. Studying DMRs in
monozygotic (MZ) twins—who share identi-
cal genetics but may present distinct pheno-
types—provides a unique opportunity to gain
deeper insights into the link between abnor-
mal DNA methylation and the development
and progression of scoliosis [123]. In 2019, a
study utilizing a pair of MZ twins with AIS
aimed to identify their DMRs. The research-
ers subsequently validated the role of these
DMRs in a larger cohort of 20 AIS patients
and healthy controls [124].

In this study, 313 hypermethylated and 397
hypomethylated DMRs were identified. The
regulation of gene expression associated with
these DMRs is mainly mediated through the
MAPK/PI3K-Akt signaling pathway. Previ-
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ous research has shown that the MAPK/PI3K-
Akt pathway plays a crucial role in osteoblast
differentiation and bone formation [125, 126].
Additionally, it was reported that the MAPK
pathway, along with other signaling path-
ways, is involved in the pathogenesis of CS in
affected patients [127]. These DMRs regulate
the downstream expression of proteins pre-
dominantly involved in the MAPK and calm-
odulin pathways, both of which are essential
for cytogenesis. Moreover, the calmodulin
pathway directly influences osteogenesis and
plays a significant role in the development of
vertebral bodies in patients with scoliosis. In
a study, eight pairs of MZ twins with scoli-
osis were enrolled to further investigate the
involvement of these pathways [128].

Histone Modification

Histone modifications, including methylation
and acetylation, are epigenetic alterations that
affect transcriptional activity by modifying
the structure of chromatin, which in turn regu-
lates gene expression [97]. A genotyping study
was conducted on 500 patients with AIS and
494 age-matched controls using PCR-based
Invader analysis [129]. The results revealed
a strong association between the rs12459350
variant, which regulates histone lysine 79
(H3K79) methylation, and susceptibility to
AIS. However, the study did not explore the
specific mechanisms driving this association.
In 2019, histological and genetic testing was
conducted on articular cartilage from 11 pa-
tients with idiopathic scoliosis (IS), with the
results compared to those of 10 matched con-
trols. The findings suggest that histone meth-
ylation may play a role in abnormal chon-
drocyte proliferation through the miR-15a/
Bcl2 signaling axis, thereby disrupting spinal
growth and contributing to the development
of scoliosis [61].

Historical Background of Imaging in Spi-
nal Curve Assessment

Throughout the years, much effort has been
made to find an imaging technique with more
advantages and fewer limitations. Wilhelm
Conrad Roentgen primarily introduced the
use of X-ray in assessing bony structures in
1895 [130]. Subsequently, the efforts of Dr.
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Godfrey Hounsfield led to the advent of com-
puted tomography (CT) in 1973, an imaging
technique widely used in different medical
conditions, including abnormal spinal cur-
vature [131]. Magnetic resonance imaging
(MRI) was the next advancement in medical
imaging, yielded by Paul Lauterbur in the ear-
ly 1970s, which facilitated a more detailed in-
spection of different body parts, including the
spine [132].

On the other hand, given that the studies
showed inter- and intra-operator differences
in the measurement of specific values used for
diagnosing spinal curvature (e.g., the Cobb
angle), the more recent efforts are aimed at
computer-aided methods, which reduce sub-
jective errors. Although some non-imaging
methods exist, traditional imaging remains
essential, with a demand for fully automated
Cobb angle measurement software to enhance
diagnostic accuracy and streamline scoliosis
management [130].

While molecular alterations shed light on the
pathogenesis of scoliosis at the cellular and
genetic levels, these insights must be trans-
lated into clinical practice through thorough
physical examination. The following section
delves into clinical techniques essential for
identifying external manifestations of under-
lying molecular dysfunctions.

Detailed Review of Current Measurement
Methods

Thanks to recent advances in imaging and
measurement, assessing and monitoring spi-
nal curvature has become much more precise
and accessible. These techniques are essen-
tial tools for spotting conditions like scolio-
sis and help physicians monitor any changes
over time. This paper looks at some of the
most commonly used methods, exploring the
unique features of each method. Table-1 of-
fers a quick comparison, laying out the pros
and cons of each method to show how they
work in real-world settings.

