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Abstract

Psoriasis, a chronic immune-mediated skin disorder affecting 2-3% of the global population, is 
driven by a complex interplay of immune dysregulation, keratinocyte dysfunction, and genetic/
epigenetic alterations, with systemic comorbidities like psoriatic arthritis and cardiovascular 
disease amplifying its burden. Recent molecular insights, leveraging single-cell RNA sequenc-
ing and transcriptomics, have elucidated key pathogenic mechanisms, including GSDME-me-
diated pyroptosis, IL-23/IL-17 axis activation, YAP1-driven proliferation, and epigenetic mod-
ulation via miR-106a-5p and lncRNA MEG3. These findings have spurred targeted therapies: 
IL-17 inhibitors (e.g., secukinumab) achieve rapid histologic remission, IL-23 inhibitors (e.g., 
risankizumab) offer sustained efficacy, and novel approaches like hyperforin, Deu@Cal mi-
croneedles, and concentrated growth factor (CGF) target diverse pathways in preclinical and 
early clinical settings. However, challenges persist, including adverse events (e.g., paradox-
ical eczema, MACEs), treatment resistance (81% biologic switching), and gaps in personal-
ization despite promising biomarkers (e.g., calprotectin, miR-106a-5p). Future directions em-
phasize multi-omics integration, novel agents, and combination therapies to overcome these 
hurdles, aiming to transform psoriasis management into a paradigm of precision medicine.
[GMJ.2025;14:e3854] DOI:10.31661/gmj.v14i.3854
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Introduction

Psoriasis, a chronic immune-mediated 
inflammatory skin disorder, affects ap-

proximately 2-3% of the global population, 
presenting as erythematous, scaly plaques 
that profoundly impact quality of life [1]. 
Beyond its cutaneous manifestations, psori-
asis is increasingly recognized as a systemic 
disease, intertwined with comorbidities such 
as psoriatic arthritis (affecting 20-30% of 
patients), cardiovascular disease, metabolic 

syndrome, and latent tuberculosis infection 
(LTBI), which collectively escalate its clini-
cal, psychological, and socioeconomic toll [2-
5]. The past decade has ushered in a revolu-
tionary understanding of psoriasis, propelled 
by cutting-edge technologies like single-cell 
RNA sequencing (scRNAseq), spatial tran-
scriptomics, and proteomic profiling, which 
have decoded its molecular intricacies [6-8]. 
These advancements reveal a dynamic inter-
play of immune dysregulation, aberrant kera-
tinocyte proliferation, and genetic/epigenetic 
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alterations as the disease’s driving forces [9, 
10]. Key pathogenic pathways—including 
the IL-23/IL-17 axis, GSDME-mediated py-
roptosis, YAP1-induced hyperproliferation, 
and epigenetic modulation via miR-106a-5p 
and lncRNA MEG3—have emerged as criti-
cal mediators of inflammation and epidermal 
pathology [11-13] (see Figure-1). This review 
synthesizes findings from peer-reviewed stud-
ies published up to March 2025, sourced from 
PubMed, GEO datasets (e.g., GSE41662), 
and clinical trial registries (e.g., ClinicalTri-
als.gov NCT03611751), to explore the molec-
ular pathogenesis and therapeutic innovations 
transforming psoriasis management.
These molecular breakthroughs have cata-
lyzed a shift from nonspecific immunosuppres-
sion to precision-targeted therapies, reshaping 
psoriasis treatment. Biologics such as secuki-
numab (an IL-17 inhibitor) and risankizumab 
(an IL-23 inhibitor) have set new benchmarks, 
delivering rapid histologic remission and sus-
tained efficacy in diverse patient cohorts [14]. 
Meanwhile, novel approaches like hyperforin, 

Deu@Cal microneedles, and concentrated 
growth factor (CGF) are expanding the ther-
apeutic arsenal by targeting distinct pathways 
in preclinical and early clinical stages [15]. 
Yet, challenges persist: adverse events (e.g., 
paradoxical eczema, major adverse cardiovas-
cular events [MACEs]), treatment resistance 
(e.g., 81% biologic switching), and gaps in 
personalization despite promising biomarkers 
like calprotectin and miR-106a-5p underscore 
the need for continued innovation [2, 3]. This 
review aims to consolidate recent advances 
in the molecular underpinnings of psoriasis, 
assess the efficacy and limitations of target-
ed therapies, and outline future directions to 
bridge these gaps, paving the way for a preci-
sion medicine paradigm tailored to individual 
patient profiles. 

