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Abstract

Pathological spinal curvature encompasses a broad spectrum of deformities that arise from a com-
plex interplay of genetic, molecular, and biomechanical factors. This review synthesizes current 
knowledge on the molecular underpinnings of spinal deformities, with a focus on the dysregula-
tion of non-coding RNAs, aberrant activation of the Wnt signaling pathway, inflammatory cyto-
kine imbalances, and epigenetic modifications. In parallel, the article provides a detailed overview 
of both conventional and emerging imaging techniques used in the clinical assessment of spinal 
curvature. Traditional radiographic methods, such as Cobb angle measurement and Ferguson’s 
method, are critically compared with advanced modalities—including surface topography, ultra-
sound imaging, and computer-aided 3D reconstructions—that promise enhanced diagnostic ac-
curacy while minimizing radiation exposure. By bridging molecular insights with clinical imag-
ing advancements, this review underscores the importance of an integrated diagnostic approach 
for early detection and effective management of scoliosis and related spinal deformities. The con-
vergence of these disciplines not only enriches our understanding of the pathogenesis of spinal 
curvature but also lays the foundation for the development of personalized therapeutic strategies.
[GMJ.2025;14:e3814] DOI:10.31661/gmj.v14i.3814
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Introduction

Humans depend on their spines for differ-
ent tasks, including bearing their weight. 

These tasks are interrupted if the spine is not 
in a normal state. A normal spine is centered 
on the pelvis with two normal lumbar and 

thoracic curves [1]. The presence of any other 
curves in the coronal, sagittal, or axial planes 
categorizes the spine as abnormal [2]. The 
different spinal deformities are de-novo sco-
liosis, adolescent idiopathic scoliosis, hyper-
kyphosis, iatrogenic sagittal deformity, focal 
deformity due to multiple degenerative disc 
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disease with global deformity, and post-trau-
matic spinal deformity. The known etiologies 
for spinal deformities include de-novo, de-
generation, and trauma [3].
Scoliosis is defined as an abnormal lateral cur-
vature of the spine—operationally determined 
by a Cobb angle greater than 10 degrees—and 
is consistently accompanied by various levels 
of hyperlordosis and rotational deformities [4-
6]. Scoliosis encompasses several subtypes—
idiopathic, syndromic, neuromuscular, and 
congenital—with adolescent idiopathic scoli-
osis (AIS) being the most common, affecting 
approximately 1%–4% of adolescents global-
ly [7, 8]. Another common cause of scoliosis 
is congenital spinal malformation, which aris-
es during embryogenesis and results in mixed 
segmental vertebral deformities [9]. The eti-
ology of scoliosis is multifactorial, involv-
ing an interplay of both environmental and 
genetic factors. For example, environmental 
factors such as maternal alcohol consumption 
and vitamin deficiencies during pregnancy are 
implicated in the development of congenital 
scoliosis. Additionally, genetic variations, 
including single-nucleotide polymorphisms 
(SNPs) in genes like LBX1, GPR126, BNC2, 
and PAX1, have been associated with idio-
pathic scoliosis [10-19]. However, the precise 
cellular and molecular mechanisms connect-
ing these etiological factors to scoliosis de-
velopment remain largely unclear. Therefore, 
investigating the molecular pathogenesis of 
scoliosis is essential for identifying novel mo-
lecular markers that enable early detection of 
at-risk individuals and for advancing mecha-
nism-driven therapeutic strategies.
The population is growing older in different 
areas, including the United States. Given the 
higher prevalence among this group of indi-
viduals, this old population is expected to be 
challenged with spinal deformities [20]. Given 
the rising costs associated with managing spi-
nal deformities, early diagnosis and effective 
treatment strategies are becoming increasing-
ly important. This narrative review explores 
the molecular and cellular mechanisms under-
lying scoliosis, with a particular focus on the 
role of non-coding RNAs and other molecular 
regulators. Additionally, it summarizes the 
currently available imaging techniques for as-
sessing pathological spinal curvatures, aiming 

to bridge the gap between molecular insights 
and clinical applications.
Non-coding RNAs in Scoliosis

Non-coding RNAs (ncRNAs) represent a cru-
cial class of regulatory transcripts that do not 
encode proteins. They are broadly classified 
into three major subclasses: long non-coding 
RNAs (lncRNAs), microRNAs (miRNAs), 
and circular RNAs (circRNAs) [21-24]. 
While the mechanism by which miRNAs reg-
ulate gene expression is relatively straightfor-
ward—guiding the RNA-induced silencing 
complex (RISC) to target mRNAs through 
base-pairing, leading to their degradation and/
or translational inhibition—lncRNAs and cir-
cRNAs exert regulatory effects at multiple 
levels. LncRNAs can modulate gene expres-
sion through mechanisms such as DNA meth-
ylation, histone modification, recruitment of 
transcription factors, miRNA sponging, and 
regulation of mRNA stability. In contrast, 
circRNAs influence gene expression by act-
ing as miRNA sponges, regulating transcrip-
tion, modulating alternative splicing, directly 
interacting with RNA-binding proteins, and 
facilitating protein translation through rolling 
circle amplification [25-27]. ncRNAs serve 
as pivotal regulators that coordinate essential 
cellular processes, including cell proliferation, 
programmed cell death, autophagy, differen-
tiation, metabolism, migration, and invasion 
[28-33]. Consequently, it is not surprising that 
ncRNAs are frequently dysregulated across 
a wide array of diseases, including neoplas-
tic, inflammatory, and metabolic disorders 
[34-39]. From a clinical perspective, the fre-
quent changes observed in ncRNA levels in 
body fluids such as saliva, blood, and urine 
during disease states highlight their potential 
as promising biomarkers for early diagnosis 
and prognosis [40-42]. 
A growing body of evidence indicates that 
abnormal ncRNA expression plays a pivotal 
role in the development of orthopedic disor-
ders, including osteosarcoma, osteoporosis, 
osteoarthritis, and intervertebral disc degen-
eration [29, 32, 43-45]. Emerging evidence 
also suggests that ncRNAs are dysregulated 
in scoliosis and contribute functionally to its 
pathogenesis [39, 46, 47]. 
Non-coding RNAs (ncRNAs) not only serve 
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as biomarkers but also actively contribute 
to scoliosis pathogenesis by modulating key 
developmental signaling pathways. Several 
studies have shown that dysregulated miR-
NAs in scoliosis—such as miR-122-5p and 
miR-223-5p—can directly target components 
of the TGF-β signaling cascade, which is 
known to regulate extracellular matrix remod-
eling and chondrogenesis during spinal devel-
opment [48-51]. For instance, downregula-
tion of miR-1306-3p may relieve repression 
on SMAD family genes, thereby amplifying 
TGF-β signaling and altering growth plate 
organization. Similarly, lncRNAs such as 
ENST00000440778.1 have been implicated in 
the regulation of osteogenic transcription fac-
tors (e.g., Runx2) and may act as competitive 
endogenous RNAs (ceRNAs), sponging miR-
NAs like miR-27a-5p that target genes with-
in the Hedgehog and Notch pathways. These 
pathways are essential for proper segmenta-
tion, vertebral ossification, and musculoskel-
etal coordination. Furthermore, circRNAs, 
through their interactions with RNA-binding 
proteins and modulation of mRNA stability, 
influence not only the mechanical properties 
of the spine but also cellular polarity and pro-
liferation within the vertebral growth plates. 
By dissecting these mechanistic links, future 
research may reveal ncRNA-based therapeu-
tic strategies to prevent or slow the progres-

