

Received 2025-02-25 Revised 2025-03-29 Accepted 2025-05-20

Exploring the Intersection of Diabetes and Musculoskeletal Health

Morteza Nakhaei Amroodi ¹, Khatere Mokhtari ², Pouria Tabrizian ¹⊠

- ¹ Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences. Tehran, Iran
- ² Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran

Abstract

Diabetes presents a significant health challenge worldwide, with profound implications extending beyond glycemic control to impact various bodily systems. This review explores the intricate relationship between diabetes and musculoskeletal disorders, shedding light on their epidemiology, pathophysiology, and clinical implications. Individuals with diabetes face a heightened risk of developing musculoskeletal conditions, particularly tendon disorders such as adhesive capsulitis rozen shoulder, rotator cuff tears, muscle atrophy, osteoarthritis and diabetic hand syndrome. Mechanisms underlying these disorders include inflammation, glycation, and impaired tendon homeostasis, exacerbated by factors like insulin resistance and oxidative stress. Furthermore, diabetes poses challenges in orthopedic surgery, leading to increased rates of surgical complications and poorer outcomes. Understanding the interplay between diabetes and musculoskeletal health is crucial for developing targeted interventions aimed at optimizing patient care and outcomes in this population. [GMJ.2025;14:e3884] DOI:10.31661/gmj.v14i.3884

Keywords: Diabetes; Orthopedic; Rotator Cuff Tear; Muscle Atrophy; Frozen Shoulder; Osteoarthritis; AGEs; Achilles Tendons; Tendon Healing; Muscle Atrophy; Rheumatoid Arthritis

Introduction

Type 2 diabetes mellitus (T2DM) is a chronic condition characterized by sustained elevation of blood glucose levels [1]. Neglecting to address diabetes can result in substantial long-term complications that impact both the vascular and nervous systems [2]. Individuals with diabetes are at three times greater risk for developing all musculoskeletal disorders. However, they are especially prone to tendon conditions, which tend to be more resistant to treatment compared to

□ Correspondence to:

to tendinopathy[4-6].

Pouria Tabrizian, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.

those in non-diabetic patients [3, 4]. Up to 50% of individuals who discontinue exercise

programs for type 2 diabetes cite musculo-

skeletal symptoms as the reason [3]. A signif-

icant proportion of these cases are attributable

Type 2 diabetes can indeed induce immediate

damage to various bodily systems upon its on-

set[7, 8]. Interestingly, individuals with diabe-

tes mellitus report twice the amount of mus-

culoskeletal complaints compared to age and

gender-matched healthy controls [9]. Despite

its heightened prevalence and consequential

Telephone Number: 09155216214

Email Address: tabrizian.pouria1985@gmail.com

GMJ

social impact, musculoskeletal disorders remain comparatively understudied in relation to other complications associated with diabetes [10]. Risk factors for musculoskeletal disorders in individuals with diabetes include advanced age, longer duration of diabetes mellitus, and hypertension [11]. One example illustrates that more than 25% of individuals diagnosed with diabetes mellitus experience shoulder issues, with the prevalence of frozen shoulder ranging from 10% to 35% [12-14]. The most commonly reported shoulder issue in individuals with diabetes mellitus is frozen shoulder, clinically known as adhesive capsulitis [14].

While the precise cause of musculoskeletal disorders, including adhesive capsulitis, remains largely uncertain, several proposed pathogenic factors may contribute to their development in individuals with diabetes mellitus. These factors include the accumulation of irreversible crosslinks between neighboring protein molecules, vascular and neural damage, and elevated collagen levels in connective tissue [12]. Animal studies have provided evidence supporting the proposed pathogenic pathway underlying shoulder dysfunction in diabetes mellitus. Specifically, these studies have shown an increase in tendon diameter and stiffness in diabetic mice, suggesting a potential mechanism for the development of shoulder complications in individuals with DM [15].

Inflammation stands as the central mechanism driving tendon dysfunction in diabetes mellitus. Persistent secretion of inflammatory agents like TNF-α and IL-6 among diabetic individuals initiates a series of inflammatory processes. This prolonged inflammatory state prompts the buildup of collagen and other extracellular matrix elements, culminating in fibrosis and subsequent impairment of tendon function [16-19].

For example, Type 1 diabetes represents the primary risk factor for frozen shoulder, with incidence rates possibly reaching 59% in individuals aged over 45, and a lifetime prevalence of 76%. Patients with type 1 diabetes often experience more pronounced disability and a greater reduction in their range of motion compared to other groups [20]. The cumulative level of glycated hemoglobin A1c

(HbA1c) serves as a significant determining factor, with patients exhibiting poorer blood glucose control facing an elevated risk for developing frozen shoulder [21]. Individuals with diabetes may indeed experience more adverse outcomes from frozen shoulder compared to those without diabetes. If high-quality studies can confirm the findings of this review, it underscores the importance for clinicians to carefully monitor diabetic patients with frozen shoulder and contemplate additional treatment if persistent pain or functional limitations persist in the long term [22].

The Link Between Diabetes and the Musculoskeletal System

1.1. Diabetes in Orthopedic

Diabetes mellitus has been linked to unfavorable outcomes across various orthopedic surgery specialties. It's crucial for orthopedic surgeons to prioritize enhancing preoperative, perioperative, and postoperative medical care in patients with diabetes mellitus. Elevated incidences of surgical site infections (SSIs) have been particularly observed in procedures such as total joint arthroplasty, spinal surgery, and foot and ankle operations.

Additionally, individuals with diabetes are more prone to developing other postoperative complications, including myocardial infarction, pulmonary embolism, and urinary tract infections.

They also tend to endure prolonged hospital stays and more non-routine discharges compared to non-diabetic counterparts.

Recent investigations indicate that diabetes mellitus itself may not be solely accountable for adverse outcomes. Instead, it is more likely that diabetes-related complications—such as poor glycemic control, neuropathy, endstage renal disease, and peripheral artery disease (PAD)—contribute to the increased risk of adverse outcomes. In contrast, patients with well-controlled, uncomplicated diabetes mellitus typically experience outcomes comparable to those of individuals without diabetes [23].

Basic science investigations have uncovered several potential mechanisms associated with joint damage influenced by DM [24-30] (Figure-1, Table-1).

1.2. Glycation and Tendon Mechanical Behavior

One of the primary factors contributing to tissue dysfunction in patients with diabetes is the increased glycation of proteins and the formation of Advanced Glycation End Products (AGEs) in their collagenous tissues [53-56]. AGEs represent a diverse array of compounds resulting from a non-enzymatic interaction between reducing sugars and the unbound amino groups present in proteins and lipids. This chemical process is referred to as the Maillard reaction [57-60]. Within a collagen-rich extracellular matrix, AGEs have the capacity to create crosslinks among collagen fibrils. These crosslinks subsequently influence various aspects including biomechanical characteristics, resistance to thermal fluctuations, susceptibility to enzymatic breakdown, and the arrangement of collagen molecules. Notably, AGE-mediated crosslinks endure for the entire lifespan of the associated protein, posing a significant issue particularly in tendon tissue where collagen turnover occurs at a comparatively gradual pace [61-66]. Tendons

exhibit a hierarchical organization wherein collagen molecules align parallelly to construct fibrils. These fibrils further aggregate to create fibers, which in turn assemble into fascicles. Finally, these fascicles amalgamate to constitute the entirety of the tendon structure [67]. A significant characteristic of tendons is their capacity to reduce the strain encountered by each substructure relative to the larger structure along the length scale, termed strain attenuation. This property allows tendons to mitigate the accumulation of microdamage and enhance the maximum strain they can withstand before reaching failure [68, 69]. Because of diminished collagen sliding, tendons affected by glycation often demonstrate reduced strain attenuation. This results in elevated strain exerted on individual fibers and fibrils while diminishing the maximum strain tolerance of the entire tendon. Consequently, this scenario has the potential to escalate microdamage at these finer length scales during routine tendon loading [70, 71] (Figure-2). While this section focuses primarily on tendons due to their well-characterized hierar-

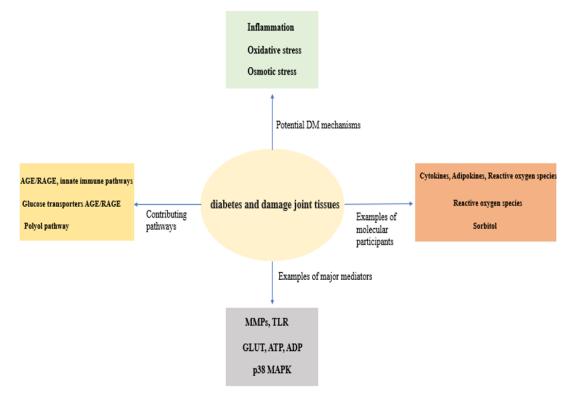


Figure 1. Mechanisms present in diabetes that can damage joint tissues (AGE/RAGE: Advanced Glycation End-products / Receptor for Advanced Glycation End-products, GLUT: Glucose Transporters, TLR: Toll-like Receptor, ATP: Adenosine Triphosphate, ADP: Adenosine Diphosphate, =MMPs: Matrix Metalloproteinases, p38 MAPK: p38 Mitogen-Activated Protein Kinase)

Table 1. Orthopedic and Diabetes

Orthopedic fields related to diabetes	Description	Ref.s
Disturbances of gait	People with diabetes may encounter restricted movement in the foot and ankle due to several factors including neuropathy, joint stiffness, and alterations in soft tissues. This constraint can impair mobility and increase the likelihood of developing foot deformities and sustaining injuries.	[31]
balance and stability	High glucose levels in individuals with diabetes can lead to thickening of the Achilles tendon and plantar fascia, contributing to conditions like Achilles tendinopathy and plantar fasciitis.	[32, 33]
soft tissues tendon healing	High concentrations of glucose can adversely affect proteoglycan synthesis by tenocytes, contributing to tendon dysfunction and potentially impairing the healing process in individuals with diabetes.	[34, 35]
Bone healing and metabolism	Bone mineral alterations are also recognized complications of diabetes mellitus. Individuals with diabetes may experience changes in bone density and metabolism, leading to an increased risk of osteoporosis and fractures.	[36-38]
Foot and ankle surgery	Neuropathy and peripheral artery disease increase the risk of infection, amputation, and complications such as Charcot neuroarthropathy (CN) in patients with diabetes mellitus. Additionally, diabetes can also predispose individuals to conditions like ankle fractures.	[39-43]
Postoperative complications of orthopedic surgery	Postoperative infections, cardiac complications	[44-47]
Sports medicine	Claudication	[48]
Total joint arthroplasty	Deep infection following primary total knee arthroplasty is a serious complication that can lead to significant morbidity and require extensive treatment.	[49]
Pediatric orthopaedics	Patients with diabetes mellitus may also be at risk of developing conditions such as slipped capital femoral epiphysis and tibia vara.	[50]
Upper extremity	Individuals diagnosed with diabetes mellitus are also at an increased risk of developing conditions like carpal tunnel syndrome, Dupuytren's disease, trigger finger, and limited joint mobility.	[51]
Spine surgery	In addition to experiencing heightened rates of surgical site infections and other complications, individuals with diabetes mellitus also encounter elevated rates of nonroutine discharges, prolonged hospital stays, an increased need for blood transfusions, and higher hospital charges compared to those without diabetes mellitus.	[52]

chical collagen structure and relatively low turnover rate, it is important to note that glycation-induced modifications also affect other musculoskeletal tissues. For instance, in articular cartilage, AGEs can impair proteoglycan content and disrupt collagen architecture,

leading to increased stiffness and decreased shock absorption capacity [72, 73]. In skeletal muscle, glycation may reduce contractile efficiency and regenerative capacity [74, 75]. Similarly, ligaments and bone exhibit AGE accumulation that compromises biomechanical resilience, increases brittleness, and contributes to diabetic musculoskeletal fragility [76, 77]. Therefore, glycation broadly affects multiple components of the musculoskeletal system, though tendons are particularly vulnerable due to their structural characteristics and metabolic profile.