Clinical Examination Techniques
The physical examination of the scoliosis pa-

tient should start with the inspection of the
stature and skin before evaluating the contour
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of the back. Height measurement is crucial for
assessing skeletal growth and the potential ad-
vancement of scoliotic curvature [144]. More-
over, particular tests will be examined in the
subsequent paragraphs.

1. Palpation Techniques

To assess a patient suspected of scoliosis, it is
essential to check for any unevenness in the
shoulders and hips carefully. Significant dif-
ferences in leg length, which can be checked
by feeling the iliac crests or observing the
alignment of the dimples at the back (formed
by the posterior-superior iliac spines), may
cause the spine to tilt from the pelvis, result-
ing in curvature [144].

2. Gait and Posture Analysis

Research on gait in scoliotic patients reveals
several anomalies, although the results are
relatively inconsistent. Mahaudens et al. doc-
umented reduced step length and restricted
range of motion in the pelvis, hip, shoulder
(frontal plane), and knee (sagittal plane) in
scoliotic patients [145]. Chen et al. discov-
ered that the gait patterns of scoliotic patients
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were analogous to those of healthy persons
[146]. Additional research indicates that indi-
viduals with scoliosis may exhibit diminished
cadence, restricted pelvic movement in the
transverse plane, and either normal or reduced
step length [147].

3. Physical Function Tests

Functional mobility tests (FMTs) have been
validated for evaluating physical perfor-
mance, trunk and lower limb muscle integrity,
and body balance across several conditions,
including lumbar stenosis [148]. A study by
Lee et al. showed that mobility function was
considerably more compromised in patients
with adult spinal deformity compared to those
with lumbar spinal stenosis [149]. Various
studies have employed distinct FMTs for this
objective: the Alternate Step Test, the Six-Me-
ter Walk Test [150], the Sit-to-Stand Test, and
the Timed Up and Go Test [150-152].

3.1. Leg Length Discrepancy Assessment
Leg length discrepancy (LLD) is common, im-
pacting 2% to 24% of the general population

Table 1. Summary of Imaging Techniques for Spinal Curvature Assessment

Technique Key Metrics/Parameters Strengths Limitations
Widely available, Radiation exposure
X-ray Cobb Angle, Ferguson Angle !ow cpst, rapid limited to static images
imaging
CT (Computed 3D reconstruction, axial/sagittal ~ Detailed anatomical High radiation, requires
Tomography) views visualization a supine position
. . No radiation, High cost, limited
MRI 33;11)111211 structure, soft tissue excellent soft tissue availability, lengthy
contrast exam time
Ultra-low radiation,
EOS Imaging 3D su'rface‘ reconstruction, precise 3D Expen‘sn./e?, limited
standing views measurements, accessibility
weight-bearing
Surface Radiation-free, Less reliable for deeper
Spinal contour, symmetry provides 3D/4D structures, limited
Topography .
representations accuracy
Ultrasound No radiation, Limited in obesity,
(2D/3D) Cobb Angle, vertebral rotation portable, suitable time-consuming for 3D
for mild cases imaging
. In-depth dynamic ~ Requires specialized
Motion Analysis Gait patterns, compensatory assessment of equipment, inconsistent

mechanisms

movement results

Ref.s: [133-143]
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and 7% to 30% of individuals with low back
pain, and is associated with the development
of scoliosis [153]. Measurement approaches
for LLD are classified into two primary cate-
gories: direct and indirect. Direct techniques,
such as the supine tape method, assess the
anatomical length of each leg separately to
determine the discrepancy. Indirect approach-
es, such as the standing lift technique, assess
the discrepancy without individually measur-
ing each leg. Furthermore, techniques may
be categorized as weight-bearing (standing)
or non-weight-bearing (supine/prone) [154,
155]. Weight-bearing methods consider the
influence of gravity on compressible tissues,
whereas non-weight-bearing approaches may
more accurately evaluate "true" leg length dis-
crepancy, especially in the presence of angu-
lar deformities [153].