sion of scoliosis [52-57].
Profiling ncRNA expression through 
whole-transcriptome sequencing, microarray, 
or PCR array, followed by validation using re-
verse transcription (RT)-quantitative PCR, is 
the most widely used approach for identifying 
and confirming dysregulated ncRNAs in spe-
cific disease conditions [21, 39, 58, 59].
Several studies have utilized various molec-
ular techniques to explore gene and microR-
NA expression in different clinical condi-
tions, employing stringent filtering criteria 
to identify deregulated molecules. One study 
focused on AIS cases compared to healthy 
children, using microarray and RT-PCR meth-
ods with filtering criteria of a fold change 
greater than 2 and a P-value less than 0.05. 
This analysis identified 546 mRNAs and 139 
lncRNAs as deregulated, with 512 mRNAs 
and 118 lncRNAs upregulated, including 
TCONS00028768, ENST00000440778.1, 
and NR024075. Additionally, 34 mRNAs 
and specific lncRNAs (ENST00000414894.1 
and ENST00000440778.1) were found to be 
downregulated [37]. Another study, also com-
paring AIS cases with healthy children, ap-
plied a P-value less than 0.05 and a fold change 
greater than 2 as filtering criteria, identifying 
upregulated microRNAs such as miR-1226-
5p, miR-27a-5p, miR-223-5p, and miR-122-
5p, and downregulated microRNAs like miR-

Figure 1. ncRNAs expression profiles in scoliosis
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671-5p and miR-1306-3p [58]. A separate 
analysis of patients with Friedreich's ataxia 
used similar methods, applying a P-value less 
than 0.05 and a fold change greater than 1.5. 
This study revealed deregulated microRNAs 
including miR-128-3p, miR-625-3p, miR-
130b-5p, miR-151a-5p, miR-330-3p, miR-
323a-3p, miR-142-3p, and miR-16-5p [60]. 
In addition, transcriptome sequencing and RT-
PCR were employed in a study of degenerate 
disc tissues, using a fold change greater than 2 
as the filtering criterion. This study identified 
749 mRNAs, 70 circRNAs, 685 lncRNAs, 
and 56 miRNAs as deregulated. Among these, 
194 mRNAs, 185 lncRNAs, 35 circRNAs, 

and 53 miRNAs were upregulated, while 555 
mRNAs, 500 lncRNAs, 35 circRNAs, and 3 
miRNAs were downregulated [39, 47]. These 
studies demonstrate the significant molecular 
alterations observed in various conditions and 
highlight the importance of rigorous filtering 
criteria to identify key regulatory molecules 
(Figure-1 and -2).
Recent research has emphasized the potential 
of specific circulating circRNAs in serum as 
diagnostic biomarkers for scoliosis-related 
disorders. A study by García-Giménez et al. 
highlighted variations in circRNA abundance 
between patients with AIS and healthy con-
trols [65]. Their findings demonstrated that 

Figure 2. Functionally characterized ncRNAs in scoliosis ([47, 52, 61-64]).
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the levels of three circRNAs—miR-122-5p, 
miR-27a-5p, and miR-223-5p—were signifi-
cantly higher in patients with AIS compared 
to healthy individuals. Furthermore, these 
three circRNAs, along with miR-1306-3p, 
showed potential as biomarkers for differenti-
ating AIS patients from normal controls [65].  
Several studies have investigated the overall 
variations in the three main types of non-cod-
ing RNAs in patients with scoliosis. Addition-
ally, enrichment analysis revealed that these 
differentially expressed RNAs are involved in 
key signaling pathways, such as FoxO, PI3K-
Akt, mTOR, EGFR, and Wnt, among others 
[46].
In 2020, an extensive search was conducted 
across the PubMed, EMBASE, and GEO da-
tabases to identify studies comparing gene, 
miRNA, and lncRNA expression in patients 
with AIS and normal control mesenchymal 
stem cells (MSCs). The findings suggest that 
non-coding RNAs may play a role in a com-
plex regulatory network. However, since these 
interaction pathways were only investigated 
in this study, further experimental validation 
is necessary to confirm their accuracy [66].

Wnt Signaling Pathway

The Wnt signaling pathway was found to be 
overactive in bone biopsies from scoliotic pa-
tients, as evidenced by a significant elevation 
in active β-catenin levels [67]. Similar ob-
servations were made in a zebrafish scoliotic 
model, where β-catenin activity was associat-
ed with spinal deformity through the involve-
ment of the enzyme tyrosine kinase 7 [15]. 
While activation of the Wnt/β-catenin path-
way is known to increase bone mass, its over-
activation in idiopathic scoliosis impairs the 
differentiation of osteoblasts into osteocytes 
and disrupts matrix mineralization [68, 69]. 
Furthermore, Runx2, an early marker of bone 
formation, was found to be decreased in bone 
tissues from idiopathic scoliosis patients, indi-
cating that bone formation was hindered due 
to the overexpression of the Wnt/β-catenin 
signaling pathway [70, 71]. Excessive activa-
tion of the Wnt/β-catenin signaling pathway 
may play a role in the progression of scoliosis 
deformity by impairing the normal function 
of muscles, intervertebral discs, and the verte-

bral growth plate [72-74]. A possible explana-
tion for the asymmetrical muscle contraction 
observed between the convex and concave 
sides of a scoliotic curve involves cadmod-
ulin and its interaction with the Wnt/β-catenin 
signaling pathway and sclerostin expression. 
In patients with idiopathic scoliosis, cadmod-
ulin levels were found to be higher on the 
convex side and lower on the concave side 
of the paraspinal muscles [75]. Calmodulin, 
when bound to calcium, activates myosin 
light chain, thereby playing a key role in the 
regulation of smooth muscle contraction [76]. 
Downregulation of cadmodulin was shown to 
influence calcitonin levels, which subsequent-
ly affects blood calcium levels and the activa-
tion of G proteins [71, 77]. Downregulation 
of calcitonin results in a decrease in scleros-
tin expression, which subsequently activates 
the Wnt/β-catenin signaling pathway, thereby 
promoting the osteoblastic differentiation of 
bone marrow stem cells [78, 79]. Similarly, G 
proteins activate the Wnt/β-catenin signaling 
pathway and show increased expression in the 
vertebral bodies on the convex side of the sco-
liotic spine [71, 80, 81]. 
These findings reveal that the Wnt/β-catenin 
signaling pathway plays a double-edged role 
in bone biology. Under normal conditions, this 
pathway helps regulate bone mass and sup-
ports the development of healthy bone cells. 
However, in scoliosis, the same pathway be-
comes overactive and starts to interfere with 
normal bone remodeling and coordination be-
tween the spine, muscles, and growth plates. 
This overactivity may actually make the spi-
nal curvature worse over time. Therefore, it is 
important to better understand when and how 
this pathway switches from being helpful to 
becoming harmful. For example, this may de-
pend on where in the body it is active, how 
it interacts with proteins like sclerostin and 
calmodulin, or how it responds to hormones 
like calcitonin. Clarifying these details could 
help explain why Wnt signaling supports bone 
health in some cases but contributes to spinal 
deformities in others [82-84]. While the Wnt 
signaling pathway has been widely studied 
for its role in skeletal development and spinal 
morphogenesis, recent studies have empha-
sized the crosstalk between Wnt signaling and 
inflammatory processes. In particular, dys-
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regulation of Wnt activity can influence, and 
be influenced by, pro-inflammatory cytokines 
such as TNF-α, IL-6, and IL-1β, suggesting a 
bidirectional interaction between bone remod-
eling pathways and immune responses. This 
molecular interplay sets the stage for explor-
ing how inflammatory cytokines may directly 
or indirectly contribute to the onset and pro-
gression of spinal curvature in scoliosis [85, 
86].