Unveiling Psoriasis: From Clinical Burden 
to Molecular Insights

Psoriasis is a chronic, immune-mediated in-
flammatory skin disorder affecting 2-3% of 

Figure 1. Integrated Model of Psoriasis Pathogenesis and Targeted Therapies. Left: Key molecular pathways driving psoriasis, including 
GSDME-mediated pyroptosis, IL-23/IL-17 axis, YAP1 hyperproliferation, and PI3K/AKT/mTOR dysregulation. Center: Cellular interactions 
between keratinocytes (KC), T17 cells, and dendritic cells (DCs) amplifying inflammation. Right: Targeted therapies inhibiting specific 
pathways to restore skin homeostasis. Arrows indicate interactions or therapeutic targets, with references noted.
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the global population, marked by erythema-
tous plaques, scaling, and significant qual-
ity-of-life impairment. Its systemic nature 
includes comorbidities like psoriatic arthri-
tis, cardiovascular disease, and latent tu-
berculosis infection (LTBI), amplifying its 
clinical burden [16, 17]. Molecular biology 
advances reveal a complex interplay of im-
mune dysregulation, genetic predisposition, 
and environmental triggers. Single-cell RNA 
sequencing (scRNAseq) and spatial transcrip-
tomics (STseq) highlight key cellular driv-
ers—keratinocytes, T cells, and fibroblasts 
[18, 19]. SLC35E1, enriched in psoriatic su-
prabasal layers, mitigates IMQ-induced hy-
perplasia when deficient [20]. YAP1 upreg-
ulation drives keratinocyte proliferation and 
inflammation, correlating with severity [11]. 
Gasdermin E (GSDME)-mediated pyroptosis, 
triggered by caspase-3 and TNF-α, amplifies 
psoriatic inflammation, with its inhibition re-
ducing lesions in IMQ models [21]. SerpinB7 
elevation suggests a protective role, as its de-
ficiency worsens hyperplasia [22]. Epigeneti-
cally, miR-106a-5p upregulation correlates 
with PASI scores and cytokines [23]. Targeted 
therapies capitalize on these insights: secuki-
numab resolves histologic and transcriptomic 
features [24], risankizumab modulates early 
cellular responses [18], and hyperforin reduc-
es IMQ-induced lesions via MAPK/STAT3 
[25]. LncRNA MEG3 suppresses PI3K/AKT/
mTOR, enhancing autophagy [13], while mi-
croneedle-delivered Deu@Cal alleviates hy-
perplasia and inflammation in IMQ models 
[15]. Concentrated growth factor (CGF) re-
duces IL-17 and improves persistent lesions 
in IL-23-treated patients [26]. This review 
synthesizes these advances (summarized in 
Figure-1 and Table-1), offering a roadmap for 
future psoriasis research and therapy. 

Decoding the Molecular Puzzle of Psoria-
sis: Immunity, Genetics, and Beyond

Psoriasis pathogenesis integrates immune 
dysregulation, keratinocyte defects, and ge-
netic/epigenetic factors.

Immune Dysregulation and Inflammatory 
Pathways
Innate and adaptive immunity drive psoria-

