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Abstract

The growing interest in autologous biological therapies, such as Platelet-Rich Plasma (PRP), 
within orthopedic surgery and sports medicine, necessitates refined strategies for post-surgical 
tissue repair. Despite technological advancements, the proliferation of PRP preparation devices 
has raised concerns about preparation quality consistency. The absence of consensus on stan-
dardization and condition-specific formulations contributes to conflicting outcomes in the liter-
ature. Moreover, the potential of personalized treatment protocols, platelet dosage optimization, 
and PRP’s angiogenic, antimicrobial, and analgesic properties in orthopedic surgery remains 
underexplored. This review delves into recent advancements in PRP preparation techniques and 
therapeutic effects, drawing from published data on its applications in orthopedic surgery for 
tendon injuries, bone repair, spinal fusion, and major joint replacements. Despite promising pre-
clinical study results, clinical trials have shown varying efficacy compared to traditional repair 
methods. Mechanisms underlying PRP’s actions, including its impact on tendon fibroblasts and 
macrophage polarization, are scrutinized. While PRP elicits an inflammatory response in tendon 
fibroblasts, its effect on macrophage polarization remains ambiguous. Additionally, inconclu-
sive findings from studies on PRP’s effectiveness in shoulder surgery underscore the need for 
standardized protocols and further investigation due to challenges like preparation discrepan-
cies and application techniques. This review focusing on influence on healing quality and pace.
[GMJ.2025;14:e3883] DOI:10.31661/gmj.v14i.3883
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Introduction

WHAT IS PRP?
In academic literature, Platelet-rich 

plasma (PRP) has traditionally been charac-
terized as "plasma with a platelet count ex-
ceeding the baseline found in whole blood" 
[1]. The conventional understanding of PRP 
refers to a concentrated combination of plas-

ma—the cell-free component of blood that 
contains clotting factors and other bioactive 
substances critical for wound healing—and 
platelets, along with their associated growth 
factors and cytokines. However, the defini-
tion of "platelet-rich plasma" has recently 
expanded to include a variety of derivative 
formulations (see Table-1). These formula-
tions can differ significantly not only in their 
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platelet concentrations but also in the inclu-
sion of red blood cells and/or white blood 
cells in the final product. The core method for 
producing any form of PRP involves plasma-
pheresis, a process that selectively separates 
the liquid and cellular components of whole 
blood [2]. This phenomenon is explained by 
Stokes' Law, a physical principle stating that 
the settling velocity of particles in a fluid un-
der the influence of gravity is approximately 
proportional to their diameter [3-5]. Hence, 
particles possessing greater dimensions, 
such as red blood cells and white blood cells, 
will precipitate comparatively quicker than 
platelets under the influence of gravitational 
forces. This process enables platelets to sus-
tain suspension primarily within the liquid 
(plasma) fraction of blood, while larger solid 
particles like red and white blood cells set-
tle more rapidly, resulting in their separation 
from platelets due to gravitational effects [6-
8]. Alpha-granules play a pivotal role in PRP 
therapy due to their abundance of growth fac-
tors, including VEGF, ECGF, IGF-1, PDGF, 
TGF-β, EGF, PDAF, HGF, FGF, GDNF, PF4, 
IL-8, and CXCL7. Dense granules, the sec-
ond-most abundant granules in platelets, store 
ADP, ATP, calcium, serotonin, and glutamate. 
Upon PRP treatment, their release contrib-
utes significantly to the therapeutic benefits 
of this approach [9, 10]. PRP therapy exhib-
its a generally favorable safety profile, with 
only a few absolute contraindications, such 
as severe thrombocytopenia, platelet dys-
function, unstable hemodynamics, and the 
presence of sepsis or local infection at the 
PRP administration site. Relative contraindi-
cations encompass recent intake of nonsteroi-
dal anti-inflammatory drugs within 48 hours 
prior to treatment, glucocorticoid injections 
within the preceding 2 weeks, recent illness 
or fever, history of malignancies, anemia with 
hemoglobin levels below 10 g per deciliter, 
mild thrombocytopenia, and tobacco usage.
[11-13] In recent years, there has been a surge 
of interest in PRP therapy within the medi-
cal community, driven by its favorable ben-
efit-to-risk ratio. Approximately 8000 papers 
have been published on this topic, with over 
6000 emerging within the last decade alone, 
as reported by PubMed. Initially described 
in hematology during the 1970s for treating 

patients with thrombocytopenia, PRP gained 
momentum in the early 1990s due to promis-
ing results observed in both monotherapy and 
combination therapy for a range of medical 
conditions [14]. There has been a notable ex-
pansion in the utilization of PRP within ortho-
pedics, accompanied by promising outcomes. 
Its application has shown encouraging results 
in various aspects of musculoskeletal health, 
including bone fracture healing, injuries to 
ligaments, muscles, and tendons, treatment 
of articular cartilage lesions, as well as ad-
dressing peripheral nerve injuries. This broad 
spectrum of applications underscores the ver-
satility and potential effectiveness of PRP in 
orthopedic care [15] (Figure-1).