Inflammatory Cytokines and Scoliosis

Cytokines are a group of small proteins re-
leased by immune cells that play a pivotal role 
in intercellular signaling, regulation of inflam-
matory responses, and control of cell growth. 
In the pathophysiology of scoliosis, inflamma-
tion is regarded as a crucial factor influencing 
disease progression. Numerous studies have 
highlighted that alterations in the levels of 
specific cytokines are strongly associated with 
the onset, progression, and severity of scolio-
sis. For instance, variations in the expression 
of pro-inflammatory cytokines such as tumor 
necrosis factor-alpha (TNF-α), interleukin-6 
(IL-6), and interleukin-17 (IL-17) have been 
observed in individuals with scoliosis, poten-
tially contributing to abnormal spinal curva-
ture and impaired bone remodeling [87-90]. 
Furthermore, alterations in the levels of an-
ti-inflammatory cytokines in scoliosis patients 
point to a complex network of inflammation 
regulation throughout the progression of the 
disease. This network appears to involve not 
only an imbalance between pro-inflammatory 
and anti-inflammatory factors but may also be 
influenced by the patients' genetic predispo-
sitions, immune status, and various environ-
mental factors [91-93]. Therefore, gaining a 
deeper understanding of the role of cytokines 
in scoliosis is crucial for uncovering the dis-
ease's pathogenesis and identifying potential 
therapeutic targets, which could have substan-
tial theoretical and practical implications.
However, it remains unclear whether inflam-
matory shifts are a cause of spinal deformity 
or a consequence of biomechanical stress due 
to curvature. Some studies suggest that chron-
ic spinal loading and vertebral asymmetry in 
scoliosis may stimulate localized inflamma-
tion, particularly in paraspinal tissues, thereby 

elevating pro-inflammatory cytokine expres-
sion [94-96]. Conversely, other evidence pro-
poses that a pre-existing immune dysregula-
tion or systemic inflammatory tendency—per-
haps genetically predisposed—may initiate or 
accelerate spinal curvature via its effects on 
bone metabolism and matrix remodeling [49]. 
A deeper exploration into this bidirectional 
relationship could help clarify whether cyto-
kine alterations are primary drivers or second-
ary amplifiers of scoliosis, thereby informing 
targeted anti-inflammatory strategies for early 
intervention.

Epigenetics

Epigenetics refers to modifications in gene 
expression that do not involve changes to the 
underlying DNA sequence and can be passed 
on through both mitotic and meiotic cell di-
visions [97]. The primary epigenetic mech-
anisms include DNA methylation, histone 
modification, non-coding RNA involvement, 
and chromatin remodeling, all of which play a 
crucial role in regulating gene expression and 
influencing cellular function and development 
[97]. Epigenetic modifications impact gene 
expression at various stages, including rep-
lication, transcription, and translation. These 
alterations are associated with the develop-
ment of numerous conditions, such as cancer, 
neurodegenerative diseases, and autoimmune 
disorders [98, 99]. Recent studies on adoles-
cent idiopathic scoliosis (AIS) suggest that 
genetic variations contribute to only about 
2%–3% of the causative factors, implying 
that other factors, such as epigenetic modifi-
cations, may play a more significant role in 
the development of scoliosis [100]. 

Chromatin Remodeling
Chromosomes are composed of nucleoso-
mal units, in which DNA is coiled around 
histones. This structure facilitates the highly 
condensed and organized arrangement of the 
genome within the cell nucleus [101]. Chro-
matin remodeling complexes (remodelers) 
alter the structure of nucleosomes by utiliz-
ing the energy from ATP hydrolysis. These 
complexes are crucial for processes such as 
transcription, DNA replication, and repair. 
Moreover, the ongoing remodeling of chro-
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matin is largely dependent on these complex-
es, which facilitate the dynamic regulation of 
chromatin structure and function [101]. This 
mechanism safeguards genes by keeping es-
sential gene regions protected when they are 
not actively in use, while also controlling 
the precise duration of gene exposure during 
replication and transcription. Such regulation 
helps preserve genomic stability and prevents 
interference with vital gene functions [101]. 
Chromatin remodeling is a vital epigenetic 
process that controls gene expression and has 
been linked to a range of disorders, such as 
cerebro-oculo-facial-skeletal syndrome and 
Williams-Beuren syndrome. It is also impli-
cated in tumorigenesis and the invasion of 
cancer cells [102, 103]. 

DNA Methylation
DNA methylation in the human genome pre-
dominantly occurs at the cytosine residue of 
the CpG dinucleotide, which is commonly lo-
cated in the promoter regions of genes, serv-
ing as a key marker for the initiation of gene 
transcription [97]. Under normal conditions, 
DNA methylation maintains a dynamic equi-
librium, where the silencing of specific genes, 
driven by physiological requirements, reg-
ulates gene expression and supports homeo-
stasis [104, 105]. In pathological conditions, 
abnormal DNA methylation can interfere with 
gene expression, resulting in the dysregulated 
expression of crucial downstream products. 
This disruption can initiate irregular cell pro-
liferation or apoptosis, thereby contributing to 
the development of scoliosis.

Differential Methylation of Key Loci
Impairments in key enzymes or fundamental 
elements necessary for proper spinal growth 
and development may underlie the pathogen-
esis of spinal dysplasia, potentially predispos-
ing individuals to the initiation or progres-
sion of scoliosis. Cartilage oligomeric matrix 
protein (COMP), an integral constituent of 
the extracellular matrix, plays a pivotal role 
in cartilage formation. Multiple investiga-
tions have demonstrated a marked decrease 
in COMP secretion among patients with ad-
olescent idiopathic scoliosis (AIS) relative 
to unaffected individuals [106]. The investi-
gation assessed both the methylation profiles 