1.3. Hyperglycemia and Tendon Cell Behavior Diabetes mellitus exerts an influence on the functional and mechanical properties of tendons, which is mirrored in changes to the cellular milieu. The predominant cells in tendons, namely tenocytes and tendon stem/progenitor cells (TSPCs), assume crucial roles in maintaining tendon homeostasis, facilitating remodeling, and orchestrating repair processes [78]. A hyperglycemic environment and diabetic conditions can adversely affect tendon cells, leading to structural and functional alterations in diabetic patients' tendons. These changes accelerate the progression of tendinopathy. Tenocytes serve as key cellular constituents of tendons, primarily responsible for remodeling extra cellular matrix (ECM) and preserving tissue function. They accomplish this by synthesizing collagen, proteins,

and proteoglycans, which facilitate ECM remodeling and repair processes [79, 80]. Multiple in vitro studies have demonstrated that tenocytes exposed to high-glucose conditions exhibit decreased proliferation and migration, accompanied by an increase in apoptotic activity [81-84]. Hyperglycemic conditions have been shown to facilitate the accumulation of AGEs [85, 86]. Indeed, AGEs exert their effects on multiple cell types by binding to the receptor for AGEs (RAGE), thereby activating a range of intracellular signaling pathways [87-89]. Activation of AGE-RAGE can trigger apoptosis, modulate the expression of pro-inflammatory markers, and instigate degradation of ECM [90-97]. The disruption of tenocyte signaling linked to diabetes is thought to impact nearly all components of the extracellular matrix (ECM). While type I collagen predominantly constitutes tendon ECM, other ECM constituents like elastin and proteoglycans may also hold significant roles in tendon function [84, 98].

Studies collectively highlight the significant impact of high glucose concentrations and AGEs on matrix organization and turnover within tendons. Notably, the precise levels of

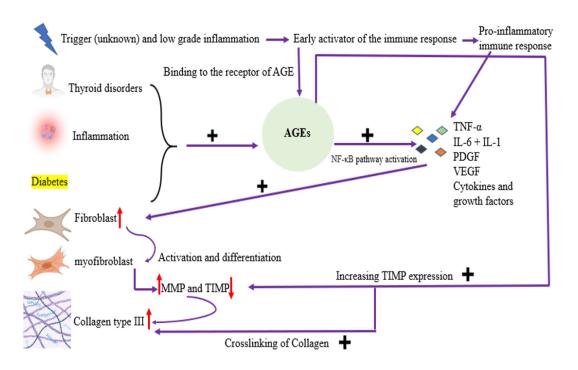


Figure 2. Diabetes and AGEs (TNF-α: Tumor Necrosis Factor alphalL-1: Interleukin-1, IL-6: Interleukin-6, PDGF: Platelet-Derived Growth Factor, VEGF: Vascular Endothelial Growth Factor, MMP: Matrix Metalloproteinase, TIMP: Tissue Inhibitor of Metalloproteinases, NF-κB: Nuclear Factor kappa-light-chain-enhancer of activated B cells, AGE: Advanced Glycation End-products) The figure was generated using BioRender.

glucose that directly affect the tendon remain unclear, indicating a need for further investigation in this area [99]. Further in vivo research is essential to accurately quantify glucose concentrations within the tendon microenvironment across different stages of hyperglycemia. Additionally, there is a substantial lack of evidence regarding the therapeutic potential of insulin administration and antiglycation agents in alleviating hyperglycemia-induced damage. Notably, hyperglycemic conditions not only impair the expression of tendon-specific genes in tenocytes but also enhance the activation of adipogenic transcription factors, including PPARy and C/EBPs [83].

The adipogenic transdifferentiation of tenocytes induced by high glucose levels could potentially facilitate the accumulation of lipid deposits within the tissue, exacerbating the deterioration of functional and biomechanical properties in tendons of diabetic patients [100]. Indeed, apart from tenocytes, a distinct niche population of TSPCs has been identified across various species [101]. TSPCs exhibit stem cell properties and hold substantial importance in the processes of tendon repair and regeneration [102, 103]. Diabetes-related alterations in TSPCs are associated with either enhanced transdifferentiation or impaired regenerative and reparative capacity. Compared to their healthy counterparts, diabetic TSPCs exhibit reduced expression of CD44, a glycoprotein critical for regulating cell proliferation, survival, differentiation, and motility [104-108].

2. Diabetic-Related Tendon Disorders

2.1. Frozen Shoulder and Diabetes

Adhesive capsulitis of the shoulder, often known as frozen shoulder, presents as a painful and debilitating condition characterized by discomfort during abrupt movements and limited range of motion, notably in external rotation of the shoulder. Owing to its symptoms, frozen shoulder is often misdiagnosed. Managing frozen shoulder, especially in diabetic individuals, presents challenges, prompting clinicians to often favor one or two treatment modalities based on patient-specific factors and the severity of symptoms [109]. The incidence of FS typically ranges between 3 and

5%, but in diabetic patients, it can increase significantly, reaching up to 30%. Moreover, diabetic individuals with FS often experience more severe symptoms and may exhibit resistance to treatment interventions [110-112]. Frozen shoulder most commonly affects individuals in middle age, and it tends to impact women slightly more than men. Additionally, it can occur bilaterally, affecting both shoulders simultaneously or sequentially [112-114]. Frozen shoulder can develop as a secondary condition to trauma and is also linked with other connective tissue disorders such as Dupuytren's contracture and Peyronie's disease [115].

The exact pathophysiology of frozen shoulder remains incompletely elucidated; however, it is widely recognized that chronic inflammation contributes to the development of proliferative fibrosis. Gross anatomical observations commonly reveal capsular thickening and vascular congestion, with prominent inflammatory changes particularly localized to the rotator interval, the coracohumeral ligament, and the middle glenohumeral ligament [116]. Microscopic examination of the affected capsule in frozen shoulder shows an augmented presence of fibroblasts, mast cells, macrophages, and T cells [117]. Synovitis is linked to increased levels of fibrotic growth factors, inflammatory cytokines, and interleukins, contributing to the pathogenesis of frozen shoulder [116].

To explain the increased occurrence of frozen shoulder in individuals with diabetes mellitus, it has been proposed that elevated systemic glucose levels accelerate glycosylation. This mechanism could contribute to higher rates of frozen shoulder and other soft tissue disorders, such as Dupuytren's disease [118]. A correlation exists between elevated levels of HbA1c and the onset of frozen shoulder in diabetic patients [21]. Arthroscopic synovial tissue biopsies from diabetic patients with frozen shoulder have demonstrated elevated levels of endothelial growth factors in comparison to non-diabetic individuals with the same condition [119] Moreover, diabetic patients display decreased levels of inflammatory growth factors, such as ADAMTS-4, MMP-1, and notably M-CSF [120]. The decrease in inflammatory growth factors, especially M-CSF, might

contribute to a slowed inflammatory response, potentially prolonging and intensifying the severity of the disease. Nevertheless, some studies have reported minimal discrepancies in inflammatory markers between diabetic and non-diabetic patients [121]. In other word There is a direct correlation between the cumulative hemoglobin A1c level and the incidence of frozen shoulder [21]. Frozen shoulder tends to persist for longer periods and is more resistant to conservative treatments in diabetic patients [122].

The precise mechanism behind this phenomenon is likely multifaceted. Some researchers have postulated that AGEs play a significant role. AGEs form through non-enzymatic glycation, a process in which glucose chemically binds to proteins, induced by oxidative stress. Once formed, AGEs form stable bonds with long-lived proteins, impeding their normal turnover and leading to their accumulation in connective tissues. While this process is a natural part of aging and can be mitigated by endurance training, it is accelerated in individuals with diabetes mellitus [123]. One particular non-enzymatic reaction of interest involves the glycation of collagen proteins, leading to the formation of crosslinks [124]. Increased levels of advanced glycation end products can trigger pathological collagen crosslinking, thereby modifying tissue structure and diminishing its compliance [125]. Capsular tissue samples taken from patients with frozen shoulder have shown notably elevated levels of advanced glycation end products compared to control samples [126]. AGEs have been shown to reduce the expression of matrix metalloproteinases and increase the expression of TIMP in diabetic nephropathy. This imbalance in ECM turnover mirrors the pathogenic mechanism observed in frozen shoulder [127].

Moreover, in diabetic retinopathy and nephropathy, the accumulation of advanced glycation end products has been demonstrated to enhance the expression of basic fibroblast growth factor and upregulate the expression of profibrotic cytokines such as TGF-β1, PDGF, and connective tissue growth factors [128]. It is hypothesized that these pro-fibrotic actions of AGEs also play a role in the pathophysiology of frozen shoulder, potentially elucidating

why frozen shoulder in diabetic patients often shows resistance to treatment [126].

2.2. Diabetic Hand Syndrome

Diabetic hand syndrome (DHS) encompasses several distinct conditions, including limited joint mobility (LJM) or diabetic cheiroarthropathy, Dupuytren's disease (DD), and flexor tenosynovitis/trigger finger (FTS). Regardless of the particular pathology present, DHS is commonly characterized by a positive prayer sign, where patients are unable to fully approximate their fingers and palms [129]. Diabetic cheiroarthropathy is the most common manifestation of DHS, with reported prevalence rates ranging from 20% to 54% in individuals with T2DM [130, 131]. LJM is characterized by hand stiffness resulting from flexion contractures of the fingers. This condition affects not only the flexor tendons but also extends to the synovial sheath and surrounding subcutaneous tissues [132]. Dupuytren's disease is characterized by fibrosis of the palmar fascia, resulting in the development of flexion contractures of the digits. Its prevalence ranges between 14% to 63% [133, 134]. FTS constitutes the third most common component of DHS, with an incidence ranging from 11% to 20%. This condition manifests as the "locking" of the finger during flexion. While the first, third, and fourth digits are most frequently affected, diabetic individuals are more prone to experiencing impairment in multiple fingers [132, 134-136]. Indeed, the coexistence of multiple conditions within DHS can exacerbate functional deficits in affected individuals [131]. Although Carpal Tunnel Syndrome (CTS) is classified as a compression neuropathy rather than a component of the diabetic hand syndrome per se, it is frequently discussed in the context of diabetic hand conditions due to its high prevalence in diabetic populations. CTS arises from compression of the median nerve by the transverse carpal ligament and represents one of the most common pathological conditions affecting the diabetic hand. The prevalence of CTS in diabetic patients has been reported to range between 14% and 60% [132, 137-139].