3.2. Adam's Forward Bend Test

The Adam's forward bend test, which necessi-
tates no specialized equipment, assists in de-
tecting scoliosis by exposing a "rib hump"—
an asymmetrical back shape that signifies a
curvature beyond 10 degrees and necessitates
radiographic assessment [156]. The test ne-
cessitates that the subject stands and bends
forward while maintaining straight knees,
with arms hanging and feet and palms to-
gether. The examiner utilizes a scoliometer to
assess the angle of trunk rotation (ATR). The
level of ATR typically serves as a criterion for
referral or subsequent imaging [157].

3.3. Scoliometer

The assessment of thoracic rotation or rib
hump angle is a conventional method for as-
sessing scoliosis progression in spinal clin-
ics and school screening initiatives globally
[158]. The Scoliometer, an inclinometer de-
veloped by Bunnell in 1984, minimizes the
necessity for repeated radiographs by offering
a dependable, non-invasive evaluation [159].
The Scoliometer is an essential instrument
for monitoring scoliosis when utilized in
conjunction with Cobb angle measurements.
Despite the Scoliometer's association with in-
ter- and intra-observer variability, Bonagam-
ba et al. demonstrated optimal reproducibility
by mitigating previous sources of variability,
including patient placement, vertebral level
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palpation, and patient tiredness from repeated
readings over time [160].

3.4. Plumb Line Assessment

A plumb line is a device commonly used to
assess patients with pathological spine curva-
ture. Plumb line distances (PDs), as delineat-
ed by Stagnara in 1988, are widely recognized
and disseminated. Their interrater reliability
is commendable, exhibiting a moderate cor-
relation in identifying thoracic spine malfor-
mations, demonstrating substantial reliability
and validity. Although PDs are a quantifiable
method, they delineate the sagittal profile
[161]. The reliability and validity of this tech-
nique, however, remain unverified and un-
standardized. The plumb line approach is sim-
ple to employ; nonetheless, it is susceptible to
several inaccuracies, including slight devia-
tions, movement mistakes, and postural sway,
necessitating cautious application [162].
Although physical examination provides the
first clues to spinal deformities, imaging re-
mains indispensable for definitive diagnosis
and progression monitoring. The subsequent
section reviews conventional and advanced
imaging approaches that enhance the clinical
understanding of spinal curvature abnormal-
ities.

Imaging Techniques

1. Radiographic Techniques

X-ray imaging is the gold standard for diag-
nosing idiopathic scoliosis due to its wide-
spread availability, cost-effectiveness, and
rapid results compared to other modalities
[163]; however, children are not subjected to
it for screening purposes due to radiation risks
[164].

1.1. Cobb Angle Measurement

The Cobb angle remains the primary measure
for determining how severe a spinal deformity
is, particularly in cases like adolescent idio-
pathic scoliosis (AIS). This metric is general-
ly used for examining the spine in the coronal
and sagittal views [165]. In the standard ap-
proach, the upper and lower end vertebrae are
identified on anteroposterior X-ray images of
the whole spine. Afterward, vertical lines are
drawn along the endplate lines of these ver-
tebrae, and the angle created between these
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two vertical lines is known as the Cobb angle
[166].

Limitations constrain this method; the ref-
erence vertebrae appear to differ across re-
search, potentially resulting in varying mea-
surements and, complicating comparisons and
the creation of normative values. Arm loca-
tion constitutes an additional inconsistency in
the radiologic evaluation that may hinder the
assessment [167].

Given these limitations, future directions
should explore the integration of molecu-
lar profiling—including non-coding RNAs,
methylation markers, and cytokine signa-
tures—with imaging data to enhance diag-
nostic precision. Such an approach may en-
able the development of biomarker—imaging
correlation models capable of predicting sco-
liosis onset and progression beyond static an-
atomical measurements like the Cobb angle.
This convergence could open avenues for
more dynamic, individualized, and mechanis-
tic assessment strategies in clinical practice.

1.2. Ferguson Method and EOS Imaging

The Ferguson angle offers an alternative way
to gauge the severity of coronal spine defor-
mities [168]. It involves identifying the two
terminal vertebrae at the curve ends based on
Cobb angle measurements and locating the
apex vertebra. Traditionally, the apical ver-
tebra was viewed as the one with the most
rotation and distortion yet with minimal tilt.
The current standard, however, defines it as
the vertebra with the greatest lateral shift from
the central sacral vertical line (CSVL), a verti-
cal line passing through the center of the first
sacral segment. The angle known as the Fer-
guson angle is then formed by drawing lines
between the midpoints of the terminal and
apical vertebrae [169].