and gene expression levels of COMP across 
five CpG sites within the COMP locus in indi-
viduals diagnosed with adolescent idiopathic 
scoliosis (AIS) and in healthy control subjects 
[107]. 
Shi et al. (2018) reported that the promoter re-
gion of the PITX1 gene exhibited hypermeth-
ylation in individuals with AIS, which was as-
sociated with a marked downregulation of its 
downstream gene products relative to healthy 
controls [108]. Methylation at six CpG sites 
within the promoter region of the PITX1 gene 
was found to be positively correlated with 
scoliosis severity. PITX1, a transcription fac-
tor belonging to the RIEG/PITX family, plays 
a crucial role in the basal transcriptional reg-
ulation of prolactin as well as in hormonally 
driven modifications of prolactin activity. No-
tably, dysregulated expression of PITX1 has 
been implicated in a range of skeletal pathol-
ogies [109-111]. In patients with congenital 
scoliosis (CS), elevated methylation levels 
in the KAT6B gene promoter were observed, 
along with a significant reduction in KAT6B 
expression [112]. 
Correlation analysis showed a positive asso-
ciation between elevated KAT6B methyla-
tion and an increased Cobb angle in patients 
with CS. Further research has confirmed that 
the KAT6B gene encodes a component of the 
histone acetyltransferase and MOZ/MORF 
protein complexes [113]. The MOZ/MORF 
protein complex is crucial for the early me-
tabolism of skeletal and neuronal cells. As 
a result, abnormal DNA methylation at the 
KAT6B gene locus is thought to play a role 
in the pathogenesis of CS [114]. Collectively, 
these findings suggest that abnormal methyl-
ation of genes critical for bone formation and 
development plays a pivotal role in the onset 
and progression of scoliosis.
Aberrant DNA methylation at specific ge-
nomic loci holds promise as a predictive bio-
marker for scoliosis progression. In a 2018 
study, Meng et al. reported that methylation 
levels at the cg01374129 locus were signifi-
cantly reduced in patients with progressive 
AIS compared to those with non-progres-
sive forms of the condition [115]. Regression 
analysis revealed that hypomethylation at the 
cg01374129 locus could serve as an inde-
pendent prognostic marker for scoliosis pro-
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gression. Specifically, the methylation level 
at this locus showed a sensitivity of 76.4% 
and a specificity of 85.6% in distinguishing 
between progressive and non-progressive 
scoliosis cases. These findings suggest that 
DNA methylation status holds considerable 
promise as a novel prognostic biomarker. The 
cg01374129 locus is situated in proximity 
to the gene encoding hyaluronan synthase 2 
(HAS2), a key enzyme involved in the for-
mation of intervertebral discs and vertebral 
bodies during development, as demonstrated 
in rat models. Aberrant methylation at this site 
may impair the normal development of these 
spinal components, thereby contributing to 
the progression of scoliosis [116].
The progression of scoliosis may also be mod-
ulated by key components of major signaling 
pathways. It has been observed that the pro-
moter region of the PCDH10 gene is hyper-
methylated in individuals with AIS, leading to 
reduced expression of PCDH10 compared to 
healthy controls. Furthermore, higher methyl-
ation levels of PCDH10 have been positively 
associated with increased Cobb angle mea-
surements, indicating a link between epigen-
etic regulation and the severity of spinal cur-
vature [117]. 
PCDH10 is a downstream target of p53, a 
pivotal regulator of cell migration; however, 
it does not appear to play a direct role in carti-
lage development [118]. 
Alternatively, some studies have focused on 
DNA methylation changes occurring spe-
cifically within the skeletal muscle tissue 
surrounding the spine in individuals with 
scoliosis. For instance, a 2020 investigation 
analyzed DNA methylation patterns in deep 
paravertebral muscle samples obtained from 
both the convex and concave sides in patients 
with AIS [119]. 
Methylation of the estrogen receptor 2 (ESR2) 
promoter was notably elevated on the concave 
side of the paravertebral muscles in patients 
with AIS when compared to the convex side. 
Correlation analysis revealed a strong associ-
ation between variations in ESR2 promoter 
methylation and the development of AIS, al-
though no direct link was found with the se-
verity of the curvature. This study is the first 
to explore the potential role of local tissue 
DNA methylation in scoliosis pathogenesis. 

Additionally, Janusz et al. investigated the 
deep paravertebral and superficial dorsal mus-
cles in idiopathic scoliosis patients, focusing 
on the regulation of differentially methylated 
regions (T-DMRs) in the estrogen receptor 1 
(ESR1) gene [120]. 
Functional consequences of promoter hyper-
methylation may further elucidate the mech-
anistic basis of scoliosis development. For 
instance, reduced expression of PITX1 or 
KAT6B due to hypermethylation may im-
pair osteoblast–osteoclast balance by down-
regulating transcription factors and histone 
acetyltransferases essential for skeletal ho-
meostasis, potentially leading to bone mod-
eling defects [108, 121]. Likewise, HAS2 
downregulation due to altered methylation at 
cg01374129 could disturb intervertebral disc 
(IVD) homeostasis, as hyaluronan is a key 
component for maintaining disc hydration and 
viscoelasticity [122]. These epigenetic disrup-
tions could translate into vertebral instability 
and progressive curvature, linking molecular 
alterations to biomechanical outcomes in sco-
liosis.

Methylation Level Differences and Pathway 
Regulation
Differentially methylated regions (DMRs) at 
various loci frequently display variations be-
tween individuals with scoliosis and healthy 
controls. As a result, research has expanded 
beyond focusing solely on abnormal meth-
ylation at specific loci to explore the broader 
implications of widespread methylation alter-
ations across the genome. Studying DMRs in 
monozygotic (MZ) twins—who share identi-
cal genetics but may present distinct pheno-
types—provides a unique opportunity to gain 
deeper insights into the link between abnor-
mal DNA methylation and the development 
and progression of scoliosis [123]. In 2019, a 
study utilizing a pair of MZ twins with AIS 
aimed to identify their DMRs. The research-
ers subsequently validated the role of these 
DMRs in a larger cohort of 20 AIS patients 
and healthy controls [124]. 
In this study, 313 hypermethylated and 397 
hypomethylated DMRs were identified. The 
regulation of gene expression associated with 
these DMRs is mainly mediated through the 
MAPK/PI3K-Akt signaling pathway. Previ-

Molecular and Imaging Insights in Scoliosis Ghanbari A, et al.
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ous research has shown that the MAPK/PI3K-
Akt pathway plays a crucial role in osteoblast 
differentiation and bone formation [125, 126]. 
Additionally, it was reported that the MAPK 
pathway, along with other signaling path-
ways, is involved in the pathogenesis of CS in 
affected patients [127]. These DMRs regulate 
the downstream expression of proteins pre-
dominantly involved in the MAPK and calm-
odulin pathways, both of which are essential 
for cytogenesis. Moreover, the calmodulin 
pathway directly influences osteogenesis and 
plays a significant role in the development of 
vertebral bodies in patients with scoliosis. In 
a study, eight pairs of MZ twins with scoli-
osis were enrolled to further investigate the 
involvement of these pathways [128]. 

Histone Modification
Histone modifications, including methylation 
and acetylation, are epigenetic alterations that 
affect transcriptional activity by modifying 
the structure of chromatin, which in turn regu-
lates gene expression [97]. A genotyping study 
was conducted on 500 patients with AIS and 
494 age-matched controls using PCR-based 
Invader analysis [129]. The results revealed 
a strong association between the rs12459350 
variant, which regulates histone lysine 79 
(H3K79) methylation, and susceptibility to 
AIS. However, the study did not explore the 
specific mechanisms driving this association.
In 2019, histological and genetic testing was 
conducted on articular cartilage from 11 pa-
tients with idiopathic scoliosis (IS), with the 
results compared to those of 10 matched con-
trols. The findings suggest that histone meth-
ylation may play a role in abnormal chon-
drocyte proliferation through the miR-15a/
Bcl2 signaling axis, thereby disrupting spinal 
growth and contributing to the development 
of scoliosis [61].