Leukocyte 

In LP-PRP, platelets serve as the principal 
cellular components exhibiting antibacterial 
activity. In the case of a postoperative infec-
tion, they are among the initial responders to 
detect endothelial injury and the infiltration of 
microbial pathogens into the bloodstream or 
tissues. Upon recognition, platelets undergo 
aggregation and trigger the release of platelet 
agonists, including ADP, thrombin, and von 
Willebrand Factor, which collectively promote 
platelet activation and rapid accumulation at 
the site of tissue injury [26-28] In LP-PRP, in 
addition to releasing antimicrobial peptides 
(AMPs), platelets exhibit the capacity to pro-
duce reactive oxygen species, adhere to and 
internalize microorganisms, and participate in 
antibody-dependent cellular cytotoxicity [29]. 
LR-PRP buffy coat preparations, in addition 
to being abundant in platelets, contain a high 
concentration of viable white blood cells, par-
ticularly neutrophils. These immune cells are 
key components of the innate immune system 
and play a critical role in protecting the body 
against infections [30, 31]. Prior studies have 
indicated that oxidative killing, in contrast to 
nonoxidative mechanisms, constitutes a sig-
nificant portion of neutrophil's antibacterial 
effect, with myeloperoxidase (MPO) playing 
a crucial role in this process [32, 33]. PRP has 
the potential to work synergistically with an-
tibiotics and may serve as an adjunctive ther-
apy for infections, particularly in cases where 
antibiotic-resistant bacteria are involved, fol-
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lowing identification of the pathogen [34]. 
The impact of leukocytes in PRP on its an-
tibacterial properties is a subject of debate. 
While leukocytes are vital components of host 
defense mechanisms, their presence in PRP 
theoretically should enhance its antibacterial 
properties. The potential enhancement of an-
timicrobial properties, especially in LR-PRP, 
could offer an appealing complement to the 
established tissue repair and regenerative ca-
pabilities of autologous PRP in post-surgical 
wound healing. 

Neutrophils

Neutrophils play a crucial role as key leuko-
cytes in various healing processes, helping to 
form dense barriers to defend against invad-
ing pathogens. This function is further sup-
ported by antimicrobial proteins found within 
platelets [35, 36]. The inclusion of neutrophils 
is a consideration in defining the objectives of 
C-PRP treatment. Elevated tissue inflammato-
ry levels may be deemed necessary in PRP bi-
ological treatments for chronic wound care or 
applications aimed at promoting bone growth 
or healing [37, 38]. Significantly, further in-
vestigation has revealed additional functions 

of neutrophils across various models, under-
scoring their involvement in processes such 
as angiogenesis and tissue regeneration [30]. 
Nevertheless, neutrophils can elicit detrimen-
tal effects and are therefore contraindicated 
for certain applications. One study illustrated 
that the utilization of PRP enriched with neu-
trophils may lead to an elevated ratio of col-
lagen type III to collagen type I, contributing 
to fibrosis and reduced tendon strength [39]. 
Additional detrimental effects mediated by 
neutrophils include the secretion of inflamma-
tory cytokines and matrix metalloproteinases 
(MMPs), which contribute to pro-inflamma-
tory and catabolic responses when tissues are 
exposed to these mediators [40]. 

Lymphocytes

In C-PRP, mononuclear T and B lymphocytes 
are notably enriched compared to other leuko-
cytes. These lymphocytes play a pivotal role 
in cell-mediated cytotoxic adaptive immunity. 
They initiate cellular responses to combat in-
fections and adapt to external intruders [41]. 
Additionally, cytokines produced by T lym-
phocytes, such as IFN-γ and IL-4, contribute 
to the enhancement of macrophage polariza-

Figure 1. The development and structure of platelets.
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tion [42]. Research findings revealed that con-
ventional T lymphocytes indirectly facilitate 
tissue healing in a mouse model by influenc-
ing the differentiation of monocytes and mac-
rophages [43]. 

Monocytes-versatile Cells with Potential 
for Tissue Regeneration

The presence of monocytes in PRP vials 
varies depending on the preparation devices 
employed; however, their inclusion and re-
generative potential are seldom addressed in 
the literature. As a result, monocytes receive 
limited attention in both preparation protocols 
and final formulations. These cells constitute 
a heterogeneous population derived from 
bone marrow progenitors through hemato-
poietic stem cell differentiation pathways. 
Monocytes subsequently migrate to peripher-
al tissues through the bloodstream in response 
to microenvironmental signals. During both 
homeostasis and inflammatory conditions, 
circulating monocytes leave the vasculature 
and are recruited to sites of tissue injury or 
degeneration, where they function as effector 
cells or differentiate into macrophages [44, 
45]. In a hypothetical scenario where C-PRP 
with elevated levels of monocytes is injected 
into a diseased local microenvironment, it is 
likely that these monocytes would primarily 
differentiate into macrophages (MΦs). This 
differentiation process could trigger substan-
tial cellular changes within the affected area.