1.3. Risser Sign

The Risser sign is not primarily used to di-
agnose scoliosis but to understand its pro-
gression. This metric evaluates the ossifi-
cation level of the iliac apophysis to give a
semi-quantitative view of a patient's skeletal
maturity [170]. The iliac apophyses' ossifica-
tion usually happens closely with the verte-
bral ring apophyses, allowing for an estima-
tion of the spine's remaining growth poten-
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tial. In idiopathic scoliosis, progression often
peaks during adolescence, but the prognosis
improves with advanced skeletal maturity, as
shown by higher Risser stages. Typically, os-
sification of the iliac apophysis can be seen
on radiographs in adolescents aged 12 to 15
[169].

1.4. Nash-moe Method of Vertebral Rotation
The Nash and Moe method is used to assess
the degree of rotation in the apical vertebra,
which is the vertebra with the highest rotation
and lateral shift within a curve [171]. This ro-
tation causes both pedicles of the apical verte-
bra to move toward the curve's concave side.
The Nash and Moe system divides the verte-
bral body into six sections and rates pedicle
rotation on a five-point scale [169].

1.5. Whole-spine Standing Radiographs (EOS
Imaging)

The EOS X-ray system provides bipla-
nar images of the entire body in a standing,
weight-bearing position with minimal radi-
ation exposure. By capturing both front and
side views, the EOS system enables a 3D re-
construction of the skeleton [172]. This ap-
proach offers highly accurate measurements
of skeletal structures, including limb lengths,
angles, and spinal curvature (such as kypho-
sis, lordosis, and scoliosis), presented in a
true-to-size 1:1 scale [173].

1.6. Limitations of X-ray

While X-rays are effective for measuring spi-
nal curvature, they fall short in assessing the
cosmetic impact of deformity in patients with
AIS. During adolescence, many individuals
are more concerned about correcting the vi-
sual appearance of their back rather than the
degree of spinal curve [174].

1.7. Coronal Trunk Balance

The balance of the spinal column, particu-
larly in the frontal plane, can be indicated by
the lateral trunk deviation. A vertical line is
dropped from the center of the C7 vertebral
body to the baseline on a full-spine X-ray. The
distance between this line and the CSVL—a
vertical line through the center of the first
sacral segment—represents the coronal trunk
balance [175]. When the plumb line shifts left,
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the value is negative; when it moves right, the
value is positive [169].

2. Surface Topography Techniques
Developing a system for identifying and mon-
itoring scoliosis is crucial to minimize expo-
sure to ionizing radiation, hence decreasing
the risk of malignant diseases in patients. Sur-
face topography (ST) is an imaging technique
that requires no supplementary apparatus or
equipment, rendering it an appropriate option
for various clinical settings. These techniques
produce a 3D/4D representation of patients'
spines utilizing diverse models and protocols,
enabling the quantification of the cosmetic
deformity associated with AIS while avoiding
exposure to ionizing radiation [174].

2.1 Moiré Topography

The Moiré technique, an early method of sur-
face topography, employs overlapping pat-
terned grids projected onto the rear surface.
This projection delineates contour variations,
facilitating the evaluation of spinal curvature
[176]. The Moiré approach, albeit valued
for its simplicity and cost-effectiveness, is
constrained by inconsistent accuracy, which
hinders its exclusive application in clinical
environments. It is recommended as an ad-
junctive approach to radiography to minimize
radiation exposure, which is particularly ad-
vantageous for the longitudinal scoliosis as-
sessment [174].

2.2 Rasterstereography

Rasterstereography, subsequently  devel-
oped, enhanced surface measuring by em-
ploying a slide projector to project gridlines
onto the posterior surface. The distortions in
these lines, captured by a camera, generate a
three-dimensional reconstruction of the sur-
face of the back. Devices such as ISIS and
ISIS2 enhanced rasterstereography, optimiz-
ing acquisition duration and minimizing the
impact of motion artifacts [174].
Rasterstereography is primarily character-
ized by two measurement methods: (1) the
first employs the analysis of light projected
onto the subject's skin, which is dependable
and constitutes the most prevalent application
of rasterstereography; (2) the second utilizes
an infrared and time-of-flight 3D RGB cam-
era, which also appears to be reliable [177].
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However, the method's constraints, including
vulnerability to postural alterations, have hin-
dered its practical implementation [174].