sis. GSDME-mediated pyroptosis in kerati-
nocytes, activated by caspase-3 and TNF-α, 
releases IL-1β, IL-6, and TNF-α in psori-
atic lesions and IMQ models, with Gsdme 
knockout or caspase-3 inhibition reducing 
inflammation [21]. SerpinB7 deficiency ex-
acerbates IMQ-induced cytokines (TNF-α, 
IL-1β, IL-23) and neutrophil infiltration [22]. 
WGCNA links OXSM to gamma-delta T-cell 
infiltration [27]. Risankizumab reduces IL-
17 signaling in keratinocytes and modulates 
myeloid cells [18]. Hyperforin suppresses 
splenic γδ T cells and cytokines (TNF-α, IL-
6, IL-17A) via MAPK/STAT3 [25]. LncRNA 
MEG3 inhibits PI3K/AKT/mTOR, reducing 
IL-6, IL-8, IFN-γ, and IL-1β while enhancing 
autophagy [13]. IL-17A blockade decreases 
T17 signatures (IL17A, IL17F) and boosts 
regulatory signals (IL34, IL37) [28]. Deu@
Cal microneedles downregulate TNF-α, IL-
23, IL-17, and IL-6, alleviating splenomegaly 
in IMQ models [15]. CGF reduces peripher-
al and cutaneous IL-17, downregulating Il20 
and Cxcl5 [26]. These findings emphasize cy-
tokine-driven inflammation (see Figure-1).

Keratinocyte Proliferation and Differentia-
tion Defects
Psoriatic keratinocytes exhibit hyperprolifer-
ation and differentiation deficits. SLC35E1 
knockout reduces proliferation markers (EdU, 
Ki67) in IMQ models [20]. SerpinB7 defi-
ciency suppresses differentiation markers 
(KRT10, filaggrin) [22]. LRRC8A disruption 
impairs early differentiation [29]. Proteomic 
analysis shows reduced KRT17 and elevated 
elafin [30]. Secukinumab normalizes kera-
tin-16 [24]. Hyperforin reduces antimicrobial 
peptides (S100A7-9, CRAMP) [25]. IL-17A 
blockade decreases IL-17-driven mediators 
(IL36G, S100A8) and increases KRT15 in 
basal keratinocytes [28]. Deu@Cal micronee-
dles reduce Ki67 and epidermal thickness 
(ETmin: 55.8 µm vs. 123.8 µm in untreated) 
[15]. CGF enhances skin barrier function in 
IMQ models [26]. These studies clarify epi-
dermal pathology. 

Genetic and Epigenetic Contributions
Genetic and epigenetic alterations play a piv-
otal role in amplifying psoriasis pathogenesis, 
influencing both immune activation and kera-
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tinocyte dysfunction. Transcriptomic analysis 
reveals 1,608 differentially expressed genes 
(DEGs) in psoriatic skin, enriched in actin 
cytoskeleton organization and cytokine-cy-
tokine receptor interaction pathways, with 
genes like OXSM and ACTN4 implicated in 
immune cell infiltration and structural chang-
es [31]. Weighted gene co-expression network 
analysis (WGCNA) further identifies OXSM 
as a hub gene associated with gamma-del-
ta T-cell activity, suggesting a genetic basis 
for immune dysregulation [31]. YAP1, a key 
regulator in the Hippo signaling pathway, is 
significantly upregulated in psoriatic kerati-
nocytes, driving proliferation and inflamma-
tion through STAT3 and NF-κB activation, 
with its expression levels strongly correlat-
ing with disease severity (e.g., PASI scores) 
[11]. However, YAP1’s role remains debated, 
as some studies suggest its inhibition alone 
does not fully reverse hyperplasia, indicating 
potential compensatory pathways [11]. Epi-
genetic modifications add another layer of 
complexity: miR-106a-5p, a microRNA over-
expressed in psoriasis patients’ serum, targets 
PTEN, a negative regulator of the PI3K/AKT 
pathway, leading to enhanced signaling (AUC 
0.901 for diagnostic accuracy) and increased 
production of inflammatory cytokines like 
IL-6 and TNF-α, which correlate with clin-
ical severity [23]. Secukinumab treatment 
corrects approximately 68% of the dysregu-
lated psoriasis transcriptome, reversing aber-
rant gene expression profiles and normalizing 
pathways like IL-17 signaling, demonstrating 
the therapeutic potential of targeting these ge-
netic alterations [24]. Long non-coding RNA 
(lncRNA) MEG3 suppresses the PI3K/AKT/
mTOR pathway in TNF-α-treated keratino-
cytes and IMQ-induced mouse models, re-
ducing inflammatory cytokine expression (IL-
6, IL-8, IFN-γ) while promoting autophagy 
through increased LC3 levels, highlighting its 
role as an epigenetic modulator [13]. Deu@
Cal microneedles, delivering dual TYK2 in-
hibition and calcitriol, downregulate critical 
inflammatory pathways, including IL-17, IL-
22, and type I interferon (IFN) signaling, with 
RNA sequencing showing 5,120 DEGs (2,692 
upregulated, 2,428 downregulated) in treated 
IMQ mice, indicating broad transcriptomic 
modulation [15]. Concentrated growth factor 