2.3. Achilles Tendons and Diabetes

The structural and functional alterations in

the tendons of the feet can significantly impact daily activities and may result in changes in gait and loading patterns, thereby increasing the risk of diabetic foot ulcers. The study examined alterations in foot function with a specific emphasis on the Achilles tendon (AT)-plantar fascia-metatarsophalangeal joint complex. Findings revealed significant thickening of both the Achilles tendon and plantar fascia in diabetic patients. Furthermore, joint mobility was substantially reduced, accompanied by notable changes in loading patterns. These findings underscore the importance of monitoring foot function in diabetic patients to mitigate the risk of diabetic foot complications [140].

The collective impact of these changes can indeed alter gait and loading patterns in patients with T2DM. Foot ulcers, a common complication in T2DM, are believed to be associated with increased passive stiffness of the muscle-tendon unit. Batista et al., utilizing ultrasound, illustrated a notable increase in the prevalence of tendon fiber disorganization in the Achilles tendon, with 89% of T2DM patients affected compared to only 10% of non-diabetic controls [141]. That's an intriguing finding. Abate et al. demonstrated that asymptomatic T2DM patients exhibited a heightened incidence of ultrasound abnormalities in the AT compared to non-diabetic individuals [142]. This observation suggests that a significant number of diabetic patients likely harbor degenerative tendon changes that have not yet manifested clinically [143]. These findings underscore the pervasive nature of tendon pathology in T2DM patients, emphasizing the need for comprehensive evaluation and management strategies in this population.

2.4. Rotator Cuffs and Diabetes

Tears of the rotator cuff (RC) have been inherited from our ancestors and are associated with the great apes [144, 145]. With the advent of newer techniques, patients who are appropriately selected and compliant can anticipate achieving good to excellent results [146, 147]. Indeed, numerous reports and epidemiological studies have underscored the potential association between diabetes mellitus and tendon alterations in different anatomical regions of the body [148, 149]. Diabetes

negatively impacts the mechanical properties of native tendons and the healing process of injured tendons [150]. Extended periods of hyperglycemia heighten the probability of anatomical failure in the rehabilitated rotator cuff. Additionally, diabetes mellitus has been recognized as an independent risk factor for the development of rotator cuff disease, indicating that individuals with diabetes are more susceptible to experiencing tears in the rotator cuff. [151, 152].

Although no preoperative factor definitively predicts setbacks, it's worth noting that setbacks are often linked with inferior clinical outcomes compared to successful repairs. However, among various comorbidities like smoking, obesity, high blood cholesterol, and age, diabetes notably impacts the recovery rate, resulting in earlier plateaus and overall poorer outcomes [153-156]. Cumulative evidence suggests that individuals with diabetes generally have worse structural and functional outcomes after rotator cuff surgery compared to those without diabetes. However, several studies have shown no significant differences in clinical scores between diabetic and non-diabetic patients at the final follow-up [157-159]. Moreover, a study demonstrated that the mean enhancement in pre- and post-operative outcome scores was notably higher in non-diabetic patients compared to diabetic patients. This implies that the influence of diabetes on outcome scores remains uncertain. Additionally, recent studies have explored preoperative clinical factors predicting arthroscopic rotator cuff repair's success and have indicated that diabetes is not a predictor of rotator cuff laxity [159-164]. To date, the impacts of diabetes on outcomes following rotator cuff repair and the influence of sustained hyperglycemia on retraction rates have not been fully characterized.

2.5. Diabetic Tendon Healing

It is evident that type 2 diabetes mellitus (T2DM) disrupts tendon homeostasis and baseline function while also markedly impairing the healing response after tendon injury and surgical repair. Although physiological tendon healing may occasionally result in suboptimal outcomes, the presence of T2DM further aggravates this process, increasing the

propensity for fibrotic healing of the tendon. This underscores the challenges clinicians face in managing tendon injuries in diabetic patients and emphasizes the importance of tailored approaches to optimize healing outcomes in this population [165].

Absolutely, the increased risk of tendon tear or rupture by up to five-fold in individuals with T2DM compared to non-diabetics underscores the critical importance of addressing tendon health in diabetic patients. This heightened vulnerability to tendon injuries necessitates proactive management strategies aimed at optimizing tendon health, preventing injuries, and facilitating optimal healing outcomes in diabetic individuals [166]. The rotator cuff indeed has garnered the most abundant clinical data regarding healing outcomes in specific tendons. The evidence consistently demonstrates diminished healing and a heightened risk of repair failure, with the risk being more than two-fold greater in individuals with T2DM compared to non-diabetic counterparts.

These findings highlight the critical importance of carefully managing rotator cuff injuries in diabetic patients to optimize healing outcomes and minimize the risk of repair failure [157, 167]. Indeed, limitations in tendon healing appear to be particularly pronounced during the early phases of the healing process. Clement et al. demonstrated that although improvements in pain and function were observed in T2DM patients at the 6-month postoperative mark, the magnitude of these improvements was markedly reduced compared to non-diabetic patients. These findings underscore the importance of closely monitoring and managing diabetic patients during the critical early phases of tendon healing to optimize outcomes and mitigate the impact of T2DM on the healing process [158].

Hsu *et al.*'s findings provide an interesting contrast, as they identified no difference in outcomes between diabetic and non-diabetic patients in the long term, specifically beyond 24 months postoperatively. This suggests that while there may be initial differences in healing outcomes between diabetic and non-diabetic individuals, these disparities may diminish over time. It's important for clinicians to consider both short-term and long-term out-

comes when managing tendon injuries in diabetic patients, recognizing the potential for variability in healing trajectories over time [168].

3. Diabetic Muscle Atrophy and Its Mechanisms

3.1. General Overview of Muscle Atrophy in Diabetes

Disturbances in the primary pathways of protein degradation and synthesis are implicated in muscle atrophy. Key pathways involved in protein synthesis, such as the insulin-like factor-1-phosphoinositide-3-kigrowth nase-Akt/protein kinase B-mammalian target of rapamycin (IGF1-PI3K-Akt/PKB-mTOR) pathway and the IGF-1-AKT-FoxO pathways, are pivotal in this context. Dysfunctions within these pathways can result in muscle wasting and atrophy [169-176]. In type 2 diabetes, insulin resistance suppresses the IGF-1-PI3K-AKT/PKB-mTOR pathway, leading to inhibition of protein synthesis. Moreover, insulin resistance contributes to muscle atrophy by stimulating the ubiquitin-proteasome system and the autophagy-lysosome pathway through the IGF-1-AKT-FoxO signaling pathway. Conversely, in type 1 diabetes, muscle atrophy is frequently mediated by a protein degradation pathway based on FoxO [177-180]. Additionally, muscle atrophy in individuals with diabetes can also be attributed to damage caused by oxidative stress, inflammatory responses, and elevated levels of glucocorticoids [181, 182] (Figure-3).

3.2 Role of Insulin Resistance in Diabetic Muscular Atrophy

Muscle contraction relies significantly on insulin-stimulated glucose uptake. Insulin serves as a potent synthetic signal that greatly enhances muscle protein synthesis [183, 184]. Activation of PI3K, PDK1, AKT, mTOR, p70S6K pathways leads to the phosphorylation and activation of downstream targets involved in protein synthesis, ultimately promoting muscle hypertrophy and growth. These pathways represent key targets for interventions aimed at enhancing muscle mass and function, particularly in conditions associated with muscle wasting or impaired mus-

cle growth [185, 186]. Glucose serves as a primary fuel source for muscle activity during contraction, and its availability is tightly regulated by insulin. When insulin signaling is disrupted, as in DM, skeletal muscle may experience inadequate glucose uptake, leading to compromised muscle contraction and function. This impairment in glucose utilization contributes to the muscle weakness and decreased exercise capacity often observed in individuals with DM [187].

maintaining proper insulin sensitivity and signaling is crucial for preserving muscle mass and function in individuals with DM [188]. Sarcopenia is indeed a recognized complication of T2DM. It's characterized by the gradual and progressive loss of skeletal muscle mass and function, leading to reduced strength, mobility, and overall physical performance. The interplay of various factors, including insulin resistance, chronic inflammation, hormonal imbalances, and impaired protein metabolism, contributes to the development and progression of sarcopenia in individuals with T2DM. Managing blood glucose levels, promoting physical activity, and optimizing nutritional intake are crucial strategies for mitigating the risk of sarcopenia and preserving muscle health in individuals with T2DM [189-191].

In the context of insulin resistance, signaling pathways mediated by insulin or IGF-1 are inhibited, resulting in the suppression of the PI3K/AKT pathway. This suppression leads to decreased mTOR activity and a subsequent reduction in protein synthesis, which collectively contribute to muscle atrophy observed in patients with type 2 diabetes mellitus [192]. Moreover, insulin resistance results in elevated systemic glucose levels, facilitating the interaction of glucose with proteins or lipids, leading to the formation of AGEs [193]. AGEs play a pivotal role in the development of chronic diabetic complications. Additionally, the buildup of AGEs is considered a potential contributor to muscle loss and weakness in individuals with T2DM [194].

The receptor for advanced glycation end products (RAGE) is a transmembrane signaling receptor implicated in the development of diabetic renal and vascular complications. Activation of RAGE by AGEs can promote muscle atrophy and impair myogenesis by inhibiting AKT signaling through the activation of AMPK pathways [195]. Furthermore, AGEs have been shown to interfere with muscle anabolic signaling by suppressing the mTORC1 pathway [194]. In summary, insulin resistance can impair the IGF-1-PI3K-AKT-mTOR

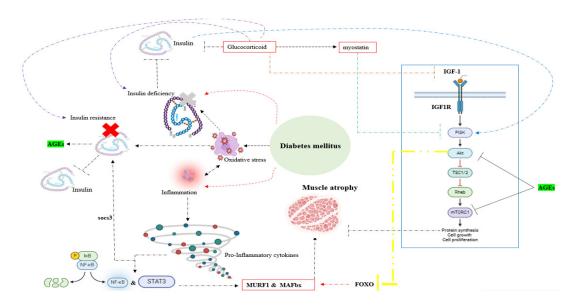


Figure 3. Key pathways involved in Diabetic muscular atrophy (AGEs - Advanced Glycation End Products, AKT - Protein Kinase B, FoxO - Forkhead Box O, IGF-1 - Insulin-like Growth Factor 1, IGF1R - Insulin-like Growth Factor 1 Receptor, IKB - Inhibitor of Nuclear Factor Kappa B, MAFbx - Muscle Atrophy F-box Protein (also known as Atrogin-1), mTORC1 - Mechanistic Target of Rapamycin Complex 1, MURF1 - Muscle RING Finger Protein 1, NF-kB - Nuclear Factor Kappa-light-chain-enhancer of Activated B Cells, PI3K Phosphoinositide 3-Kinase, Rheb – Ras Homolog Enriched in Brain, SOCS3 – Suppressor of Cytokine Signaling 3, STAT3 – Signal Transducer and Activator of Transcription 3, TSC1/2 – Tuberous Sclerosis Complex 1 and 2) The figure was generated using BioRender.

signaling pathway responsible for protein synthesis, leading to reduced protein production and subsequent skeletal muscle atrophy.