2.3 Formetric 3D/4D

The Formetric 3D system, an advancement
of rasterstereography, initially faced chal-
lenges with dependability owing to postural
wobble. Formetric 4D mitigated this issue by
averaging several images to diminish motion
artifacts. This approach has shown a robust
association with radiographic Cobb angle
measures, affirming its utility in scoliosis
monitoring rather than initial diagnosis. The
Formetric systems demonstrate commendable
test-retest dependability; nonetheless, they are
prohibitively expensive for regular monitor-
ing [174].

While radiographic methods have long been
the cornerstone of scoliosis evaluation, con-
cerns about radiation exposure—especially
in pediatric patients—have prompted the de-
velopment of alternative imaging strategies.
These radiation-free modalities are discussed
in the following section.

3. Ultrasound Techniques

Ultrasound (US) imaging has gained atten-
tion in recent years due to its non-radiative
nature, ease of use, and affordability, making
it a valuable tool for scoliosis research. Nu-
merous researchers have explored and devel-
oped US imaging, recognizing its potential as
a leading methodology in this field [178].

3.1. 2D Ultrasound

Ultrasound provides a clear view of the spine's
posterior surface and is generally easier to ac-
cess than MRI or radiography. Portable ultra-
sound devices could enable spine monitoring
in areas without fixed medical imaging facil-
ities. Research has revealed a consistent rela-
tionship between the Cobb angle measured on
X-rays and vertebral rotation identified by ul-
trasound at the apex vertebra in untreated sco-
liosis patients [ 179]. Additionally, by integrat-
ing tracking capabilities into the ultrasound
transducer, clinicians can now reconstruct 3D
volumes from 2D ultrasound images, opening
new possibilities for spinal diagnostic assess-
ments [180].
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3.2. 3D Ultrasound

Developed by Suzuki et al., 3D spinal ultraso-
nography has demonstrated efficacy for AIS
[181]. Significantly, Chen et al. [182] vali-
dated the "center-of-lamina" methodology,
demonstrating that it yields curve magnitude
and vertebral rotation data analogous to tradi-
tional radiography.

Grounded in the premise that the laminae and
spinous processes function as dependable ref-
erence points, it offers a method for evaluat-
ing three-dimensional spinal abnormalities by
analyzing vertebral rotation in relation to the
orientation of the laminae and the ultrasound
sensor [179]. Li et al. (2012) conducted a
study on the efficacy of orthotic treatment for
patients with AIS utilizing 3D ultrasonogra-
phy to assess the spinous process angle, aim-
ing to improve orthotic treatment outcomes.
The findings indicated that the ultrasound-as-
sisted fitting technique for spinal orthoses was
effective and advantageous for 62% of the pa-
tients [183].

Ultrasonography is a readily accessible meth-
od that offers the benefits of being radia-
tion-free and cost-effective. The limitations
include restricted identification of lower-de-
gree curves and an increased likelihood of
human mistakes. Nonetheless, it can facilitate
the secure assessment of curve progression
over time without necessitating repeated radi-
ography observations at short intervals [184].

3.3. Ultrasound-based Scolioscan

Scolioscan utilizes ultrasound imaging to
generate three-dimensional spine models,
providing a dependable radiation-free option.
This approach demonstrates a strong associa-
tion with radiographic Cobb angles, particu-
larly in mild scoliosis cases. Nonetheless, its
extended acquisition duration and potential
difficulties in imaging obese people are disad-
vantages. The technique is efficient for static
measurements but is inadequate for dynamic
activities, akin to Rasterstereography [174].