(CGF) treatment upregulates genes associat-
ed with skin barrier function and hair cycle 
regulation (e.g., via GO enrichment analysis), 
while suppressing inflammation-associated 
genes like Il20 and Cxcl5 in IMQ models, 
suggesting an epigenetic influence on tissue 
repair [26]. Additionally, gasdermin E (GSD-
ME) expression is significantly elevated in 
psoriatic lesions compared to non-lesional 
skin (GEO dataset GSE41662), but not GSD-
MD, pointing to a specific genetic contribu-
tion to pyroptosis-mediated inflammation; 
yet, conflicting data on GSDME’s dominance 
over other gasdermins warrant further inves-
tigation [21]. These genetic and epigenetic 
changes collectively fuel the inflammatory 
and proliferative cascades of psoriasis, offer-
ing multiple targets for precision therapeutics, 
though their interplay with environmental 
triggers and comorbidities (e.g., obesity in 
48% of patients [32]) remains underexplored. 

Targeted Therapies: Precision Medicine in 
Psoriasis

Precision medicine targets specific pathways 
for psoriasis remission (summarized in Ta-
ble-1).
IL-17 and IL-23 Inhibitors: Biologic Precision
Secukinumab achieves histologic reversal 
in 56.5% and PASI75 in 62.5% by week 12, 
normalizing 68% of the transcriptome [24]. 
Risankizumab reduces IL-17 signaling early 
[18]. IL-17 inhibitors outperform IL-23 inhib-
itors in PASI90 at week 16 (56% vs. 42%), but 
IL-23 inhibitors excel in drug survival (88% 
vs. 75% at 24 months) and PASI ≤ 3 at week 
52 (89% vs. 83%) [33]. IL-23 inhibitors show 
the lowest switch rates (12.7% at 24 months) 
vs. TNF inhibitors (39.1%) [34]. IL-17 in-
hibitors carry a higher paradoxical eczema 
risk (1.22 vs. 0.56 per 100,000 person-years) 
[35], and IL-12/23 inhibitors link to MAC-
Es (PRR 518.28 for myocardial infarction) 
[16]. In LTBI patients, IL-17/IL-23 inhibitors 
show low TB reactivation (0.46% for IL-17, 
0% for IL-23), even without full prophylax-
is [17]. Ustekinumab and tofacitinib succeed 
in treatment-resistant cases [32]. These data 
highlight efficacy-safety balances; howev-
er, IL-17 inhibitors’ failure in some patients 
(e.g., 37.5% not achieving PASI75 by week 
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12 [24]) may stem from compensatory IL-23 
or TNF-α activity, necessitating combination 
strategies or alternative targets [33] .

Small Molecules and Conventional Therapies
Methotrexate reduces PASI (21.93 to 11.20) 
and calprotectin (83.22 to 59.04 ng/ml) [36]. 
MMFAL curbs hyperplasia in IMQ models 
[37]. Hyperforin matches methotrexate in re-
ducing IMQ lesions via MAPK/STAT3 [25]. 
LncRNA MEG3 enhances autophagy via 
PI3K/AKT/mTOR inhibition [13]. Deu@Cal 
microneedles outperform single-drug MNs, 
reducing PASI and cytokines [15]. CGF im-
proves persistent lesions in IL-23-treated pa-
tients [26]. These complement biologics.