3.3. Role of Insulin Deficiency in Diabetic Muscular Atrophy

Individuals with T1DM demonstrate diminished repair capacity in their skeletal muscle satellite cells and experience skeletal muscle dysfunction. These abnormal phenotypes are associated with insulin deficiency, which disrupts the balance between protein degradation and synthesis, leading to degradation rates that surpass synthesis rates [196]. Under physiological conditions, both the insulin receptor (IR) and the IGF-1 receptor (IGF-1R) regulate multiple cellular functions through the PI3K/ AKT signaling pathway. For example, during glucose uptake and protein synthesis, AKT activation triggered by insulin or IGF-1 results in the phosphorylation of FoxO transcription factors, thereby suppressing their transcriptional activity [197]. In insulin-deficient diabetes or conditions characterized by impaired insulin/IGF-1 signaling in muscle, there is a decrease in complex I-driven mitochondrial respiration and supercomplex assembly. This effect is mediated by FoxO transcription factors, which suppress the expression of complex I subunits [198]. These effects have significant implications for mitochondrial function and contribute to the induction of skeletal muscle atrophy [197]. In summary, insulin deficiency leads to enhanced transcriptional activity of FoxO, which subsequently upregulates the expression of muscle atrophy-related genes, ultimately resulting in muscle atrophy.

3.4. Role of Inflammation in Diabetic Muscular Atrophy

IL-6 is a pro-inflammatory cytokine well-known for its impact on muscle tissue [199, 200]. Individuals with T2DM frequently present with increased circulating levels of inflammatory markers such as C-reactive protein, IL-1 β , and IL-6 [201]. In type 1 diabetes mellitus (T1DM), skeletal muscle regeneration is impaired due to dysfunction of satellite cells [202]. Therefore, persistently elevated IL-6 levels may play a role in satellite cell dysfunction associated with diabetes mellitus. Additionally, hyperglycemia can induce the release

of inflammatory mediators, including IL-6, activate immune cells such as macrophages, and trigger apoptosis-related signaling pathways, notably the Fas/FasL pathway [203, 204]. Indeed, this stimulation can contribute to islet β-cell dysfunction, resulting in insulin deficiency. Furthermore, IL-6 has been shown to promote insulin resistance by reducing insulin sensitivity and altering lipid metabolism [205, 206]. Insulin mediates its biological effects by binding to the insulin receptor (IR). However, the pro-inflammatory cytokine TNF-α can interfere with the tyrosine phosphorylation and activation of IR within the insulin signaling pathway, thereby contributing to the development of insulin resistance [206]. Additionally, TNF-α can reduce glucose uptake and utilization in skeletal muscle and adipocytes by downregulating the expression of the glucose transporter GLUT4. This effect contributes to the development of insulin resistance and facilitates muscle atrophy [207, 208].

STAT3 can be activated by pro-inflammatory cytokines such as IL-6, resulting in the suppression of signaling pathways involved in protein synthesis within muscle tissue. [209-212]. NF-kB serves as a central transcriptional regulator that induces the expression of a wide array of genes. Its activation can be triggered by various stimuli, including viral infections, TNF, and B cell activating factor (BAFF) [213, 214]. Moreover, NF-κB can promote the degradation of certain muscle proteins by upregulating the expression of the E3 ubiquitin ligase MuRF1 [215-217]. The NF-κB and STAT3 signaling pathways function as key mediators of inflammation and can be significantly activated by elevated levels of pro-inflammatory cytokines, such as TNF- α , and non-esterified fatty acids. This activation results in the upregulation of MuRF1 expression, which in turn stimulates the ubiquitin-proteasome system (UPS), promoting muscle protein degradation [218, 219]. Additionally, IL-6 may contribute to muscle atrophy by modulating the activity of IGF-1 [220, 221].

3.5. Role of Oxidative Stress in Diabetic Muscular Atrophy

The elevated metabolic activity of skele-

tal muscle makes it especially susceptible to damage caused by oxidative stress [220]. Oxidative stress impairs the AKT-mTOR signaling pathway and its downstream effectors, thereby inhibiting protein synthesis and promoting muscle atrophy [222, 223]. Moreover, islet β cells are highly vulnerable to ROS due to their inherently low levels of antioxidant enzymes. ROS can cause direct damage to β cells, leading to apoptosis, and can also indirectly disrupt insulin signaling pathways and impair β cell function, ultimately contributing to the development of diabetes mellitus [224, 225]. ROS act as key mediators in the activation of pro-inflammatory signaling pathways [226, 227]. A persistent inflammatory milieu fosters the generation of free radicals, including ROS. This exacerbates β-cell injury, establishing a positive feedback loop where additional detrimental cytokines are released, prompting further harm to β cells [228]. Oxidative stress can induce insulin deficiency and generate substantial quantities of ROS that impede insulin signaling transduction, consequently precipitating insulin resistance [229]. Ultimately, this sequence of events can contribute to the onset of skeletal muscle atrophy.

3.6. Role of Glucocorticoids in Diabetic Muscular Atrophy

Cortisol (GC) is a hypoglycemic hormone that stimulates gluconeogenesis and glycogen breakdown, thereby opposing the effects of insulin and elevating blood glucose levels

[230]. GC signaling plays a significant role in contributing to muscle atrophy in diabetes mellitus [231]. Furthermore, upon binding to the glucocorticoid receptor (GR), GC inhibits AKT, GLUT4, and IR signaling, consequently inducing insulin resistance [232]. In cases of T1DM characterized by insulin deficiency, the presence of GCs alongside insulin deficiency in muscle prompts competition between GR and IRS1 for binding to PI3K subunits P110 and p85. Consequently, phosphorylation levels of IRS, PI3K, and AKT decrease, ultimately resulting in muscle atrophy [232].

GCs predominantly induce muscle atrophy by enhancing protein breakdown through the UPS and autophagy-lysosome pathway (ALP), while concurrently diminishing protein synthesis via inhibition of the IGF-1-PI3K-AKT-mTOR and mTOR/p70S6k pathways [233-235]. Moreover, GCs upregulate the production of myostatin, which in turn reduces protein synthesis by inhibiting the AKTmTOR pathway [236]. GCs can cause muscle atrophy by binding to their receptors, disrupting the insulin/IGF-1 signaling pathway, and promoting the transcription of dystrophin. Additionally, GRs can work together with FoxO1 to induce MuRF1, further accelerating muscle atrophy [237]. Furthermore, GRs regulates muscle catabolism by influencing the expression of MAFbx and MuRF1 [238, 239]. Indeed, GCs contribute to skeletal muscle atrophy through various pathways. That sounds like a comprehensive approach to understand-

Table 2. Drugs for Diabetic Muscular Atrophy

Drugs	Effect on muscle			
	Attenuate the muscle wasting	repair	Against Muscle atrophy	Ref.s
Thiazolidinedione	*			[240]
Metformin		*		[240-242]
Vitamin D		*		[243, 244]
Omega-3 fatty acid			*	[245-248]
Insulin		*		[240]

ing the effects of anti-diabetic drugs on muscle atrophy in diabetes (Table-2).

4. Diabetes and Joint Diseases

4.1. Osteoarthritis and Diabetes

Osteoarthritis (OA) is indeed becoming more prevalent and is a significant health concern affecting millions of people worldwide [249]. OA is commonly described as a degenerative process affecting the joints, characterized by the erosion of articular cartilage, changes in the bone beneath and around the cartilage, mild to moderate inflammation of the joint lining, and pain. While damage to cartilage is the primary feature of OA, abnormalities in other tissues like tendons, bones, or muscles may also contribute to or initiate the condition. There are notable similarities between DM, particularly T2DM, and OA in terms of their epidemiological characteristics. Both conditions are complex, exhibiting substantial clinical diversity and multifaceted causes involving interactions between genetic predisposition and environmental factors. They also share common risk factors, with aging being a notable one. In the US, the prevalence of diabetes mellitus is 3.3 cases per 1000 individuals aged 18-44, increasing to 15.4 cases per 1000 individuals aged 65-79 [250].

Likewise, the prevalence of OA substantially rises with age, impacting 13.5% of adults aged 25 years and older, and notably affecting 33.6% of individuals aged 65 and above [251]. Another significant risk factor for both conditions is obesity. The link between OA and obesity is well-established, and a majority of individuals with T2DM are also affected by obesity [252, 253]. The co-occurrence of OA and DM often happens coincidentally due to their high prevalence and overlapping risk factors. Approximately 47.3% of individuals with DM have some manifestation of arthritis [254]. The existence of comorbid conditions generally amplifies the care requirements of individual patients, reduces the efficacy of treatment, and raises healthcare expenses. Moreover, treatment approaches that prioritize personalized medicine and consider comorbidities may lead to better outcomes for OA patients [255]. The onset of OA could also complicate DM. Although not the primary

focus of this review, emerging evidence suggests that OA contributes to the cardiovascular disease burden, which is already elevated in DM patients [256]. There are a growing acknowledgment of the significant role inflammation plays in both osteoarthritis and diabetes mellitus, serving as a crucial mechanistic connection between these two conditions. OA is characterized by notable synovitis, which may be aggravated by elevated levels of inflammatory cytokines, adipokines, and prostaglandins observed in tissues affected by DM [257, 258].

Signaling through innate immunity pathways, such as toll-like receptors, can also induce inflammation in both diabetes mellitus and osteoarthritis [259, 260]. In a state of hyperglycemia, there is increased generation of reactive ROS, which play a role in tissue damage. The regulation of cellular glucose transport becomes critical and may worsen oxidative stress. Research indicates that chondrocytes from older donors (aged 66 years and above) with osteoarthritis, when exposed to high glucose environments, demonstrate an impaired ability to downregulate GLUT1 protein expression or decrease glucose transport activity compared to chondrocytes from younger donors (aged 28–35 years) without OA [261]. Furthermore, it was noted that under high glucose conditions, there was an inclination towards increased oxidant production and enhanced matrix catabolism, potentially hastening the progression of osteoarthritis. It's important to highlight that age and media osmolarity were not standardized in these experiments [262].

The impacts of elevated glucose levels may be associated with compromised functionality of ATP-sensitive potassium (K+) channels. These channels are involved in coupling GLUT with intracellular ATP/ADP levels and membrane potential [263, 264]. The AGE/RAGE (advanced glycation end products/receptor for AGEs system is another factor contributing to end-organ damage in diabetes mellitus by promoting inflammation and/or exacerbating oxidative stress. Collagen, known for its notably slow turnover rate in numerous connective tissues, is especially vulnerable to modification by AGEs. The accumulation of AGEs is accelerated by heightened levels of glucose in

the tissues [265]. AGEs exert their effects by signaling through RAGE (receptor for AGEs) and other receptors, resulting in various harmful effects on chondrocytes. These effects include inflammation and cytokine-mediated catabolism. AGEs have been implicated in contributing to end-organ damage in diabetes mellitus [265-268].