3.4. Elastography (Ultrasound-based)

Various non-invasive methods now exist to
measure the elasticity of tissues, helping to
understand their mechanical properties. These
elasticity imaging techniques gather data on
tissue flexibility and can be applied to deep-
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er organs, opening up new possibilities for
screening and diagnosis [185]. In the 1970s
and 1980s, early approaches used static load-
ing and external vibrations to apply stress to
tissues, followed by modified color Doppler to
track tissue movement and measure stiffness
[186, 187]. By the late 1990s, a quasi-static
method was developed to assess tissue elas-
ticity remotely through physical compression
or natural body pulsations, a technique now
known as strain elastography [188]. Later on,
dynamic shear wave elastography emerged,
allowing the measurement of shear wave
speed (SWS), which correlates directly with
the tissue's elastic properties, unlike strain
elastography [189]. Shear wave elastogra-
phy uses focused acoustic radiation to gener-
ate shear waves within the tissue, measuring
the wave speed to assess local stiffness [188,
190].

3.5. Automatic Spine Ultrasound Segmenta-
tion

Automated Spine Segmentation and Measure-
ment is a novel, Al-based method that utilizes
monitored ultrasonography and convolution-
al neural networks (CNNs) to evaluate spinal
curvature. This technology utilizes CNNs to
autonomously detect and segment the spine
from ultrasound pictures, thereby generating
a 3D spinal model for precise scoliosis assess-
ment. This automated procedure requires un-
der one minute and attains a maximum error
margin of approximately 2.2° compared to
conventional X-rays [191].

4. Alternative Imaging Methods

4.1 Photogrammetry

Photogrammetry is a dependable method for
acquiring information about an object and its
surroundings through the measurement and
analysis of photographic images, facilitating
the quantification of human body measure-
ments [167]. It facilitates precise quantitative
assessment by documenting subtle alterations
in postural alignment [192]. This method may
be deemed superior to alternative non-inva-
sive techniques due to its low cost, ease of
transport and photo-interpretation, and ca-
pacity to measure minor postural alterations
while tracking the progression, stabilization,
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or reduction of postural asymmetries in adults
over time [193]. Although it is a straight-
forward procedure employed extensively, it
has certain disadvantages, namely that it is
time-consuming and does not yield quick re-
sults. Furthermore, being a two-dimensional
technique, it cannot evaluate rotational dif-
ferences among vertebrae [162]. Moreover,
research has indicated elevated intra- and in-
ter-rater dependability for the photogrammet-
ric approach [194, 195].

4.2 Spinal Mouse

The skin-surface mouse is a viable and trust-
worthy instrument for spinal evaluation, par-
ticularly for kyphotic posture. It can be ma-
neuvered along the spinal profile to measure
vertebral shape and angulation. The Spinal
Mouse is cost-effective; however, its price
range remains inaccessible to some; it offers
great precision and robust software analysis,
while it is exclusively concentrated on the
spine [177].

4.3. Motion Analysis Systems

Progress in dynamic motion analysis offers a
more thorough evaluation of gait and balance.
Skalli and associates were among the first to
employ motion analysis to detect dynamic
compensations in scoliosis patients, highlight-
ing the pelvis's significance in postural control
before and during surgical intervention [196].
Patel et al. expanded this research by assess-
ing pelvic incidence as a predictor of sagittal
alignment and hip dynamics, noting that el-
evated pelvic incidence was associated with
an augmented hip range of motion. Their find-
ings indicate that pelvic morphology affects
gait patterns, highlighting the necessity for
patient-specific motion analysis in conjunc-
tion with conventional imaging to enhance
personalized surgery planning [197].

4.4. CT scan

CT has restricted utility in scoliosis diagnosis
due to its carcinogenic potential and the re-
quirement for the supine position during im-
aging. The supine position alters the existing
three-dimensional spinal malformation. A 3D
representation of the standing position pro-
vides precise findings for scoliosis diagnosis
[184]. In accordance with standard practices
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in most institutions, a prone position during
CT scanning will be employed to replicate the
surgical position closely. EOS serves as an op-
tion to address these restrictions [198].