Personalized Approaches and Biomarkers
Calprotectin predicts methotrexate response 
(cutoff 60 ng/ml, sensitivity 82.35%) [36]. 
MiR-106a-5p (AUC 0.901) tracks inflamma-
tion [23]. WNT5A+/IL24+ fibroblasts guide 
IL-23 therapy [18]. Peripheral IL-17 reduc-
tion post-CGF correlates with lesion improve-
ment [26]. Multi-omics could refine person-
alization. 

Challenges and Future Directions

Despite significant advances in understand-
ing psoriasis pathogenesis and developing 
targeted therapies, several challenges remain 
that necessitate innovative solutions and for-
ward-looking strategies to improve patient 
outcomes (see Table-1 for a comparative 
overview).

Therapeutic Limitations and Adverse Events
Current therapies, while effective, face lim-
itations that impact their long-term utility. IL-
17 inhibitors like secukinumab deliver rapid 
PASI90 responses (56% at week 16), yet their 
association with paradoxical eczema (1.22 per 
100,000 person-years) complicates their use 
in susceptible patients [13]. IL-12/23 inhibi-
tors, such as ustekinumab, exhibit the highest 
risk of major adverse cardiovascular events 
(MACEs), with a PRR of 518.28 for myocar-
dial infarction, raising safety concerns, partic-
ularly in patients with cardiovascular comor-
bidities [20]. TNF inhibitors, despite historical 
efficacy, show the highest switch rates (39.1% 

at 24 months), indicating reduced durability 
and potential loss of response over time, often 
due to immunogenicity or mechanistic failure 
[19]. In patients with LTBI, biologic therapies 
like IL-17 and IL-23 inhibitors demonstrate 
low TB reactivation rates (0.46% and 0%, re-
spectively), but incomplete chemoprophylax-
is—interrupted in 75.6% of cases due to hepa-
totoxicity—poses a persistent risk, especially 
in high-burden regions [21]. Treatment resis-
tance is another hurdle, with 81% of patients 
switching from their index biologic, predom-
inantly due to primary failure (21/29 cases), 
suggesting underlying mechanistic mismatch-
es rather than secondary immunogenicity 
[25]. Emerging therapies like hyperforin, ln-
cRNA MEG3, and Deu@Cal microneedles 
show promise in preclinical models by target-
ing MAPK/STAT3, PI3K/AKT/mTOR, and 
IL-23/IL-17 pathways, respectively, but their 
translation to clinical practice is hindered by a 
lack of human trials and scalability challenges 
[16, 17, 23]. Addressing these adverse events 
and resistance patterns requires a deeper un-
derstanding of patient-specific factors and the 
development of safer, more durable therapeu-
tic options.

Personalization and Predictive Tools
The heterogeneity of psoriasis responses un-
derscores the urgent need for personalized 
treatment strategies, yet current tools remain 
insufficiently robust. Biomarkers like se-
rum calprotectin (cutoff 60 ng/ml, sensitivity 
82.35%) and miR-106a-5p (AUC 0.901) ef-
fectively predict methotrexate response and 
inflammatory activity, respectively, but their 
application is limited to specific contexts [10, 
11]. Single-cell RNA sequencing has identi-
fied WNT5A+/IL24+ fibroblasts as a thera-
peutic target for IL-23 inhibitors like risanki-
zumab, offering a glimpse into cellular-level 
precision [14]. Similarly, CGF treatment’s 
reduction of peripheral IL-17 correlates with 
clinical improvement in resistant lesions, sug-
gesting its potential as a dynamic biomarker 
[24]. However, these markers are fragment-
ed, and no unified panel integrates genomic, 
transcriptomic, and proteomic data to predict 
outcomes across therapies. The complexity 
of translating scRNAseq findings into rou-
tine diagnostics—due to cost, technical ex-
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pertise, and standardization issues—further 
delays progress. Artificial intelligence (AI) 
and machine learning hold promise for ana-
lyzing multi-omics data to stratify patients, as 
demonstrated in other fields like oncology, but 
their application in psoriasis is nascent. De-
veloping comprehensive, accessible predic-
tive tools that account for genetic, immune, 
and environmental variables remains a critical 
challenge to achieving true precision medi-
cine. 