Preparation PRP Formulations

Fadadu and colleagues undertook a compre-
hensive review of 33 systems and protocols 
for PRP [46]. One of the key observations 
indicated that some systems yielded PRP 
preparations with platelet concentrations be-
low those of whole blood, whereas dual-spin 
closed systems generated PRP with platelet 
counts exceeding 1.6 × 10^6/μL. Presently, 
the clinical characterization of PRP formu-
lations is most accurately based on their ab-
solute platelet concentration, marking a shift 
from the original definition of PRP, which em-
phasized achieving levels above baseline. The 
current standard requires a minimum platelet 
concentration greater than 1 × 10^6/μL, cor-

responding to an approximate fivefold in-
crease relative to baseline values [47]. Many 
contemporary PRP preparation systems have 
the capacity to produce elevated platelet con-
centrations and provide diverse formulations 
of PRP concerning leukocyte and erythrocyte 
content, as well as concentrations of PGF [48, 
49]. 

Platelet Dosage in PRP Therapies

It's logical to anticipate that PRP formulations 
with higher platelet concentrations would lead 
to a more significant release of bioactive fac-
tors, potentially affecting outcomes. Multi-
ple studies have suggested that cells react in 
a dose-dependent manner to PRP. In this re-
gard, Mautner et al. were trailblazers in incor-
porating the absolute PRP platelet count into 
a comprehensive PRP classification system 
[50]. As expected, divergent results concern-
ing optimal platelet dosage have been reported 
in both clinical trials and in vitro cell culture 
studies utilizing specific cell types and tissue 
models [51, 52]. One study proposed that a 
minimum platelet count of 1 × 10^6/µL was 
necessary for optimal enhancement of bone 
and soft tissue healing. Similarly, research on 
PRP in transforaminal lumbar fusion showed 
a significantly higher fusion rate when the 
platelet dose surpassed 1.3 × 10^6/µL [53]. 
A recent report emphasized that achieving a 
platelet concentration in PRP that is more than 
five times higher than baseline is crucial for 
obtaining favorable outcomes in spinal fusion 
procedures [54]. An in vitro study determined 
that a platelet dosage of 1.5 × 10^6 platelets/
µL was required to trigger tissue repair mech-
anisms and foster a functional angiogenic 
response via endothelial cell activity [55]. In 
addition to dose-dependency, the therapeutic 
effects of PRP on cellular activity appear to 
be greatly influenced by the duration of ex-
posure. An in vitro study demonstrated that 
short-term exposure to human platelet lysates 
promoted bone cell proliferation and che-
motaxis. However, prolonged exposure be-
yond 48 hours led to a reduction in mineral 
formation and alkaline phosphatase activity 
[56]. Tissue culture experiments and numer-
ous clinical studies, especially those focusing 
on bone growth, have shown increased cell 
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proliferation with PRP treatment, correlating 
with platelet dosage, especially with platelet 
counts of at least 1x10^6 /µL [57].

Clinical use of PRP

The clinical use of PRP is based on its ability 
to enhance the concentration of growth factors 
and protein secretion, thereby facilitating the 
cellular healing process. It has been widely 
employed in the treatment of musculoskele-
tal injuries to support recovery [58]. Although 
PRP holds substantial clinical promise, its 
therapeutic application faces challenges due 
to a lack of standardized techniques and in-
sufficiently detailed descriptions of the proce-
dures used. As a result, there is an urgent need 
to establish uniform guidelines for producing 
high-quality PRP and to conduct further re-
search to identify the optimal platelet concen-
tration for different clinical conditions. Clini-
cal trials on PRP for tendon injuries show con-
siderable variation in preparation methods, 
quality control, dosage, and injection frequen-
cy, making it difficult to assess therapeutic 
effectiveness. Additionally, differences in the 
types of cells involved, the release of inflam-
matory cytokines upon platelet activation, and 
the varied methods used for PRP activation or 
non-activation further complicate the analysis 
[59]. Clinical outcomes resulting from the use 

of PRP treatments for chronic tendinopathy 
exhibit a range, spanning from notably posi-
tive short- and/or long-term effects to positive 
outcomes that lack statistical significance. 
The diversity observed in the stages of chron-
ic tendinopathy could potentially elucidate the 
differences in outcomes, implying that PRP 
may be advantageous for specific stages while 
being less effective for others (Table-2).