Moreover, AGE-mediated cross-linking of collagen can modify the biomechanical properties of tissues, as evidenced in studies involving cartilage and tendon [269]. Cross-linking facilitated by AGEs may additionally hinder extracellular matrix turnover by impeding access to proteolytic sites [268]. Conversely, a recent investigation conducted on dogs indicated that artificially elevating AGE levels alone through repeated ribose injections did not hasten osteoarthritis progression in a mild injury model (129). However, our understanding of the impact of AGEs within the diabetic context on OA development remains limited. Therefore, the extent to which AGEs contribute to OA pathogenesis remains uncertain [270]. In the polyol pathway, glucose is converted to sorbitol and galactose to galactitol by aldose reductase. This pathway becomes activated in diabetes mellitus, resulting in an accumulation of polyols, which in turn induces cellular osmotic stress [271].

While a direct link to osteoarthritis has not been established, there is evidence suggesting that this pathway becomes activated in diabetes mellitus within intervertebral disc cartilage. Its activation appears to enhance matrix catabolism via p38 MAPK activation [272]. Although not extensively discussed in this review, it is noteworthy that other pathways relevant to diabetes mellitus have been proposed. For instance, substantial evidence suggests that adipokines might trigger inflammation and exert detrimental effects on cartilage and tissue healing [273, 274]. Further research is needed to explore the role of adipokines in osteoarthritis among obese patients with diabetes mellitus, as altered adipokine levels are observed in obesity regardless of diabetes status [275]. Changes in angiogenesis, autophagy, and apoptosis have also been linked to end-organ damage in osteoarthritis [276, 277]. Chondrocytes express insulin receptors, implying that elevated insulin levels,

as observed in patients with type 2 diabetes mellitus, could potentially harm cartilage. A study demonstrated downregulation of PPARy in articular chondrocytes exposed to high glucose media, although further research is needed to validate this result due to methodological complexities [261, 278]. Additional investigation is required to ascertain the particular pathways implicated, prioritize the most pertinent pathways, and elucidate how molecular mediators intersect across multiple pathways concerning joint damage associated with diabetes.

4.2. Rheumatoid Arthritis

Rheumatoid arthritis (RA) is an autoimmune and inflammatory condition marked by sustained inflammation of the synovium, leading to cartilage and underlying bone deterioration [279, 280]. The systemic inflammation linked to RA may potentially elevate the likelihood of developing diabetes later on. Markers of ongoing inflammation, such as CRP, are correlated with a heightened risk of diabetes in individuals with RA. Additionally, other conventional risk factors for T2DM are notably prevalent among those with RA [281] and may contribute to the higher risk of diabetes [282]. Due to chronic joint pain, swelling, and stiffness, individuals with RA often experience physical inactivity. This reduced activity level contributes to the development of T2DM through decreased calorie expenditure [283]. Rheumatoid arthritis is linked to a heightened risk of developing diabetes mellitus. This observation reinforces the concept of inflammatory pathways playing a role in the development of diabetes. Therefore, it is advisable to contemplate more aggressive interventions aimed at managing diabetes risk factors in individuals with rheumatoid arthritis [280].

Conclusion

In conclusion, the correlation between diabetes mellitus and orthopedic disorders, including frozen shoulder, rotator cuff tears, muscle atrophy, osteoarthritis, tendinopathy, Rheumatoid arthritis, and underscores the complex interplay between metabolic dysfunction and musculoskeletal health. Individuals with DM exhibit a heightened susceptibility to these

orthopedic conditions, often experiencing more severe symptoms and poorer treatment outcomes compared to non-diabetic counterparts. The underlying pathophysiological mechanisms involve chronic inflammation, altered protein degradation, oxidative stress, and impaired tissue healing, collectively contributing to the development and progression of musculoskeletal complications in diabetic individuals. Orthopedic surgeons and healthcare providers must prioritize comprehensive preoperative, perioperative, and postoperative management strategies tailored to address the unique needs of diabetic patients. Optimizing glycemic control, managing comorbidities, and implementing multidisciplinary approaches are essential for mitigating the risk of adverse outcomes and improving the overall prognosis of orthopedic interventions in this patient population. Furthermore, continued research efforts are warranted to elucidate the intricate molecular pathways linking diabetes and orthopedic disorders, identify novel therapeutic targets, and develop personalized treatment modalities. By advancing our understanding of these pathogenic mechanisms, clinicians can enhance clinical decision-making, optimize treatment efficacy, and ultimately improve the quality of life for individuals living with diabetes and orthopedic comorbidities.

Acknowledgement

We would like to express our gratitude to BioRender (www.biorender.com) for providing the software used to create all figures in this article.

Conflict of Interest

There is no conflict of interest.

References

- Association AD. Diagnosis and classification of diabetes mellitus. Diabetes care. 2010; 33(Supplement 1): S62-S69.
- 2. Struyf F, Mertens MG, Navarro-Ledesma S. Causes of shoulder dysfunction in diabetic patients: a review of literature. International journal of environmental research and public health. 2022; 19(10): 6228.
- 3. Ranger TA, et al. Is there an association between tendinopathy and diabetes mellitus A systematic review with meta-analysis. British journal of sports medicine. 2016; 50(16): 982-989.
- Lui P. Tendinopathy in diabetes mellitus patients—epidemiology, pathogenesis, and management. Scandinavian journal of medicine & science in sports. 2017; 27(8): 776-787.
- 5. Baskerville R et al. Tendinopathy in type 2 diabetes: a condition between specialties. British Journal of General Practice. 2018; 68(677): 593-594.
- 6. Hopkins C, et al. Critical review on the socio-economic impact of tendinopathy. Asia-Pacific journal of sports medicine, arthroscopy, rehabilitation and technology. 2016; 4: 9-20.
- WH O. Global report on diabetes. Isbn: Organization WH WHO Global report on diabetes; 2016.

- 8. Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Physical therapy. 2008; 88(11): 1322-1335.
- 9. Molsted S, Tribler J, Snorgaard O. Musculoskeletal pain in patients with type 2 diabetes. Diabetes research and clinical practice. 2012; 96(2): 135-140.
- Laslett L, et al. Musculoskeletal morbidity: the growing burden of shoulder pain and disability and poor quality of life in diabetic outpatients. Clin Exp Rheumatol. 2007; 25(3): 422-9.
- 11. Kiani J, et al. Prevalence and risk factors of five most common upper extremity disorders in diabetics. J Res Health Sci. 2014; 14(1): 92-5.
- 12. Cole A, et al. Is diabetes associated with shoulder pain or stiffness Results from a population based study. The Journal of rheumatology. 2009; 36(2): 371-377.
- 13. Ko JY, Wang FS. Rotator cuff lesions with shoulder stiffness: updated pathomechanisms and management. Chang Gung Med J. 2011; 34(4): 331-340.
- Lebiedz-Odrobina D, Kay J. Rheumatic manifestations of diabetes mellitus. Rheumatic Disease Clinics. 2010; 36(4): 681-699.
- 15. Boivin GP, et al. Biomechanical properties

- and histology of db/db diabetic mouse Achilles tendon. Muscles, ligaments and tendons journal. 2014; 4(3): 280.
- 16. Kaviratne M, et al. IL-13 activates a mechanism of tissue fibrosis that is completely TGF-β independent. The Journal of Immunology. 2004; 173(6): 4020-4029.
- 17. Spite M, Claria J, Serhan CN. Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell metabolism. 2014; 19(1): 21-36.
- 18. Sugimoto R, et al. Effect of IL-4 and IL-13 on collagen production in cultured LI90 human hepatic stellate cells. Liver International. 2005; 25(2): 420-428.
- 19. Welty FK, Alfaddagh A, Elajami TK. Targeting inflammation in metabolic syndrome. Translational research. 2016; 167(1):257-280.
- 20. Juel NG, et al. Very high prevalence of frozen shoulder in patients with type 1 diabetes of≥ 45 years' duration: the dialong shoulder study. Archives of physical medicine and rehabilitation. 2017; 98(8):1551-1559.
- 21. Chan JH, et al. The relationship between the incidence of adhesive capsulitis and hemoglobin A1c. Journal of Shoulder and Elbow Surgery. 2017; 26(10): 1834-1837.
- 22. Dyer BP, et al. Diabetes as a prognostic factor in frozen shoulder: a systematic review. Archives of rehabilitation research and clinical translation. 2021; 3(3): 100141.
- 23. Wukich DK. Diabetes and its negative impact on outcomes in orthopaedic surgery. World journal of orthopedics. 2015; 6(3): 331.
- 24. Brocker C, Thompson DC, Vasiliou V. The role of hyperosmotic stress in inflammation and disease. Biomolecular concepts. 2012; 3(4): 345-364.
- 25. Chung SS, et al. Contribution of polyol pathway to diabetes-induced oxidative stress. Journal of the American Society of Nephrology. 2003; 14(suppl 3): S233-S236.
- 26. McNulty AL, et al. Dehydroascorbate transport in human chondrocytes is regulated by hypoxia and is a physiologically relevant source of ascorbic acid in the joint. Arthritis & Rheumatism. 2005; 52(9): 2676-2685.
- 27. Rosa SC, et al. Impaired glucose transporter-1 degradation and increased glucose transport and oxidative stress in response to high glucose in chondrocytes from osteoarthritic versus normal human cartilage. Arthritis research & therapy. 2009; 11: 1-11.
- 28. Lin Y, et al. The hyperglycemia-induced

- inflammatory response in adipocytes: the role of reactive oxygen species. Journal of biological chemistry. 2005; 280(6): 4617-4626.
- 29. Cecil DL, et al. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. The Journal of Immunology. 2005; 175(12): 8296-8302.
- 30. Rajamani U, Jialal I. Hyperglycemia induces Toll-like receptor-2 and-4 expression and activity in human microvascular retinal endothelial cells: implications for diabetic retinopathy. Journal of diabetes research. 2014; 2014:5071954.
- 31. Deschamps K, et al. Comparison of foot segmental mobility and coupling during gait between diabetic patients with and without neuropathy and control adults. in 11th Staffordshire conference on Clinical Biomechanics (SCCB 2013). 2013;28(7):813-9.
- 32. Centomo H, et al. Postural control following a self-initiated reaching task in type 2 diabetic patients and age-matched controls. Gait & posture. 2007; 25(4): 509-514.
- 33. Cheing GL, et al. Do the biomechanical properties of the ankle–foot complex influence postural control for people with Type 2 diabetes? Clinical Biomechanics. 2013; 28(1): 88-92.
- 34. Burner T, et al. Hyperglycemia reduces proteoglycan levels in tendons. Connective tissue research. 2012; 53(6): 535-541.
- 35. Cronin NJ, et al. Achilles tendon length changes during walking in long-term diabetes patients. Clinical biomechanics. 2010; 25(5): 476-482.
- 36. Einhorn TA, et al. The mineral and mechanical properties of bone in chronic experimental diabetes. Journal of Orthopaedic Research. 1988; 6(3): 317-323.
- 37. Beam HA, Russell Parsons J, Lin SS. The effects of blood glucose control upon fracture healing in the BB Wistar rat with diabetes mellitus. Journal of Orthopaedic Research. 2002; 20(6): 1210-1216.
- 38. Coords M, et al. The effects of low-intensity pulsed ultrasound upon diabetic fracture healing. Journal of Orthopaedic Research. 2011; 29(2): 181-188.
- 39. Wukich DK. Current concepts review: diabetic foot ulcers. Foot & ankle international. 2010; 31(5): 460-467.
- 40. Lavery LA, et al. Risk factors for foot infections in individuals with diabetes.