Historical Background of Imaging in Spi-
nal Curve Assessment

Throughout the years, much effort has been 
made to find an imaging technique with more 
advantages and fewer limitations. Wilhelm 
Conrad Roentgen primarily introduced the 
use of X-ray in assessing bony structures in 
1895 [130]. Subsequently, the efforts of Dr. 

Godfrey Hounsfield led to the advent of com-
puted tomography (CT) in 1973, an imaging 
technique widely used in different medical 
conditions, including abnormal spinal cur-
vature [131]. Magnetic resonance imaging 
(MRI) was the next advancement in medical 
imaging, yielded by Paul Lauterbur in the ear-
ly 1970s, which facilitated a more detailed in-
spection of different body parts, including the 
spine [132]. 
On the other hand, given that the studies 
showed inter- and intra-operator differences 
in the measurement of specific values used for 
diagnosing spinal curvature (e.g., the Cobb 
angle), the more recent efforts are aimed at 
computer-aided methods, which reduce sub-
jective errors. Although some non-imaging 
methods exist, traditional imaging remains 
essential, with a demand for fully automated 
Cobb angle measurement software to enhance 
diagnostic accuracy and streamline scoliosis 
management [130].
While molecular alterations shed light on the 
pathogenesis of scoliosis at the cellular and 
genetic levels, these insights must be trans-
lated into clinical practice through thorough 
physical examination. The following section 
delves into clinical techniques essential for 
identifying external manifestations of under-
lying molecular dysfunctions.

Detailed Review of Current Measurement 
Methods

Thanks to recent advances in imaging and 
measurement, assessing and monitoring spi-
nal curvature has become much more precise 
and accessible. These techniques are essen-
tial tools for spotting conditions like scolio-
sis and help physicians monitor any changes 
over time. This paper looks at some of the 
most commonly used methods, exploring the 
unique features of each method. Table-1 of-
fers a quick comparison, laying out the pros 
and cons of each method to show how they 
work in real-world settings.

Clinical Examination Techniques

The physical examination of the scoliosis pa-
tient should start with the inspection of the 
stature and skin before evaluating the contour 
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Table 1. Summary of Imaging Techniques for Spinal Curvature Assessment
Technique Key Metrics/Parameters Strengths Limitations

X-ray Cobb Angle, Ferguson Angle
Widely available, 
low cost, rapid 
imaging

Radiation exposure, 
limited to static images

CT (Computed 
Tomography)

3D reconstruction, axial/sagittal 
views

Detailed anatomical 
visualization

High radiation, requires 
a supine position

MRI 3D spinal structure, soft tissue 
detail

No radiation, 
excellent soft tissue 
contrast

High cost, limited 
availability, lengthy 
exam time

EOS Imaging 3D surface reconstruction, 
standing views

Ultra-low radiation, 
precise 3D 
measurements, 
weight-bearing

Expensive, limited 
accessibility

Surface 
Topography Spinal contour, symmetry

Radiation-free, 
provides 3D/4D 
representations

Less reliable for deeper 
structures, limited 
accuracy

Ultrasound 
(2D/3D) Cobb Angle, vertebral rotation

No radiation, 
portable, suitable 
for mild cases

Limited in obesity, 
time-consuming for 3D 
imaging

Motion Analysis Gait patterns, compensatory 
mechanisms

In-depth dynamic 
assessment of 
movement

Requires specialized 
equipment, inconsistent 
results

Ref.s: [133-143]

of the back. Height measurement is crucial for 
assessing skeletal growth and the potential ad-
vancement of scoliotic curvature [144]. More-
over, particular tests will be examined in the 
subsequent paragraphs.

1. Palpation Techniques
To assess a patient suspected of scoliosis, it is 
essential to check for any unevenness in the 
shoulders and hips carefully. Significant dif-
ferences in leg length, which can be checked 
by feeling the iliac crests or observing the 
alignment of the dimples at the back (formed 
by the posterior-superior iliac spines), may 
cause the spine to tilt from the pelvis, result-
ing in curvature [144].

2. Gait and Posture Analysis
Research on gait in scoliotic patients reveals 
several anomalies, although the results are 
relatively inconsistent. Mahaudens et al. doc-
umented reduced step length and restricted 
range of motion in the pelvis, hip, shoulder 
(frontal plane), and knee (sagittal plane) in 
scoliotic patients [145]. Chen et al. discov-
ered that the gait patterns of scoliotic patients 

were analogous to those of healthy persons 
[146]. Additional research indicates that indi-
viduals with scoliosis may exhibit diminished 
cadence, restricted pelvic movement in the 
transverse plane, and either normal or reduced 
step length [147].

3. Physical Function Tests
Functional mobility tests (FMTs) have been 
validated for evaluating physical perfor-
mance, trunk and lower limb muscle integrity, 
and body balance across several conditions, 
including lumbar stenosis [148]. A study by 
Lee et al. showed that mobility function was 
considerably more compromised in patients 
with adult spinal deformity compared to those 
with lumbar spinal stenosis [149]. Various 
studies have employed distinct FMTs for this 
objective: the Alternate Step Test, the Six-Me-
ter Walk Test [150], the Sit-to-Stand Test, and 
the Timed Up and Go Test [150-152].

3.1. Leg Length Discrepancy Assessment
Leg length discrepancy (LLD) is common, im-
pacting 2% to 24% of the general population 

Ghanbari A, et al. Molecular and Imaging Insights in Scoliosis Molecular and Imaging Insights in Scoliosis Ghanbari A, et al.

10 GMJ.2025;14:e3814
www.gmj.ir



and 7% to 30% of individuals with low back 
pain, and is associated with the development 
of scoliosis [153]. Measurement approaches 
for LLD are classified into two primary cate-
gories: direct and indirect. Direct techniques, 
such as the supine tape method, assess the 
anatomical length of each leg separately to 
determine the discrepancy. Indirect approach-
es, such as the standing lift technique, assess 
the discrepancy without individually measur-
ing each leg. Furthermore, techniques may 
be categorized as weight-bearing (standing) 
or non-weight-bearing (supine/prone) [154, 
155]. Weight-bearing methods consider the 
influence of gravity on compressible tissues, 
whereas non-weight-bearing approaches may 
more accurately evaluate "true" leg length dis-
crepancy, especially in the presence of angu-
lar deformities [153].

3.2. Adam's Forward Bend Test
The Adam's forward bend test, which necessi-
tates no specialized equipment, assists in de-
tecting scoliosis by exposing a "rib hump"—
an asymmetrical back shape that signifies a 
curvature beyond 10 degrees and necessitates 
radiographic assessment [156]. The test ne-
cessitates that the subject stands and bends 
forward while maintaining straight knees, 
with arms hanging and feet and palms to-
gether. The examiner utilizes a scoliometer to 
assess the angle of trunk rotation (ATR). The 
level of ATR typically serves as a criterion for 
referral or subsequent imaging [157].