Knee Osteoarthritis

Osteoarthritis stands as the prevailing mus-
culoskeletal disorder, with an estimated prev-
alence of 10% among individuals aged 60 
years and older across the globe [75]. The 
knee often presents with symptoms, causing 
pain, disability, and substantial healthcare 
expenses. Novel biologic and nonoperative 
treatments, such as intra-articular viscosup-
plementation and PRP injections, have been 
suggested for managing the initial phases of 
osteoarthritis, aiming to alleviate symptoms 
and postpone surgical procedures. Numerous 
studies have explored the impact of PRP on 
knee osteoarthritis, yielding varied outcomes 
[76-79]. In 2015, Campbell and associates 
published a systematic review comprising 
three overlapping meta-analyses that com-
pared the outcomes of intra-articular PRP in-
jection versus control across 3278 knees [80]. 

Table 2. Clinical Trials Examining the Application of PRP in Individuals with Tendinopathies
Lesion site Outcome Ref.s

Knee, patellar tendinopathy improvement [60]
Knee, patellar tendinosis improvement [61]

Knee, patellar tendinopathy improvement [62]
Rotator cuff no significant difference [63]

Knee, patellar tendinosis Significant reduction of pain [64]
Knee, patellar tendinopathy improvement [65]

Rotator cuff no significant difference [66]
Achilles tendon, chronic tendinopathy improvement [67]

Rotator cuff no significant difference [68]
Elbow, epicondylitis improvement [69]

Rotator cuff no significant difference [70]
Elbow, epicondylitis no significant difference [71]

Achilles tendon, chronic tendinopathy without changing the MRI [72]
Elbow, epicondylitis improvement [73]

Achilles tendon, chronic tendinopathy no significant difference [74]
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They documented a significant improvement 
in patient outcome scores for the PRP group 
compared to the control group from 2 to 12 
months following injection. However, due to 
considerable variability across the studies in-
cluded, the ideal number of injections or the 
appropriate intervals between them remains 
unclear. Meheux and colleagues published a 
systematic review in 2016 that included six 
studies (with a total of 817 knees) comparing 
PRP and hyaluronic acid (HA) injections [81]. 
Despite variations among studies, most pub-
lished findings indicate superior symptomatic 
relief in individuals with initial knee degener-
ation, implying that PRP utilization could be 
contemplated for this demographic. 

Frozen Shoulder

Certainly, frozen shoulder is a common con-
dition that leads to significant morbidity [82, 
83]. Frozen shoulder impacts the glenohumer-
al (GH) joint, causing limitations in both ac-
tive and passive movement due to adhesions 
and fibrosis within the GH capsule, conse-
quently leading to a decrease in joint space 
[84-87]. While frozen shoulder typically fol-
lows a benign course, with many physicians 
believing that the condition improves within 
two or three years, some patients may experi-
ence persistent symptoms. According to cur-
rent knowledge, up to 40% of patients may 
continue to experience permanent symptoms 
after three years [88, 89]. While corticosteroid 
and occasionally hyaluronic acid injections 
may yield positive outcomes for frozen shoul-
der, some physicians advocate for physical 
therapy as a treatment option [90, 91]. PRP 
has garnered attention for its application in 
soft tissue treatment, attributed to its capacity 
to stimulate collagen production and growth 
factors, thus augmenting healing by enhanc-
ing stem cell activity. Nonetheless, there re-
mains a lack of empirical evidence regarding 
the efficacy of PRP in treating frozen shoulder. 
In a case study involving a 45-year-old male 
with shoulder adhesive capsulitis, the patient 
underwent two consecutive PRP injections at 
the seventh- and eighth-month post-symptom 
onset. Pain levels, function, and range of mo-
tion were evaluated using the visual analogue 
scale, DASH questionnaire, and goniometer, 

respectively. Following the initial injection, 
the patient reported a 60% reduction in day-
time shoulder pain, absence of nocturnal pain, 
a twofold enhancement in range of motion, 
and a greater than 70% improvement in func-
tion. This study underscores the potential of 
PRP in managing frozen shoulder, underscor-
ing the need for further exploration through 
randomized trials [91].

Ulnar Collateral Ligament Injuries

The anterior bundle of the ulnar collateral 
ligament (UCL) plays a pivotal role in stabi-
lizing the elbow against valgus forces. Over-
head athletes, particularly those involved in 
high-velocity throwing sports, are prone to 
repetitive stress-related injuries to the UCL, 
which may culminate in partial or complete 
ligamentous tears. These injuries often man-
ifest as medial elbow pain and can impair 
both throwing speed and precision. While 
complete UCL ruptures commonly require 
surgical reconstruction, there remains a lack 
of consensus regarding the optimal treatment 
strategy for partial tears. In recent years, the 
combined use of platelet-rich plasma (PRP) 
therapy and structured physical rehabilitation 
has gained attention as a potential means to 
enhance recovery in such cases [92]. PRP may 
be utilized alongside physical therapy and a 
structured interval throwing regimen for the 
management of partial UCL tears, with many 
athletes successfully returning to their pre-in-
jury performance levels. Nonetheless, addi-
tional research is warranted to elucidate the 
precise therapeutic role and efficacy of PRP in 
this specific athletic population. 