- Diabetes care. 2006; 29(6): 1288-1293.
- 41. Wukich DK, et al. SIRS is valid in discriminating between severe and moderate diabetic foot infections. Diabetes Care. 2013; 36(11): 3706-3711.
- 42. Myers TG, et al. Ankle and hindfoot fusions: comparison of outcomes in patients with and without diabetes. Foot & Ankle International. 2012; 33(1): 20-28.
- 43. Wukich DK, et al. Outcomes of ankle fractures in patients with uncomplicated versus complicated diabetes. Foot & Ankle International. 2011; 32(2): 120-130.
- 44. Karunakar MA ,Staples KS. Does stress-induced hyperglycemia increase the risk of perioperative infectious complications in orthopaedic trauma patients? Journal of orthopaedic trauma. 2010; 24(12): 752-756.
- 45. Richards JE, et al. Stress hyperglycemia and surgical site infection in stable nondiabetic adults with orthopedic injuries. Journal of Trauma and Acute Care Surgery. 2014; 76(4): 1070-1075.
- 46. Richards JE, et al. Stress-induced hyperglycemia as a risk factor for surgical-site infection in nondiabetic orthopedic trauma patients admitted to the intensive care unit. Journal of orthopaedic trauma. 2013; 27(1): 16-21.
- 47. Smilowitz NR, et al. Perioperative major adverse cardiovascular and cerebrovascular events associated with noncardiac surgery. JAMA cardiology. 2017; 2(2): 181-187.
- 48. Edmundsson D, Svensson O, Toolanen G. Intermittent claudication in diabetes mellitus due to chronic exertional compartment syndrome of the leg: an observational study of 17 patients. Acta orthopaedica. 2008; 79(4):534-539.
- 49. Dowsey MM, Choong PF. Obese diabetic patients are at substantial risk for deep infection after primary TKA. Clinical Orthopaedics and Related Research®. 2009; 467: 1577-1581.
- 50. Bowen JR, et al. Associations among slipped capital femoral epiphysis, tibia vara, and type 2 juvenile diabetes. Journal of Pediatric Orthopaedics. 2009; 29(4): 341-344.
- 51. Brown E, Genoway KA. Impact of diabetes on outcomes in hand surgery. The Journal of hand surgery. 2011; 36(12): 2067-2072.
- 52. Chen S, et al. Diabetes associated with increased surgical site infections in spinal arthrodesis. Clinical Orthopaedics and Related Research®. 2009; 467: 1670-1673.
- 53. Vlassara H, Palace M. Diabetes and

- advanced glycation endproducts. Journal of internal medicine. 2002; 251(2): 87-101.
- 54. Vlassara H, Uribarri J. Advanced glycation end products (AGE) and diabetes: cause, effect, or both? Current diabetes reports. 2014; 14: 1-10.
- 55. Ahmed N. Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes research and clinical practice. 2005; 67(1): 3-21.
- 56. Singh R, et al. Advanced glycation end-products: a review. Diabetologia. 2001; 44: 129-146.
- 57. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001; 414(6865): 813-820.
- 58. Goh SY, Cooper ME. The role of advanced glycation end products in progression and complications of diabetes. The Journal of Clinical Endocrinology & Metabolism. 2008; 93(4): 1143-1152.
- 59. Kalousova M, Skrha J, Zima T. Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiological research. 2002; 51(6): 597-604.
- 60. Poulsen MW, et al. Advanced glycation endproducts in food and their effects on health. Food and Chemical Toxicology. 2013; 60: 10-37.
- 61. Heinemeier KM, et al. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14C. The FASEB Journal. 2013; 27(5): 2074.
- 62. Zellers JA, et al. Human Achilles tendon mechanical behavior is more strongly related to collagen disorganization than advanced glycation end-products content. Scientific reports. 2021; 11(1): 24147.
- 63. Karim L ,Vashishth D. Heterogeneous glycation of cancellous bone and its association with bone quality and fragility. PLoS One. 2012; 7(4): e35047.
- 64. Guney A, et al. Biomechanical properties of Achilles tendon in diabetic vs non-diabetic patients. Experimental and Clinical Endocrinology & Diabetes. 2015;123(7): 428-432.
- 65. Andreassen T, Seyer-Hansen K, Bailey A. Thermal stability, mechanical properties and reducible cross-links of rat tail tendon in experimental diabetes. Biochimica et Biophysica Acta (BBA)-General Subjects. 1981; 677(2): 313-317.
- 66. Bailey AJ, Paul RG, Knott L. Mechanisms of maturation and ageing of collagen.

- Mechanisms of ageing and development. 1998; 106(1-2): 1-56.
- 67. Kannus P. Structure of the tendon connective tissue. Scandinavian journal of medicine & science in sports. 2000; 10(6): 312-320.
- 68. Fang F, Lake SP. Multiscale strain analysis of tendon subjected to shear and compression demonstrates strain attenuation, fiber sliding, and reorganization. Journal of Orthopaedic Research®. 2015; 33(11): 1704-1712.
- 69. Konow N, Azizi E, Roberts TJ. Muscle power attenuation by tendon during energy dissipation. Proceedings of the Royal Society B: Biological Sciences. 2012; 279(1731): 1108-1113.
- 70. Eekhoff JD, Fang F, Lake SP. Multiscale mechanical effects of native collagen crosslinking in tendon. Connective tissue research. 2018; 59(5): 410-422.
- 71. Li Y, et al. Advanced glycation end-products diminish tendon collagen fiber sliding. Matrix Biology. 2013; 32(3-4): 169-177.
- 72. Verzijl N, et al. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis & Rheumatism. 2002; 46(1): 114-
- 73. Musumeci G, Szychlinska MA, Mobasheri A. Age-related degeneration of articular cartilage in the pathogenesis of osteoarthritis. molecular markers of senescent chondrocytes. 2015;30(1):14670.
- 74. Nickels JZ. The effect of insulin treatment and exercise modality on skeletal muscle fiber size in streptozotocin-induced type 1 diabetic rats. The University of Western Ontario (Canada). 2017; :29244920.
- 75. Snow LM, Fugere NA, Thompson LV. Advanced glycation end-product accumulation and associated protein modification in type II skeletal muscle with aging. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2007; 62(11): 1204-1210.
- 76. Yamagishi Si. Role of advanced glycation end products (AGEs) in osteoporosis in diabetes. Current drug targets. 2011;12(14): 2096-2102.
- 77. Yamamoto M, Sugimoto T. Advanced glycation end products, diabetes, and bone strength. Current osteoporosis reports. 2016; 14: 320-326.
- 78. Bi Y, et al. Identification of tendon stem/ progenitor cells and the role of the

- extracellular matrix in their niche. Nature medicine. 2007; 13(10): 1219-1227.
- 79. Maffulli N, et al. Tenocytes from ruptured and tendinopathic achilles tendons produce greater quantities of type III collagen than tenocytes from normal achilles tendons: an in vitro model of human tendon healing. The American journal of sports medicine. 2000; 28(4): 499-505.
- 80. Benjamin M, Kaiser E, Milz S. Structurefunction relationships in tendons: a review. Journal of anatomy 2008. 212(3): p. 211-228.
- 81. Wu YF, et al. High glucose alters tendon homeostasis through downregulation of the AMPK/Egr1 pathway. Scientific reports. 2017; 7(1): 44199.
- 82. Poulsen R. et al. Cell differentiation versus cell death: extracellular glucose is a key determinant of cell fate following oxidative stress exposure. Cell death & disease. 2014 5(2): e1074-e1074.
- 83. Wu YF, et al. Hyperglycemia augments the adipogenic transdifferentiation potential of tenocytes and is alleviated by cyclic mechanical stretch. International Journal of Molecular Sciences. 2017; 19(1): 90.
- 84. Ueda Y, et al. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone & joint research. 2018; 7(5): 362-372.
- 85. Burr SD, Stewart Jr. Extracellular matrix components isolated from diabetic mice alter cardiac fibroblast function through the AGE/ RAGE signaling cascade. Life sciences. 2020; 250: 117569.
- 86. Vaidya R, Church A, Karim L. Effect of type 2 diabetes on bone cell behavior, in The Science, Etiology and Mechanobiology of Diabetes and its Complications. Elsevier. 2021; :313-326.
- 87. Basta G, et al. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation. 2002; 105(7):816-
- 88. Ott C, et al. Role of advanced glycation end products in cellular signaling. Redox biology. 2014; 2: 411-429.
- 89. Pietkiewicz J, et al. Receptors for advanced glycation end products and their physiological and clinical significance. Advances in Hygiene and Experimental Medicine. 2008; 62:511-23.
- 90. Lui PPY, Yung PSH. Inflammatory mechanisms linking obesity and

- tendinopathy. Journal of Orthopaedic Translation. 2021; 31: 80-90.
- 91. Arnalich F, et al. Enhanced acute-phase response and oxidative stress in older adults with type II diabetes. Hormone and Metabolic Research. 2000; 32(10): 407-412.
- 92. Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovascular research. 2004; 63(4): 582-592.
- 93. Esposito K, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002; 106(16): 2067-2072.
- 94. Kwan CK, Fu SC, Yung PS. A high glucose level stimulate inflammation and weaken pro-resolving response in tendon cells—a possible factor contributing to tendinopathy in diabetic patients. Asia-Pacific journal of sports medicine, arthroscopy, rehabilitation and technology. 2020;19: 1-6.
- Spindler MP, et al. Acute hyperglycemia impairs IL-6 expression in humans.
 Immunity inflammation and disease. 2016; 4(1): 91-97.
- Kasper M ,Funk RH. Age-related changes in cells and tissues due to advanced glycation end products (AGEs). Archives of Gerontology and Geriatrics. 2001; 32(3): 233-243.
- 97. Panwar P, et al. Aging-associated modifications of collagen affect its degradation by matrix metalloproteinases. Matrix biology. 2018; 65: 30-44.
- 98. Siadat SM, et al. Tendon extracellular matrix assembly, maintenance and dysregulation throughout life. Progress in Heritable Soft Connective Tissue Diseases. 2021: 45-103.
- 99. Izumi S, et al. Control of glucose metabolism is important in tenogenic differentiation of progenitors derived from human injured tendons. PloS one. 2019; 14(3): e0213912.
- 100. Vaidya R, Lake SP, Zellers JA. Effect of diabetes on tendon structure and function: not limited to collagen crosslinking. Journal of Diabetes Science and Technology. 2023; 17(1): 89-98.
- 101. Shi L, et al. Advanced glycation end productions and tendon stem/progenitor cells in pathogenesis of diabetic tendinopathy. World Journal of Stem Cells. 2021; 13(9): 1338.
- 102. Zhang X, et al. Therapeutic roles of tendon