3.3. Scoliometer
The assessment of thoracic rotation or rib 
hump angle is a conventional method for as-
sessing scoliosis progression in spinal clin-
ics and school screening initiatives globally 
[158]. The Scoliometer, an inclinometer de-
veloped by Bunnell in 1984, minimizes the 
necessity for repeated radiographs by offering 
a dependable, non-invasive evaluation [159]. 
The Scoliometer is an essential instrument 
for monitoring scoliosis when utilized in 
conjunction with Cobb angle measurements. 
Despite the Scoliometer's association with in-
ter- and intra-observer variability, Bonagam-
ba et al. demonstrated optimal reproducibility 
by mitigating previous sources of variability, 
including patient placement, vertebral level 

palpation, and patient tiredness from repeated 
readings over time [160]. 
3.4. Plumb Line Assessment
A plumb line is a device commonly used to 
assess patients with pathological spine curva-
ture. Plumb line distances (PDs), as delineat-
ed by Stagnara in 1988, are widely recognized 
and disseminated. Their interrater reliability 
is commendable, exhibiting a moderate cor-
relation in identifying thoracic spine malfor-
mations, demonstrating substantial reliability 
and validity. Although PDs are a quantifiable 
method, they delineate the sagittal profile 
[161]. The reliability and validity of this tech-
nique, however, remain unverified and un-
standardized. The plumb line approach is sim-
ple to employ; nonetheless, it is susceptible to 
several inaccuracies, including slight devia-
tions, movement mistakes, and postural sway, 
necessitating cautious application [162].
Although physical examination provides the 
first clues to spinal deformities, imaging re-
mains indispensable for definitive diagnosis 
and progression monitoring. The subsequent 
section reviews conventional and advanced 
imaging approaches that enhance the clinical 
understanding of spinal curvature abnormal-
ities.

Imaging Techniques

1. Radiographic Techniques
X-ray imaging is the gold standard for diag-
nosing idiopathic scoliosis due to its wide-
spread availability, cost-effectiveness, and 
rapid results compared to other modalities 
[163]; however, children are not subjected to 
it for screening purposes due to radiation risks 
[164].

1.1. Cobb Angle Measurement
The Cobb angle remains the primary measure 
for determining how severe a spinal deformity 
is, particularly in cases like adolescent idio-
pathic scoliosis (AIS). This metric is general-
ly used for examining the spine in the coronal 
and sagittal views [165]. In the standard ap-
proach, the upper and lower end vertebrae are 
identified on anteroposterior X-ray images of 
the whole spine. Afterward, vertical lines are 
drawn along the endplate lines of these ver-
tebrae, and the angle created between these 
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two vertical lines is known as the Cobb angle 
[166].
Limitations constrain this method; the ref-
erence vertebrae appear to differ across re-
search, potentially resulting in varying mea-
surements and, complicating comparisons and 
the creation of normative values. Arm loca-
tion constitutes an additional inconsistency in 
the radiologic evaluation that may hinder the 
assessment [167].
Given these limitations, future directions 
should explore the integration of molecu-
lar profiling—including non-coding RNAs, 
methylation markers, and cytokine signa-
tures—with imaging data to enhance diag-
nostic precision. Such an approach may en-
able the development of biomarker–imaging 
correlation models capable of predicting sco-
liosis onset and progression beyond static an-
atomical measurements like the Cobb angle. 
This convergence could open avenues for 
more dynamic, individualized, and mechanis-
tic assessment strategies in clinical practice.

1.2. Ferguson Method and EOS Imaging 
The Ferguson angle offers an alternative way 
to gauge the severity of coronal spine defor-
mities [168]. It involves identifying the two 
terminal vertebrae at the curve ends based on 
Cobb angle measurements and locating the 
apex vertebra. Traditionally, the apical ver-
tebra was viewed as the one with the most 
rotation and distortion yet with minimal tilt. 
The current standard, however, defines it as 
the vertebra with the greatest lateral shift from 
the central sacral vertical line (CSVL), a verti-
cal line passing through the center of the first 
sacral segment. The angle known as the Fer-
guson angle is then formed by drawing lines 
between the midpoints of the terminal and 
apical vertebrae [169].

1.3. Risser Sign
The Risser sign is not primarily used to di-
agnose scoliosis but to understand its pro-
gression. This metric evaluates the ossifi-
cation level of the iliac apophysis to give a 
semi-quantitative view of a patient's skeletal 
maturity [170]. The iliac apophyses' ossifica-
tion usually happens closely with the verte-
bral ring apophyses, allowing for an estima-
tion of the spine's remaining growth poten-

tial. In idiopathic scoliosis, progression often 
peaks during adolescence, but the prognosis 
improves with advanced skeletal maturity, as 
shown by higher Risser stages. Typically, os-
sification of the iliac apophysis can be seen 
on radiographs in adolescents aged 12 to 15 
[169].

1.4. Nash-moe Method of Vertebral Rotation
The Nash and Moe method is used to assess 
the degree of rotation in the apical vertebra, 
which is the vertebra with the highest rotation 
and lateral shift within a curve [171]. This ro-
tation causes both pedicles of the apical verte-
bra to move toward the curve's concave side. 
The Nash and Moe system divides the verte-
bral body into six sections and rates pedicle 
rotation on a five-point scale [169].

1.5. Whole-spine Standing Radiographs (EOS 
Imaging)
The EOS X-ray system provides bipla-
nar images of the entire body in a standing, 
weight-bearing position with minimal radi-
ation exposure. By capturing both front and 
side views, the EOS system enables a 3D re-
construction of the skeleton [172]. This ap-
proach offers highly accurate measurements 
of skeletal structures, including limb lengths, 
angles, and spinal curvature (such as kypho-
sis, lordosis, and scoliosis), presented in a 
true-to-size 1:1 scale [173]. 

1.6. Limitations of X-ray
While X-rays are effective for measuring spi-
nal curvature, they fall short in assessing the 
cosmetic impact of deformity in patients with 
AIS. During adolescence, many individuals 
are more concerned about correcting the vi-
sual appearance of their back rather than the 
degree of spinal curve [174].

1.7. Coronal Trunk Balance
The balance of the spinal column, particu-
larly in the frontal plane, can be indicated by 
the lateral trunk deviation. A vertical line is 
dropped from the center of the C7 vertebral 
body to the baseline on a full-spine X-ray. The 
distance between this line and the CSVL—a 
vertical line through the center of the first 
sacral segment—represents the coronal trunk 
balance [175]. When the plumb line shifts left, 
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the value is negative; when it moves right, the 
value is positive [169].
2. Surface Topography Techniques
Developing a system for identifying and mon-
itoring scoliosis is crucial to minimize expo-
sure to ionizing radiation, hence decreasing 
the risk of malignant diseases in patients. Sur-
face topography (ST) is an imaging technique 
that requires no supplementary apparatus or 
equipment, rendering it an appropriate option 
for various clinical settings. These techniques 
produce a 3D/4D representation of patients' 
spines utilizing diverse models and protocols, 
enabling the quantification of the cosmetic 
deformity associated with AIS while avoiding 
exposure to ionizing radiation [174].