Hamstring Injuries

Acute hamstring injuries are prevalent in var-
ious sports, especially those involving sprint-
ing or running. Despite a lack of consensus 
in the literature regarding the management or 
definition of return to play (RTP) after ham-
string injury, most injuries tend to resolve 
within 3 to 6 weeks [93]. Significant pain and 
edema are commonly associated with acute 
hamstring injuries, particularly at the proxi-
mal myotendinous junction of the long head 
of the biceps femoris and semitendinosus [94, 
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95]. PRP injection near the proximal myoten-
dinous hamstring origin has been proposed 
as a potential means to expedite the recov-
ery process following acute hamstring injury. 
However, the current body of literature pres-
ents varied and limited evidence concerning 
the effectiveness of PRP injection therapy for 
this condition. While certain studies have sug-
gested benefits of PRP therapy compared to 
standard nonoperative management (which 
typically includes rest, physical therapy, and 
nonsteroidal anti-inflammatory drugs) in 
acute hamstring injury, these findings should 
be interpreted with caution [96, 97]. One 
study reported that athletes in the PRP group 
did not exhibit differences in outcome scores 
compared to controls, but they did return to 
play earlier [97]. In contrast to these findings, 
a small case-control study involving NFL 
players and a retrospective cohort study of 
athletes with severe hamstring injuries found 
no difference in return-to-play (RTP) rates be-
tween those who received PRP injections and 
the control group [98, 99]. 

Tendon Injuries

Tendon injuries and ruptures have emerged 
as a widespread concern, impacting not only 
young athletes but also the general population, 
especially among older individuals. Tendons 
frequently affected include those surrounding 
the elbow and wrist, as well as those linked 
with conditions like patellar and Achilles ten-
dinopathies, and the rotator cuff [100]. 

Lateral Epicondylitis

Lateral elbow epicondylitis, commonly 
known as "tennis elbow," is believed to occur 
as a result of repetitive wrist extension. It is 
often observed in individuals with certain co-
morbidities, such as rotator cuff pathology or 
a history of smoking [101-104]. The authors 
reported a significant 60% improvement in 
pain scores in patients treated with PRP, com-
pared to a more modest 16% improvement 
in the control group, 8 weeks post-treatment 
[105, 106]. One study indicated that PRP re-
sulted in a significant reduction in Visual An-
alogue Scale (VAS) pain scores compared to 
steroids. However, when PRP was compared 

to autologous blood, no significant differences 
were observed [107]. The utilization of PRP 
has sparked debate in the treatment of lateral 
epicondylitis. Its effectiveness has been em-
pirically studied and compared to more tradi-
tional treatments, leading to ongoing discus-
sion and analysis in the medical community 
[108, 109, 105]. In a small case series involv-
ing six patients, contrast-enhanced ultrasound 
imaging was used to demonstrate that PRP 
injection therapy could induce vascularization 
at the myotendinous junction of the common 
extensor tendon for up to six months follow-
ing the injection [110]. The physiological al-
terations may occur before noticeable clinical 
enhancements. Brklijac and co-researchers 
conducted a prospective observation of 34 pa-
tients who continued to suffer from symptoms 
despite conservative therapy and opted for 
PRP injections [111]. Randomized controlled 
trials have indicated no significant difference 
between PRP and corticosteroid injections 
in the short-term treatment of symptomatic 
lateral elbow epicondylitis [112, 113]. The 
current evidence suggests that PRP injection 
therapy has limited effectiveness in treating 
lateral epicondylitis, particularly in the short 
term when compared to corticosteroid injec-
tions. However, in the mid to long term, PRP 
therapy may provide some benefits. Nonethe-
less, well-designed prospective randomized 
controlled trials are essential to clarify the 
effects of PRP in comparison to the natural 
progression of tendon healing and symptom 
resolution.

Patellar Tendon Dysfunction

Patellar tendinopathy, often referred to as 
jumper's knee, is a common overuse tendon 
ailment. Platelet-rich plasma shows promise 
in assisting tissue regeneration, especially 
in cases with limited healing potential. De-
spite this promise, there remains a paucity 
of high-quality evidence regarding the effec-
tiveness of PRP for this condition. However, 
a recent meta-analysis, encompassing only 
two randomized controlled trials (RCTs), 
compared PRP injections with extracorpore-
al shockwave therapy and dry needling of the 
tendon. The analysis unveiled no significant 
difference at the 3-month follow-up, but su-
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perior outcomes favoring PRP treatment were 
noted at longer follow-up periods (6 months 
or more) [114]. 