Future Therapeutic Horizons
The future of psoriasis management lies in in-
novative therapies and integrative approach-
es that address current gaps. Preclinical can-
didates like hyperforin, which suppresses 
MAPK/STAT3 and rivals methotrexate in 
IMQ models, and lncRNA MEG3, which en-
hances autophagy via PI3K/AKT/mTOR in-
hibition, offer novel mechanisms that could 
bypass resistance to existing biologics [16, 
17]. Deu@Cal microneedles, with dual TYK2 
inhibition and hyperplasia reduction, demon-
strate superior PASI reduction in IMQ mice, 
suggesting a platform for localized, sustained 
delivery that minimizes systemic side effects 
[23]. CGF, by downregulating IL-17 and 
enhancing skin barrier function, provides a 
complementary approach for resistant lesions, 
as seen in IL-23-treated patients [24]. IL-23 
inhibitors like risankizumab, with an 8.5% 
switch rate at 24 months, set a benchmark for 
efficacy and safety, yet their cardiovascular 
profile needs refinement, especially given IL-
12/23 inhibitors’ MACE risks [19, 20]. JAK 
inhibitors like tofacitinib succeed in treat-
ment-resistant cases with arthritis, achiev-
ing responses in 3/3 patients after multiple 
biologic failures, but their long-term safety 
profile remains understudied [25]. Integrating 
AI-driven predictive models with single-cell 
omics could redefine psoriasis endotypes, 
enabling precision therapies tailored to indi-
vidual molecular signatures—an approach 
already transforming oncology and poised 
to revolutionize dermatology [17]. To mit-
igate risks like MACEs and TB reactivation 
[20, 21], next-generation agents must priori-
tize specificity and reduced off-target effects. 
Combination therapies—integrating biologics 
(e.g., IL-23 inhibitors), small molecules (e.g., 

hyperforin), and lifestyle interventions (e.g., 
diet, stress management)—could synergisti-
cally target multiple pathways, improving ef-
ficacy while reducing adverse events. Clinical 
trials exploring these combinations, alongside 
RNA-based therapies (e.g., lncRNA MEG3 
mimics) and advanced delivery systems (e.g., 
microneedles), are essential to translate pre-
clinical promise into patient benefit.

Conclusion

Recent advances in psoriasis research have 
illuminated a complex molecular landscape, 
pinpointing immune dysregulation (e.g., GSD-
ME-mediated pyroptosis, IL-23/IL-17 axis), 
keratinocyte dysfunction (e.g., SLC35E1, 
YAP1), and epigenetic regulation (e.g., miR-
106a-5p, lncRNA MEG3) as central drivers of 
its pathogenesis [25, 35, 36]. These discover-
ies have spurred the development of targeted 
therapies—biologics like secukinumab and ri-
sankizumab, small molecules like hyperforin, 
and innovative modalities such as Deu@Cal 
microneedles and concentrated growth factor 
(CGF)—that deliver unprecedented precision 
in disease management [40, 41] (see Figure-1 
and Table-1). However, significant hurdles 
remain. Adverse events, including cardiovas-
cular risks with IL-12/23 inhibitors and TB 
reactivation in LTBI patients, alongside high 
treatment resistance rates (e.g., 81% biologic 
switching), highlight the limitations of current 
options [27, 28, 29]. Moreover, the promise 
of personalized medicine remains unfulfilled 
due to fragmented predictive tools, despite 
advances in biomarkers and multi-omics pro-
filing [31, 38].
Looking forward, the integration of artificial 
intelligence (AI) with single-cell omics offers 
a transformative opportunity to redefine psori-
asis endotypes, enabling therapies tailored to 
individual molecular signatures—a strategy 
already revolutionizing fields like oncology 
[42]. Future efforts must prioritize the devel-
opment of next-generation agents with en-
hanced safety profiles, such as selective JAK 
inhibitors or RNA-based therapies (e.g., ln-
cRNA mimics), alongside scalable combina-
tion strategies that integrate biologics, small 
molecules, and lifestyle interventions to tar-
get multiple disease pathways synergistically 
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[43]. Expanding clinical trials to validate pre-
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