2.1 Moiré Topography
The Moiré technique, an early method of sur-
face topography, employs overlapping pat-
terned grids projected onto the rear surface. 
This projection delineates contour variations, 
facilitating the evaluation of spinal curvature 
[176]. The Moiré approach, albeit valued 
for its simplicity and cost-effectiveness, is 
constrained by inconsistent accuracy, which 
hinders its exclusive application in clinical 
environments. It is recommended as an ad-
junctive approach to radiography to minimize 
radiation exposure, which is particularly ad-
vantageous for the longitudinal scoliosis as-
sessment [174].

2.2 Rasterstereography
Rasterstereography, subsequently devel-
oped, enhanced surface measuring by em-
ploying a slide projector to project gridlines 
onto the posterior surface. The distortions in 
these lines, captured by a camera, generate a 
three-dimensional reconstruction of the sur-
face of the back. Devices such as ISIS and 
ISIS2 enhanced rasterstereography, optimiz-
ing acquisition duration and minimizing the 
impact of motion artifacts [174]. 
Rasterstereography is primarily character-
ized by two measurement methods: (1) the 
first employs the analysis of light projected 
onto the subject's skin, which is dependable 
and constitutes the most prevalent application 
of rasterstereography; (2) the second utilizes 
an infrared and time-of-flight 3D RGB cam-
era, which also appears to be reliable [177]. 

However, the method's constraints, including 
vulnerability to postural alterations, have hin-
dered its practical implementation [174].

2.3 Formetric 3D/4D
The Formetric 3D system, an advancement 
of rasterstereography, initially faced chal-
lenges with dependability owing to postural 
wobble. Formetric 4D mitigated this issue by 
averaging several images to diminish motion 
artifacts. This approach has shown a robust 
association with radiographic Cobb angle 
measures, affirming its utility in scoliosis 
monitoring rather than initial diagnosis. The 
Formetric systems demonstrate commendable 
test-retest dependability; nonetheless, they are 
prohibitively expensive for regular monitor-
ing [174].
While radiographic methods have long been 
the cornerstone of scoliosis evaluation, con-
cerns about radiation exposure—especially 
in pediatric patients—have prompted the de-
velopment of alternative imaging strategies. 
These radiation-free modalities are discussed 
in the following section.

3. Ultrasound Techniques
Ultrasound (US) imaging has gained atten-
tion in recent years due to its non-radiative 
nature, ease of use, and affordability, making 
it a valuable tool for scoliosis research. Nu-
merous researchers have explored and devel-
oped US imaging, recognizing its potential as 
a leading methodology in this field [178]. 

3.1. 2D Ultrasound
Ultrasound provides a clear view of the spine's 
posterior surface and is generally easier to ac-
cess than MRI or radiography. Portable ultra-
sound devices could enable spine monitoring 
in areas without fixed medical imaging facil-
ities. Research has revealed a consistent rela-
tionship between the Cobb angle measured on 
X-rays and vertebral rotation identified by ul-
trasound at the apex vertebra in untreated sco-
liosis patients [179]. Additionally, by integrat-
ing tracking capabilities into the ultrasound 
transducer, clinicians can now reconstruct 3D 
volumes from 2D ultrasound images, opening 
new possibilities for spinal diagnostic assess-
ments [180].
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3.2. 3D Ultrasound
Developed by Suzuki et al., 3D spinal ultraso-
nography has demonstrated efficacy for AIS 
[181]. Significantly, Chen et al. [182] vali-
dated the "center-of-lamina" methodology, 
demonstrating that it yields curve magnitude 
and vertebral rotation data analogous to tradi-
tional radiography. 
Grounded in the premise that the laminae and 
spinous processes function as dependable ref-
erence points, it offers a method for evaluat-
ing three-dimensional spinal abnormalities by 
analyzing vertebral rotation in relation to the 
orientation of the laminae and the ultrasound 
sensor [179]. Li et al. (2012) conducted a 
study on the efficacy of orthotic treatment for 
patients with AIS utilizing 3D ultrasonogra-
phy to assess the spinous process angle, aim-
ing to improve orthotic treatment outcomes. 
The findings indicated that the ultrasound-as-
sisted fitting technique for spinal orthoses was 
effective and advantageous for 62% of the pa-
tients [183].
Ultrasonography is a readily accessible meth-
od that offers the benefits of being radia-
tion-free and cost-effective. The limitations 
include restricted identification of lower-de-
gree curves and an increased likelihood of 
human mistakes. Nonetheless, it can facilitate 
the secure assessment of curve progression 
over time without necessitating repeated radi-
ography observations at short intervals [184].

3.3. Ultrasound-based Scolioscan
Scolioscan utilizes ultrasound imaging to 
generate three-dimensional spine models, 
providing a dependable radiation-free option. 
This approach demonstrates a strong associa-
tion with radiographic Cobb angles, particu-
larly in mild scoliosis cases. Nonetheless, its 
extended acquisition duration and potential 
difficulties in imaging obese people are disad-
vantages. The technique is efficient for static 
measurements but is inadequate for dynamic 
activities, akin to Rasterstereography [174].

3.4. Elastography (Ultrasound-based) 
Various non-invasive methods now exist to 
measure the elasticity of tissues, helping to 
understand their mechanical properties. These 
elasticity imaging techniques gather data on 
tissue flexibility and can be applied to deep-

er organs, opening up new possibilities for 
screening and diagnosis [185]. In the 1970s 
and 1980s, early approaches used static load-
ing and external vibrations to apply stress to 
tissues, followed by modified color Doppler to 
track tissue movement and measure stiffness 
[186, 187]. By the late 1990s, a quasi-static 
method was developed to assess tissue elas-
ticity remotely through physical compression 
or natural body pulsations, a technique now 
known as strain elastography [188]. Later on, 
dynamic shear wave elastography emerged, 
allowing the measurement of shear wave 
speed (SWS), which correlates directly with 
the tissue's elastic properties, unlike strain 
elastography [189]. Shear wave elastogra-
phy uses focused acoustic radiation to gener-
ate shear waves within the tissue, measuring 
the wave speed to assess local stiffness [188, 
190].

3.5. Automatic Spine Ultrasound Segmenta-
tion
Automated Spine Segmentation and Measure-
ment is a novel, AI-based method that utilizes 
monitored ultrasonography and convolution-
al neural networks (CNNs) to evaluate spinal 
curvature. This technology utilizes CNNs to 
autonomously detect and segment the spine 
from ultrasound pictures, thereby generating 
a 3D spinal model for precise scoliosis assess-
ment. This automated procedure requires un-
der one minute and attains a maximum error 
margin of approximately 2.2° compared to 
conventional X-rays [191].