Achilles Tendinopathy and Rupture

Achilles tendinopathy is a frequent cause 
of pain in both recreational and competitive 
athletes [115, 116]. Initial conservative man-
agement for Achilles tendinopathy typically 
includes rest, activity and shoe modifications, 
physical therapy, and eccentric loading ex-
ercises. When these strategies fail to relieve 
symptoms after six months, more invasive 
treatments may be considered. PRP injection 
has emerged as an alternative for cases that do 
not respond to conservative treatment. How-
ever, data from several randomized controlled 
trials indicate that PRP injections do not 
significantly improve clinical outcomes for 
Achilles tendinopathy [117]. In a pilot study 
comparing PRP injections to an eccentric 
loading program for treating mid-substance 
Achilles tendinopathy, the results indicated 
no significant difference in outcomes between 
the two groups, even though the sample size 
was small [118]. A study with 54 patients hav-
ing chronic mid-substance Achilles tendinop-
athy assessed the impact of eccentric exercise 
therapy paired with either a PRP injection or 
a placebo saline injection. Both groups sig-
nificantly improved in VISA-A scores after 
24 weeks, but the differences were not statis-
tically significant. Current research indicates 
that PRP does not provide additional benefits 
over conventional treatment for Achilles ten-
dinopathy [119, 74]. Nonetheless, recent sys-
tematic reviews have underscored the scarcity 
of high-quality evidence in this domain [120]. 
Although non-randomized trials have shown 
promising outcomes, including favorable re-
turn to sport participation and sustained ben-
efits lasting up to the midterm, randomized 
controlled trials have not demonstrated any 
superiority of PRP over placebo or physio-
therapy for Achilles tendinopathy [120]. Spe-
cifically, the sole available randomized con-
trolled trial indicated that the incorporation 
of PRP might potentially impede tissue heal-
ing. This is attributed to the absence of bio-
mechanical advantages observed, with PRP 
patients demonstrating inferior performance 

compared to the 'suture-alone' group [121]. 
Future well-designed, prospective random-
ized controlled trials with larger sample siz-
es are needed to definitively determine PRP's 
role in treating Achilles tendinopathy. 

PRP in RC Tears

Rotator cuff tears represent a prevalent source 
of shoulder discomfort and functional im-
pairment. Their occurrence is on the incline, 
parallel to the growing engagement of aging 
individuals in physically demanding activities 
[122]. Arthroscopic repair has demonstrated 
favorable outcomes in alleviating pain and im-
proving functional capabilities for individuals 
with rotator cuff tears [123-126]. Rotator cuff 
repair has yielded a significant level of con-
tentment among patients; however, persistent 
challenges persist, particularly concerning 
large to massive tears. These difficulties are 
frequently associated with the inadequate ef-
ficacy of treatment, stemming from the com-
plexities involved in reconstructing the ten-
don-to-bone interface [127].  Many studies 
have explored the application of PRP during 
arthroscopic rotator cuff repair (RCR) in an 
effort to improve and expedite the repair pro-
cess [66, 70, 128, 129]. However, there is con-
siderable variability among protocols regard-
ing how and when PRP is used to augment 
the repair. Although basic research literature 
shows promising findings, the majority of clin-
ical studies utilizing PRP in rotator cuff repair 
have not exhibited superior outcomes when 
compared to conventional repair methods. A 
significant portion of these studies consists of 
RCTs or, at the very least, comparative studies 
with control groups. Nevertheless, certain in-
vestigations have failed to demonstrate defin-
itive advantageous outcomes of PRP in con-
trast to a placebo control when it comes to the 
non-operative treatment of rotator cuff tears 
[63]. Despite evaluations conducted at multi-
ple time points up to one year, which includ-
ed assessments such as the Western Ontario 
Rotator Cuff Index (WORC), Shoulder Pain 
and Disability Index (SPADI), Visual Analog 
Scale (VAS) for shoulder pain with the Neer 
test, and shoulder range of motion, no signifi-
cant differences in pain or functional outcome 
scores were observed between the PRP and 
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placebo groups. These findings reflect the 
varied outcomes reported across studies, un-
derscoring the complexity in determining the 
efficacy of PRP in the non-surgical treatment 
of rotator cuff tears. Variability in methodol-
ogies and conflicting findings underscore the 
need for further comprehensive investigations 
to elucidate the precise clinical effectiveness 
of PRP in this context. Studies exploring the 
efficacy of PRP in surgical interventions for 
various shoulder conditions remain limited. A 
randomized controlled trial was conducted to 
assess the efficacy of arthroscopic acromio-
plasty as a standalone intervention compared 
to arthroscopic acromioplasty in conjunction 
with PRP injection for the treatment of rota-
tor cuff tendinopathy.While both intervention 
groups demonstrated improvements in OSS 
over the 2-year period following the proce-
dure, no significant difference was observed 
between the groups. Significantly, shoulders 
subjected to PRP treatment demonstrated de-
creased cellularity and vascularity, along with 
elevated levels of apoptosis, in comparison 
to those treated solely with arthroscopic ac-
romioplasty [130]. Similarly, a randomized 
controlled trial compared PRP-augmented 
arthroscopic needling with unaugmented ar-
throscopic needling in patients with chronic 
symptomatic calcific tendonitis. Sub-acromi-