4.5. MRI

Non-radiative options, such as sonographic
analysis, can only partially evaluate the sit-
uation [199]. MRI has been recognized as a
comparable alternative for evaluating Cobb
angle [200, 201]. Regrettably, MRI is less ac-
cessible, more costly, and necessitates an ex-
amination duration of 20—60 minutes, during
which the patient must avoid excessive move-
ment [202]. This scenario may pose difficul-
ties for younger children; however, a recent
study indicates that MRI can still yield perti-
nent information [203]. A revolutionary, rapid,
low-angle shot MRI technology (FLASH 2.0)
now offers a radiation-free, ultra-fast alterna-
tive to radiography that is suitable for daily
usage and unaffected by mobility [204, 205].
Additionally, a recent study showed that re-
al-time MRI offers diagnostic efficacy com-
parable to traditional radiography in assessing
idiopathic scoliosis, while eliminating the
need for ionizing radiation. The duration of an
MRI examination is slightly shorter than that
of traditional radiography. Therefore, spinal
real-time MRI assessment serves as an excel-
lent and efficient alternative to conventional
radiography [206].

Nonetheless, the application of MRI is con-
strained. If screws, hooks, or rods are im-
planted in the subject's body for spinal cor-
rection, an MRI cannot be performed [184].
The routine use of MRI in idiopathic scoliosis
remains a topic of debate, as the indications
for its application vary across studies. Howev-
er, the established criteria for the routine use
of MRI can be summarized as follows: pres-
ence of pain (back, neck, radicular, headache),
neurological findings (such as clonus, abnor-
mal abdominal reflexes, weakness, urinary
dysfunction, hyperreflexia, asymmetric deep
tendon reflexes, paresthesia, diminished rec-
tal tone, cavus foot deformity, skin lesions),
atypical curve patterns (including left thorac-
ic, short segment, reduced rotation, absence of
thoracic apical segmental lordosis, rapid pro-
gression, and a thoracic kyphosis angle >30
degrees), early-onset scoliosis, male gender,
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and the presence of associated organ anoma-
lies [207, 208].

Importantly, the advancement of both mo-
lecular biology and imaging has opened new
frontiers for integrated diagnostics. The next
section explores how these two complemen-
tary approaches can be combined to improve
early detection and personalized management
of scoliosis.

Bridging Molecular and Imaging Ap-
proaches in Scoliosis Diagnosis

An integrated diagnostic approach that com-
bines molecular insights with imaging find-
ings holds great potential for improving the
early detection and personalized management
of scoliosis. Molecular alterations such as
dysregulated non-coding RNAs, epigenetic
modifications, and imbalances in inflamma-
tory cytokines may contribute to pathological
changes in spinal development that are subse-
quently detectable through imaging.

For instance, aberrant expression of miR-122-
5p, miR-27a-5p, and miR-223-5p has been
associated with adolescent idiopathic sco-
liosis and may reflect underlying structural
abnormalities that can be visualized through
3D ultrasound imaging or surface topogra-
phy [65, 67]. Similarly, overactivation of the
Wnt/B-catenin pathway, which impairs bone
matrix mineralization, correlates with abnor-
malities detected by EOS imaging and Cobb
angle progression [52, 67].

By correlating molecular biomarkers with
radiological features—such as curve magni-
tude, vertebral rotation, or paraspinal asym-
metry—clinicians may be able to identify
high-risk patients earlier and tailor monitoring
and intervention strategies. This convergence
of biological and structural data represents a
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critical step toward precision medicine in sco-
liosis care.

Conclusion

In conclusion, integrating molecular insights
with advanced imaging methodologies offers
a promising avenue for the early diagnosis
and personalized management of pathological
spinal curvature. The evidence indicates that
the dysregulation of non-coding RNAs, over-
activation of the Wnt/B-catenin pathway, and
imbalances in inflammatory cytokines and
epigenetic modifications significantly con-
tribute to the development and progression of
spinal deformities. Concurrently, the evolu-
tion of imaging techniques—from traditional
radiography to state-of-the-art 3D reconstruc-
tion and computer-assisted measurements—
has markedly enhanced the precision of spinal
curvature assessment.

Looking forward, proposing ncRNA-based
and methylation-based biomarkers holds sig-
nificant potential for the early prediction or
monitoring of scoliosis progression. More-
over, bioinformatic approaches, such as inte-
grative transcriptomic and methylation anal-
yses, may facilitate the discovery of novel
molecular subtypes of scoliosis, paving the
way for stratified and more effective thera-
peutic strategies. Future research that further
bridges these molecular and clinical domains
is essential for devising targeted interventions
that effectively address both the biological
and structural components of spinal curva-
ture, ultimately leading to improved patient
outcomes.
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