4. Alternative Imaging Methods

4.1 Photogrammetry
Photogrammetry is a dependable method for 
acquiring information about an object and its 
surroundings through the measurement and 
analysis of photographic images, facilitating 
the quantification of human body measure-
ments [167]. It facilitates precise quantitative 
assessment by documenting subtle alterations 
in postural alignment [192]. This method may 
be deemed superior to alternative non-inva-
sive techniques due to its low cost, ease of 
transport and photo-interpretation, and ca-
pacity to measure minor postural alterations 
while tracking the progression, stabilization, 
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or reduction of postural asymmetries in adults 
over time [193]. Although it is a straight-
forward procedure employed extensively, it 
has certain disadvantages, namely that it is 
time-consuming and does not yield quick re-
sults. Furthermore, being a two-dimensional 
technique, it cannot evaluate rotational dif-
ferences among vertebrae [162]. Moreover, 
research has indicated elevated intra- and in-
ter-rater dependability for the photogrammet-
ric approach [194, 195].

4.2 Spinal Mouse
The skin-surface mouse is a viable and trust-
worthy instrument for spinal evaluation, par-
ticularly for kyphotic posture. It can be ma-
neuvered along the spinal profile to measure 
vertebral shape and angulation. The Spinal 
Mouse is cost-effective; however, its price 
range remains inaccessible to some; it offers 
great precision and robust software analysis, 
while it is exclusively concentrated on the 
spine [177].

4.3. Motion Analysis Systems
Progress in dynamic motion analysis offers a 
more thorough evaluation of gait and balance. 
Skalli and associates were among the first to 
employ motion analysis to detect dynamic 
compensations in scoliosis patients, highlight-
ing the pelvis's significance in postural control 
before and during surgical intervention [196]. 
Patel et al. expanded this research by assess-
ing pelvic incidence as a predictor of sagittal 
alignment and hip dynamics, noting that el-
evated pelvic incidence was associated with 
an augmented hip range of motion. Their find-
ings indicate that pelvic morphology affects 
gait patterns, highlighting the necessity for 
patient-specific motion analysis in conjunc-
tion with conventional imaging to enhance 
personalized surgery planning [197].

4.4. CT scan
CT has restricted utility in scoliosis diagnosis 
due to its carcinogenic potential and the re-
quirement for the supine position during im-
aging. The supine position alters the existing 
three-dimensional spinal malformation. A 3D 
representation of the standing position pro-
vides precise findings for scoliosis diagnosis 
[184]. In accordance with standard practices 

in most institutions, a prone position during 
CT scanning will be employed to replicate the 
surgical position closely. EOS serves as an op-
tion to address these restrictions [198].

4.5. MRI
Non-radiative options, such as sonographic 
analysis, can only partially evaluate the sit-
uation [199]. MRI has been recognized as a 
comparable alternative for evaluating Cobb 
angle [200, 201]. Regrettably, MRI is less ac-
cessible, more costly, and necessitates an ex-
amination duration of 20–60 minutes, during 
which the patient must avoid excessive move-
ment [202]. This scenario may pose difficul-
ties for younger children; however, a recent 
study indicates that MRI can still yield perti-
nent information [203]. A revolutionary, rapid, 
low-angle shot MRI technology (FLASH 2.0) 
now offers a radiation-free, ultra-fast alterna-
tive to radiography that is suitable for daily 
usage and unaffected by mobility [204, 205]. 
Additionally, a recent study showed that re-
al-time MRI offers diagnostic efficacy com-
parable to traditional radiography in assessing 
idiopathic scoliosis, while eliminating the 
need for ionizing radiation. The duration of an 
MRI examination is slightly shorter than that 
of traditional radiography. Therefore, spinal 
real-time MRI assessment serves as an excel-
lent and efficient alternative to conventional 
radiography [206].
Nonetheless, the application of MRI is con-
strained. If screws, hooks, or rods are im-
planted in the subject's body for spinal cor-
rection, an MRI cannot be performed [184]. 
The routine use of MRI in idiopathic scoliosis 
remains a topic of debate, as the indications 
for its application vary across studies. Howev-
er, the established criteria for the routine use 
of MRI can be summarized as follows: pres-
ence of pain (back, neck, radicular, headache), 
neurological findings (such as clonus, abnor-
mal abdominal reflexes, weakness, urinary 
dysfunction, hyperreflexia, asymmetric deep 
tendon reflexes, paresthesia, diminished rec-
tal tone, cavus foot deformity, skin lesions), 
atypical curve patterns (including left thorac-
ic, short segment, reduced rotation, absence of 
thoracic apical segmental lordosis, rapid pro-
gression, and a thoracic kyphosis angle >30 
degrees), early-onset scoliosis, male gender, 
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and the presence of associated organ anoma-
lies [207, 208].
Importantly, the advancement of both mo-
lecular biology and imaging has opened new 
frontiers for integrated diagnostics. The next 
section explores how these two complemen-
tary approaches can be combined to improve 
early detection and personalized management 
of scoliosis.

Bridging Molecular and Imaging Ap-
proaches in Scoliosis Diagnosis

An integrated diagnostic approach that com-
bines molecular insights with imaging find-
ings holds great potential for improving the 
early detection and personalized management 
of scoliosis. Molecular alterations such as 
dysregulated non-coding RNAs, epigenetic 
modifications, and imbalances in inflamma-
tory cytokines may contribute to pathological 
changes in spinal development that are subse-
quently detectable through imaging.
For instance, aberrant expression of miR-122-
5p, miR-27a-5p, and miR-223-5p has been 
associated with adolescent idiopathic sco-
liosis and may reflect underlying structural 
abnormalities that can be visualized through 
3D ultrasound imaging or surface topogra-
phy [65, 67]. Similarly, overactivation of the 
Wnt/β-catenin pathway, which impairs bone 
matrix mineralization, correlates with abnor-
malities detected by EOS imaging and Cobb 
angle progression [52, 67].
By correlating molecular biomarkers with 
radiological features—such as curve magni-
tude, vertebral rotation, or paraspinal asym-
metry—clinicians may be able to identify 
high-risk patients earlier and tailor monitoring 
and intervention strategies. This convergence 
of biological and structural data represents a 

critical step toward precision medicine in sco-
liosis care.

Conclusion

In conclusion, integrating molecular insights 
with advanced imaging methodologies offers 
a promising avenue for the early diagnosis 
and personalized management of pathological 
spinal curvature. The evidence indicates that 
the dysregulation of non-coding RNAs, over-
activation of the Wnt/β-catenin pathway, and 
imbalances in inflammatory cytokines and 
epigenetic modifications significantly con-
tribute to the development and progression of 
spinal deformities. Concurrently, the evolu-
tion of imaging techniques—from traditional 
radiography to state-of-the-art 3D reconstruc-
tion and computer-assisted measurements—
has markedly enhanced the precision of spinal 
curvature assessment.
Looking forward, proposing ncRNA-based 
and methylation-based biomarkers holds sig-
nificant potential for the early prediction or 
monitoring of scoliosis progression. More-
over, bioinformatic approaches, such as inte-
grative transcriptomic and methylation anal-
yses, may facilitate the discovery of novel 
molecular subtypes of scoliosis, paving the 
way for stratified and more effective thera-
peutic strategies. Future research that further 
bridges these molecular and clinical domains 
is essential for devising targeted interventions 
that effectively address both the biological 
and structural components of spinal curva-
ture, ultimately leading to improved patient 
outcomes.
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