al decompression was performed in 65% of 
patients in both groups when coracoacromi-
al ligament impingement was present. While 
both groups showed significant post-oper-
ative improvements, no significant differ-
ences were found between the two groups 
at 6 weeks, 3 months, 6 months, and 1 year 
post-operation in terms of Constant, modified 
Constant, Quick DASH, or SST scores. Ad-
ditionally, ultrasound assessments at 3 and 6 
months, as well as MRI at 1 year, revealed no 
notable differences between the groups [131]. 
As of the current literature review, no arti-
cles discussing the use of PRP in the surgical 
treatment of proximal biceps tendinopathy or 
labral tears were found. These findings high-
light the scarcity of research addressing PRP's 
effectiveness in surgical interventions for 
certain shoulder conditions, underscoring the 
need for further investigation in these areas. 
Indeed, the study of PRP efficacy in treating 
shoulder pathology faces several limitations. 
One critical limitation involves the absence 
of standardized dosing, formulation, and 
concentration of platelets and growth factors 
present in PRP preparations. The inconsis-
tency in defining an optimal PRP composi-
tion contributes to the variability in treatment 
outcomes across different studies [132]. In a 
single study, there were no significant differ-

Figure 2. Clinical Studies Evaluating PRP for RCT: Structural Outcomes
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ences in pre- and postoperative clinical out-
come scores between patients who received 
arthroscopic repair with or without PRP aug-
mentation [132, 133]. Overall, most studies 
have not demonstrated a significant advantage 
in terms of re-tear rates or shoulder-specific 
outcomes with the inclusion of PRP during ar-
throscopic RCR (Figure-2 and -3). 

Macrophages and PRP in Tendon Injuries

As monocytes transition into MΦs, distinct 
macrophage phenotypes emerge [134]. In 
the past decade, a model has been developed 
to clarify the intricate mechanism of macro-
phage activation, which includes polarization 
into two distinct phenotypes: MΦ phenotype 
1 and MΦ phenotype 2 [135]. The MΦ1 phe-
notype is characterized by its secretion of in-
flammatory cytokines such as IFN-γ and pro-
duction of nitric oxide, contributing to an ef-
fective mechanism for combating pathogens. 
Additionally, the MΦ1 phenotype synthesizes 
VEGF and FGF. Conversely, the MΦ2 phe-
notype comprises anti-inflammatory cells 
that possess an augmented ability for phago-
cytosis. These MΦ2 cells are responsible for 
producing extracellular matrix components, 
angiogenic and chemotactic factors, as well 
as interleukin-10 (IL-10). In addition to their 

role in defending against pathogens, MΦ2 
cells can dampen the inflammatory response 
and promote tissue repair. It is noteworthy 
that the MΦ2 phenotype has been further 
categorized in vitro into subtypes, such as 
MΦ2a, MΦ2b, and MΦ2c, based on the spe-
cific stimulus encountered [136]. Translating 
these subtypes into in vivo contexts is chal-
lenging, as tissues often harbor mixed popula-
tions of MΦs. Intriguingly, pro-inflammatory 
MΦ1 cells can transition to a pro-repair MΦ2 
phenotype in response to local environmen-
tal cues and levels of IL-4. Based on these 
findings, it is reasonable to hypothesize that 
C-PRP preparations containing elevated con-
centrations of monocytes and MΦs are like-
ly to facilitate improved tissue repair owing 
to their anti-inflammatory properties, tissue 
repair capabilities, and signaling functions 
[137-140]. Despite the plethora of clinical 
outcome studies exploring the impacts of PRP 
in sports medicine, there continues to be a 
lack of information concerning its mechanism 
of action [141, 139]. Injured and diseased 
tendons commonly involve two predomi-
nant cell types, fibroblasts, and macrophages, 
which play a central role in coordinating the 
healing process [142-144]. Fibroblasts play a 
pivotal role as the primary cells accountable 
for tendon maintenance and repair, whereas 

Figure 3. Clinical Studies Evaluating PRP for RCT: clinical outcomes
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macrophages aid by dismantling damaged 
tendon tissue. Moreover, macrophages have 
the capability to release cytokines and other 
signaling molecules that govern the activity 
of fibroblasts throughout the healing process 
[145-147, 144]. In the initial response to tis-
sue injury, the M1 population of macrophages 
predominates, engaging in activities such as 
phagocytosis and apoptosis. Following this, 
M2 macrophages become the predominant 
population, directing the repair process and 
promoting fibroblast proliferation [148, 146]. 

Effects of PRP Treatment on ECM Remod-
eling and Macrophage Polarization in Ten-
don Fibroblasts

Both acute tendon tears and chronic degener-
ative tendinopathies entail damage or disor-
ganization of the extracellular matrix (ECM), 
necessitating remodeling and repair by tendon 
fibroblasts [137, 149]. Hyaluronic acid (HA), 
a glycosaminoglycan, functions as a template 
for new ECM synthesis. Interestingly, a study 
revealed that PRP treatment did not exhibit 
any noticeable impact on the expression of the 
major HA synthase enzymes, namely HAS1 
and HAS2 [150, 151]. A study unveiled that 
PRP treatment resulted in a decrease in the ex-
pression of crucial tendinous collagens, spe-
cifically collagen 1 and collagen 3, along with 
elastin, which plays a pivotal role in reestab-
lishing ECM organization post stretching. Ad-
ditionally, several transcripts responsible for 
the assembly of mature collagen fibrils were 
also downregulated subsequent to PRP treat-
ment. These observations align with earlier 
research on collagen expression and indicate 
that PRP treatment diminishes the expression 
of ECM components in tendon fibroblasts 
[152, 153]. Certain transcription factors have 
been recognized for their significant roles in 
tendon development, growth, and remodel-
ing. Notably, EGR1, EGR2, and scleraxis 
are among these transcription factors known 
to be crucial for tendon biology [154, 151], 
PRP treatment resulted in the downregulation 
of all three aforementioned genes: EGR1, 
EGR2, and scleraxis. Furthermore, tenomod-
ulin, which serves as a marker of differenti-
ated fibroblasts, exhibited downregulation in 
response to PRP treatment [155-157]. While 

TNFα levels are heightened in PRP and can 
trigger oxidative stress by activating proin-
flammatory pathways, it is important to high-
light that platelets also have the capability to 
generate and discharge hydrogen peroxide. 
Consequently, it is conceivable that PRP may 
contain endogenous peroxides capable of gen-
erating reactive oxygen species (ROS), poten-
tially exacerbating oxidative stress in tendon 
fibroblasts [158]. PRP treatment significantly 
upregulated the expression of the three en-
zymes—PTGES, Cox1, and Cox2—impli-
cated in prostaglandin synthesis. However, 
PRP did not appear to affect the expression of 
5-LOX, suggesting that prostaglandins may 
be involved in PRP-mediated inflammation 
rather than leukotrienes [159]. 
Furthermore, alongside the upregulation of 
PTGES, Cox1, and Cox2, PRP treatment also 
activated the expression of other proinflam-
matory transcription factors, including Fosb, 
Fosl1, and c-Jun. These combined results in-
dicate that PRP treatment significantly and ro-
bustly stimulates inflammatory and oxidative 
stress pathways in tendon fibroblasts [148, 
142, 144]. 
Different components within PRP have the 
capacity to polarize cultured macrophages 
into distinct phenotypes. For instance, IFN-γ 
and TNF-α can drive macrophages toward an 
M1 phenotype, while IL-4 and IL-10 are able 
to promote polarization towards an M2 phe-
notype [146, 160]. PRP treatment resulted in a 
slight increase in the expression of M1 mark-
ers such as iNOS and IL-1β, along with a sig-
nificant rise in VEGF expression. Conversely, 
modest increases were noted in the expression 
of M2a marker Arg1 and M2c markers CD14, 
IL-10, and CD163. However, with the excep-
tion of VEGF, no significant changes were ob-
served in the expression of other macrophage 
phenotype markers that were evaluated [100]. 
Therefore, it can be concluded that PRP treat-
ment did not significantly impact macrophage 
polarization. Notably, despite the considerable 
change in VEGF expression in macrophages, 
PRP treatment did not induce a similar change 
in VEGF expression in tendon fibroblasts. 
This finding is particularly significant, given 
that neovascularization is often observed in 
both acute and chronic tendon disorders [143, 
144, 100]. 
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Conclusion

In summary, the clinical assessment of PRP 
formulations lacks consistency, hindering the 
evaluation of its effectiveness despite techno-
logical advancements. The varied composi-
tion and lack of standardized dosing affect tis-
sue healing outcomes, contributing to mixed 
study results. Exploring PRP's potential in di-
verse formulations and dosing remains under-
explored. While standardizing PRP prepara-
tion is challenging, adopting uniform platelet 
dosing for specific conditions could establish 
quality benchmarks. Calculating total platelet 
dose is crucial for accurate administration as-
sessment. Well-powered clinical studies are 
essential for understanding PRP's therapeutic 
effects fully. Further, the role of leukocytes in 

PRP efficacy and lack of standardized appli-
cation techniques pose additional challeng-
es, impeding result comparison and general-
ization in shoulder pathology treatment with 
PRP. This study aims to inform orthopedic 
surgeons about PRP limitations, urging re-
evaluation for specific conditions.
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