- stem/progenitor cells in tendinopathy. Stem cells international. 2016; 2016(1):4076578.
- 103. Ni M, et al. Tendon-derived stem cells (TDSCs) promote tendon repair in a rat patellar tendon window defect model. Journal of orthopaedic research. 2012; 30(4): 613-619.
- 104. Ansorge HL, Beredjiklian PK, Soslowsky LJ. CD44 deficiency improves healing tendon mechanics and increases matrix and cytokine expression in a mouse patellar tendon injury model. Journal of Orthopaedic Research. 2009; 27(10):1386-1391.
- 105. Wu PT, et al. Inhibition of CD44 induces apoptosis, inflammation, and matrix metalloproteinase expression in tendinopathy. Journal of Biological Chemistry. 2019; 294(52):20177-20184.
- 106. Zhou Z, et al. Tendon-derived stem/ progenitor cell aging: defective self-renewal and altered fate. Aging cell. 2010; 9(5): 911-915.
- 107. Patel SH, Sabbaghi A, Carroll CC. Streptozotocin-induced diabetes alters transcription of multiple genes necessary for extracellular matrix remodeling in rat patellar tendon. Connective tissue research. 2018; 59(5): 447-457.
- 108. Durgam SS, et al. Insulin enhances the in vitro osteogenic capacity of flexor tendon-derived progenitor cells. Stem Cells International. 2019; 2019(1):1602751.
- 109. Whelton C, Peach C. Review of diabetic frozen shoulder. European Journal of Orthopaedic Surgery & Traumatology. 2018; 28: 363-371.
- 110. Zreik NH, Malik RA, Charalambous CP. Adhesive capsulitis of the shoulder and diabetes: a meta-analysis of prevalence. Muscles, ligaments and tendons journal. 2016; 6(1): 26.
- 111. Manske RC ,Prohaska D. Diagnosis and management of adhesive capsulitis. Current reviews in musculoskeletal medicine. 2008; 1:180-189.
- 112. Dias R, Cutts S, Massoud S. Frozen shoulder. Bmj. 2005; 331(7530): 1453-1456.
- 113. Kwaees TA, Charalambous CP. Rates of surgery for frozen shoulder: an experience in England. Muscles, ligaments and tendons journal. 2015; 5(4): 276.
- 114. Chambler A, Carr A. The role of surgery in frozen shoulder. The Journal of Bone & Joint Surgery British Volume. 2003; 85(6): 789-795.
- 115. Koorevaar RC, et al. Incidence and

- prognostic factors for postoperative frozen shoulder after shoulder surgery: a prospective cohort study. Archives of orthopaedic and trauma surgery. 2017; 137: 293-301.
- 116. Kabbabe B, Ramkumar S, Richardson M. Cytogenetic analysis of the pathology of frozen shoulder. International journal of shoulder surgery. 2010; 4(3): 75.
- 117. Tamai K, Akutsu M, Yano Y. Primary frozen shoulder: brief review of pathology and imaging abnormalities. Journal of Orthopaedic Science. 2014;19(1): 1-5.
- 118. Bunker T, Anthony P. The pathology of frozen shoulder A Dupuytren-like disease. The Journal of Bone & Joint Surgery British Volume. 1995; 77(5): 677-683.
- 119. Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. New England Journal of Medicine. 1988; 318(20): 1315-1321.
- 120. Ryu JD, et al. Expression of vascular endothelial growth factor and angiogenesis in the diabetic frozen shoulder. Journal of shoulder and elbow surgery. 2006; 15(6): 679-685.
- 121. Rodeo SA, et al. Immunolocalization of cytokines and their receptors in adhesive capsulitis of the shoulder. Journal of Orthopaedic Research. 1997; 15(3): 427-436.
- 122. Ando A, et al. Identification of prognostic factors for the nonoperative treatment of stiff shoulder. International orthopaedics. 2013; 37: 859-864.
- 123. Couppé C, et al. Life-long endurance running is associated with reduced glycation and mechanical stress in connective tissue. Age. 2014; 36: 1-19.
- 124. Saudek DM, Kay J. Advanced glycation endproducts and osteoarthritis. Current rheumatology reports. 2003; 5(1): 33-40.
- 125. Ozawa J, et al. Accumulation of advancedglycation end products (AGEs) accelerates arthrogenic joint contracture in immobilized rat knee. Journal of Orthopaedic Research®. 2018; 36(3):854-863.
- 126. Hwang KR, et al. Advanced glycation end products in idiopathic frozen shoulders. Journal of shoulder and elbow surgery. 2016; 25(6): 981-988.
- 127. McLennan S, Martell S, Yue D. Effects of mesangium glycation on matrix metalloproteinase activities: possible role in diabetic nephropathy. Diabetes. 2002; 51(8): 2612-2618.
- 128. Forbes JM, et al. Role of advanced glycation

- end products in diabetic nephropathy. Journal of the American Society of Nephrology. 2003; 14(suppl 3): S254-S258.
- 129. Chen L, et al. S100A4 promotes liver fibrosis via activation of hepatic stellate cells. Journal of Hepatology. 2015; 62(1): 156-164.
- 130. Lu Y, et al. Limited joint mobility of the hand: prevalence and relation to chronic complications in non-insulin-dependent diabetes mellitus patients. Journal of the Formosan Medical Association= Taiwan yi zhi. 1993; 92(2): 139-143.
- 131. Al-Matubsi HY, et al. Diabetic hand syndromes as a clinical and diagnostic tool for diabetes mellitus patients. Diabetes research and clinical practice. 2011; 94(2): 225-229.
- 132. Papanas N, Maltezos E. The diabetic hand: a forgotten complication? Journal of Diabetes and its Complications. 2010; 24(3): 154-162.
- 133. Smith L, Burnet S, McNeil J. Musculoskeletal manifestations of diabetes mellitus. British journal of sports medicine. 2003; 37(1): 30.
- 134. Chammas M, et al. Dupuytren's disease, carpal tunnel syndrome, trigger finger, and diabetes mellitus. The Journal of hand surgery. 1995; 20(1): 109-114.
- 135. Gamstedt A, et al. Hand abnormalities are strongly associated with the duration of diabetes mellitus. Journal of internal medicine. 1993; 234(2): 189-193.
- 136. Yosipovitch G, et al. Trigger finger in young patients with insulin dependent diabetes. The Journal of rheumatology. 1990; 17(7): 951-
- 137. Stamboulis E, et al. Association between asymptomatic median mononeuropathy and diabetic polyneuropathy severity in patients with diabetes mellitus. Journal of the neurological sciences. 2009; 278(1-2): 41-43.
- 138. Hamilton M, et al. Motor and sensory nerve conduction in patients with carpal tunnel syndrome and diabetic polyneuropathy. Revista de Neurologia. 1999; 28(12): 1147-1152.
- 139. Upreti V, et al. Prayer sign in diabetes mellitus. Indian journal of endocrinology and metabolism. 2013; 17(4): 769-770.
- 140. D'ambrogi E, et al. Abnormal foot function in diabetic patients: the altered onset of Windlass mechanism. Diabetic medicine. 2005; 22(12): 1713-1719.
- 141. Batista F, et al. Achilles tendinopathy in diabetes mellitus. Foot & Ankle International. 2008;29(5):0498.

Nakhaei Amroodi M, et al.

- 142. Abate M, et al. Ultrasound morphology of the Achilles in asymptomatic patients with and without diabetes. Foot & ankle international. 2014; 35(1): 44-49.
- 143. Ursini F, et al. Plantar fascia enthesopathy is highly prevalent in diabetic patients without peripheral neuropathy and correlates with retinopathy and impaired kidney function. PLoS One. 2017; 12(3): e0174529.
- 144. Craik JD, et al. Human evolution and tears of the rotator cuff. International orthopaedics. 2014; 38: 547-552.
- 145. Tashjian RZ, et al. Incidence of familial tendon dysfunction in patients with fullthickness rotator cuff tears. Open access journal of sports medicine. 2014: 137-141.
- 146. Park SE, et al. Intratendinous rotator cuff tears: prevalence and clinical and radiological outcomes of arthroscopically confirmed intratendinous tears at midterm follow-up. The American Journal of Sports Medicine. 2015; 43(2): 415-422.
- 147. Kim HM, et al. Shoulder strength in asymptomatic individuals with intact compared with torn rotator cuffs. JBJS. 2009; 91(2): 289-296.
- 148. Grant WP, et al. Electron microscopic investigation of the effects of diabetes mellitus on the Achilles tendon. The Journal of foot and ankle surgery. 1997; 36(4): 272-278.
- 149. De Oliveira R, et al. Alterations of tendons in patients with diabetes mellitus: a systematic review. Diabetic Medicine. 2011; 28(8): 886-895
- 150. Fox AJ, et al. Diabetes mellitus alters the mechanical properties of the native tendon in an experimental rat model. Journal of Orthopaedic Research. 2011; 29(6): 880-885.
- 151. Huang SW, et al. Diabetes mellitus increases the risk of rotator cuff tear repair surgery: a population-based cohort study. Journal of Diabetes and its Complications. 2016; 30(8): 1473-1477.
- 152. Lin TTL, et al. The effect of diabetes, hyperlipidemia, and statins on the development of rotator cuff disease: a nationwide, 11-year, longitudinal, population-based follow-up study. The American journal of sports medicine. 2015; 43(9): 2126-2132.
- 153. Le BT, et al. Factors predicting rotator cuff retears: an analysis of 1000 consecutive rotator cuff repairs. The American journal of sports medicine. 2014; 42(5): 1134-1142.
- 154. Millar NL, et al. Open versus two forms

- of arthroscopic rotator cuff repair. Clinical orthopaedics and related research. 2009; 467: 966-978.
- 155. Miller BS, et al. When do rotator cuff repairs fail Serial ultrasound examination after arthroscopic repair of large and massive rotator cuff tears. The American journal of sports medicine. 2011; 39(10): 2064-2070.
- 156. Berglund DD, et al. Comorbidity effect on speed of recovery after arthroscopic rotator cuff repair. JSES open access. 2018; 2(1): 60-68
- 157. Cho NS, et al. The influence of diabetes mellitus on clinical and structural outcomes after arthroscopic rotator cuff repair. The American journal of sports medicine. 2015;43(4): 991-997.
- 158. Clement N, et al. Does diabetes affect outcome after arthroscopic repair of the rotator cuff? The Journal of Bone & Joint Surgery British Volume. 2010; 92(8): 1112-1117.
- 159. Miyatake K, et al. Comparable clinical and structural outcomes after arthroscopic rotator cuff repair in diabetic and non-diabetic patients. Knee Surgery, Sports Traumatology, Arthroscopy. 2018; 26: 3810-3817.
- 160. Dhar Y, et al. Arthroscopic rotator cuff repair: impact of diabetes mellitus on patient outcomes. The Physician and sportsmedicine. 2013; 41(1): 22-29.
- 161. Gasbarro G, et al. Morphologic risk factors in predicting symptomatic structural failure of arthroscopic rotator cuff repairs: tear size, location, and atrophy matter. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2016; 32(10): 1947-1952.
- 162. Jeong HY, et al. Factors predictive of healing in large rotator cuff tears: is it possible to predict retear preoperatively? The American journal of sports medicine. 2018; 46(7): 1693-1700.
- 163. Kim IB, Kim MW. Risk factors for retear after arthroscopic repair of full-thickness rotator cuff tears using the suture bridge technique: classification system.

 Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2016; 32(11): 2191-2200.
- 164. Nakamura H, et al. Factors affecting clinical outcome in patients with structural failure after arthroscopic rotator cuff repair. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2016; 32(5): 732-739.
- 165. Galatz LM, et al. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears.

- JBJS. 2004; 86(2): 219-224.
- 166. Abate M, Schiavone C, Salini V. Sonographic evaluation of the shoulder in asymptomatic elderly subjects with diabetes. BMC musculoskeletal disorders. 2010; 11:
- 167. Mall NA, et al. Factors affecting rotator cuff healing. JBJS. 2014;96(9): 778-788.
- 168. Hsu SL, et al. Surgical results in rotator cuff tears with shoulder stiffness. Journal of the Formosan Medical Association. 2007; 106(6): 452-461.
- 169. Pohl C, Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 2019; 366(6467): 818-
- 170. Ribot C, et al. Activation of the ubiquitinproteasome system contributes to oculopharyngeal muscular dystrophy through muscle atrophy. PLoS genetics. 2022; 18(1): e1010015.
- 171. Milan G, et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nature communications. 2015; 6(1): 6670.
- 172. Li Z, et al. LncIRS1 controls muscle atrophy via sponging miR-15 family to activate IGF1-PI3K/AKT pathway. Journal of cachexia, sarcopenia and muscle. 2019; 10(2): 391-410.
- 173. Yoshida T, Delafontaine P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells. 2020; 9(9): 1970.
- 174. Wang W, et al. SKP-SC-EVs mitigate denervated muscle atrophy by inhibiting oxidative stress and inflammation and improving microcirculation. Antioxidants. 2021; 11(1): 66.
- 175. O'Neill BT, et al. Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis. The Journal of clinical investigation. 2016; 126(9): 3433-3446.
- 176. Sandri M, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004; 117(3): 399-412.
- 177. Ferretti R, et al. High-fat diet suppresses the positive effect of creatine supplementation on skeletal muscle function by reducing protein expression of IGF-PI3K-AKT-mTOR pathway. PloS one. 2018; 13(10): e0199728.
- 178. Gonçalves DA, et al. Insulin/IGF1 signalling mediates the effects of β 2-adrenergic agonist on muscle proteostasis and growth.

- Journal of cachexia, sarcopenia and muscle. 2019; 10(2): 455-475.
- 179. Yadav A, et al. Magnoflorine prevent the skeletal muscle atrophy via Akt/mTOR/FoxO signal pathway and increase slow-MyHC production in streptozotocin-induced diabetic rats. Journal of Ethnopharmacology. 2021; 267: 113510.
- 180. on behalf of the PROOF Study Group. Obstructive sleep apnea is associated with preserved bone mineral density in healthy elderly subjects. Sleep, 2013. 36(10): p. 1509-1515.
- 181. Di Meo S. Iossa S. Venditti P. Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. Journal of Endocrinology. 2017; 233(1): R15-R42.
- 182. Aluganti Narasimhulu C, Singla DK. Amelioration of diabetes-induced inflammation mediated pyroptosis, sarcopenia, and adverse muscle remodelling by bone morphogenetic protein-7. Journal of cachexia, sarcopenia and muscle. 2021; 12(2): 403-420.
- 183. Rudar M, et al. Prematurity blunts the insulin-and amino acid-induced stimulation of translation initiation and protein synthesis in skeletal muscle of neonatal pigs. American Journal of Physiology-Endocrinology and Metabolism. 2021; 320(3): E551-E565.
- 184. Shen Y, et al. Diabetic muscular atrophy: Molecular mechanisms and promising therapies. Frontiers in Endocrinology. 2022; 13: 917113.
- 185. Kim H, et al. Indoprofen prevents muscle wasting in aged mice through activation of PDK1/AKT pathway. Journal of cachexia, sarcopenia and muscle. 2020; 11(4): 1070-1088.
- 186. de Proença ARG, et al. Insulin action on protein synthesis and its association with eIF5A expression and hypusination. Molecular biology reports. 2019; 46: 587-596.
- 187. Ramos PA, et al. Insulin-stimulated muscle glucose uptake and insulin signaling in lean and obese humans. The Journal of Clinical Endocrinology & Metabolism. 2021; 106(4): 1631-1646.
- 188. da Silva Rosa SC, et al. Mechanisms of muscle insulin resistance and the cross-talk with liver and adipose tissue. Physiological reports. 2020; 8(19): e14607.
- 189. Izzo A, et al. A narrative review on sarcopenia in type 2 diabetes mellitus: prevalence and associated factors. Nutrients.

- 2021; 13(1): 183.
- 190. Tournadre A, et al. Sarcopenia. Joint bone spine. 2019; 86(3): 309-314.
- 191. Mesinovic J, et al. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes, metabolic syndrome and obesity: targets and therapy. 2019: 1057-1072.
- 192. Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nature medicine. 2017; 23(7): 804-814.
- 193. Peng BY, et al. Addressing stem cell therapeutic approaches in pathobiology of diabetes and its complications. Journal of diabetes research. 2018; 2018(1):7806435.
- 194. Dalle S, Koppo K. Is inflammatory signaling involved in disease-related muscle wasting Evidence from osteoarthritis, chronic obstructive pulmonary disease and type II diabetes. Experimental gerontology. 2020; 137: 110964.
- 195. Tanaka M, et al. Effects of combined treatment with blood flow restriction and low-intensity electrical stimulation on diabetes mellitus-associated muscle atrophy in rats. Journal of Diabetes. 2019; 11(4):326-334.
- 196. Essid SM, Bevington A, Brunskill NJ. Proinsulin C-peptide enhances cell survival and protects against simvastatininduced myotoxicity in L6 rat myoblasts. International Journal of Molecular Sciences. 2019; 20(7): 1654.
- 197. O'Neill BT, et al. FoxO transcription factors are critical regulators of diabetes-related muscle atrophy. Diabetes. 2019; 68(3): 556-570.
- 198. Bhardwaj G, et al. Insulin and IGF-1 receptors regulate complex I-dependent mitochondrial bioenergetics and supercomplexes via FoxOs in muscle. The Journal of clinical investigation. 2021; 131(18):e146415.
- 199. Uciechowski P, Dempke W. Interleukin-6: a masterplayer in the cytokine network. Oncology. 2020; 98(3): 131-137.
- 200. Carson JA, Baltgalvis KA. Interleukin 6 as a key regulator of muscle mass during cachexia. Exercise and sport sciences reviews. 2010; 38(4): 168-176.
- 201. Halim M, Halim A. The effects of inflammation, aging and oxidative stress on the pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes & metabolic syndrome: clinical research & reviews. 2019; 13(2):1165-1172.
- 202. Forcina L, Miano C, Musarò A. The

- physiopathologic interplay between stem cells and tissue niche in muscle regeneration and the role of IL-6 on muscle homeostasis and diseases. Cytokine & Growth Factor Reviews. 2018; 41: 1-9.
- 203. Acharjee S, et al. Understanding type 1 diabetes: etiology and models. Canadian journal of diabetes. 2013; 37(4): 269-276.
- 204. DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Medical clinics. 2004; 88(4): 787-835.
- 205. Akbari M, Hassan-Zadeh V. IL-6 signalling pathways and the development of type 2 diabetes. Inflammopharmacology. 2018; 26: 685-698.
- 206. Lauterbach MA, Wunderlich FT. Macrophage function in obesity-induced inflammation and insulin resistance. Pflügers Archiv-European Journal of Physiology. 2017; 469: 385-396.
- 207. Perry BD, et al. Muscle atrophy in patients with Type 2 Diabetes Mellitus: roles of inflammatory pathways, physical activity and exercise. Exercise immunology review. 2016; 22: 94.
- 208. Akash MSH, Rehman K, Liaqat A. Tumor necrosis factor-alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. Journal of cellular biochemistry. 2018; 119(1): 105-110.
- 209. Huang Z, et al. Inhibition of IL-6/JAK/ STAT3 pathway rescues denervationinduced skeletal muscle atrophy. Annals of translational medicine. 2020; 8(24):1681.
- 210. Madaro L, et al. Denervation-activated STAT3–IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis. Nature cell biology. 2018; 20(8): 917-927.
- 211. Zanders L, et al. Sepsis induces interleukin 6, gp130/JAK2/STAT3, and muscle wasting. Journal of cachexia, sarcopenia and muscle. 2022; 13(1): 713-727.
- 212. Wan Q, et al. Aspirin alleviates denervationinduced muscle atrophy via regulating the Sirt1/PGC-1α axis and STAT3 signaling. Annals of translational medicine. 2020; 8(22):1524.
- 213. Sun SC. The non-canonical NF-κB pathway in immunity and inflammation. Nature reviews immunology. 2017; 17(9): 545-558.
- 214. Mitchell JP, Carmody RJ. NF-κB and the transcriptional control of inflammation. International review of cell and molecular biology. 2018; 335: 41-84.
- 215. Thoma A, Lightfoot AP. NF-kB and

- inflammatory cytokine signalling: role in skeletal muscle atrophy. Muscle Atrophy. 2018: 267-279.
- 216. Ma W, et al. PQQ ameliorates skeletal muscle atrophy, mitophagy and fiber type transition induced by denervation via inhibition of the inflammatory signaling pathways. Annals of translational medicine. 2019; 7(18):440.
- 217. Ma W, et al. The role of inflammatory factors in skeletal muscle injury. Biotarget. 2018; 2(4):4321.
- 218. Zhang L, et al. Stat3 activation links a C/ EBPδ to myostatin pathway to stimulate loss of muscle mass. Cell metabolism. 2013; 18(3): 368-379.
- 219. Shen Y, et al. Microarray analysis of gene expression provides new insights into denervation-induced skeletal muscle atrophy. Frontiers in physiology. 2019; 10: 1298.
- 220. Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 2020; 12(1): e1462.
- 221. Zhang L, et al. IL-6 and serum amyloid A synergy mediates angiotensin II–induced muscle wasting. Journal of the American Society of Nephrology. 2009; 20(3): 604-612.
- 222. Tan PL, et al. Differential thiol oxidation of the signaling proteins Akt, PTEN or PP2A determines whether Akt phosphorylation is enhanced or inhibited by oxidative stress in C2C12 myotubes derived from skeletal muscle. The international journal of biochemistry & cell biology. 2015; 62: 72-79.
- 223. Nikawa T, Ulla A, Sakakibara I. Polyphenols and their effects on muscle atrophy and muscle health. Molecules. 2021; 26(16): 4887.
- 224. Panigrahy SK, Bhatt R, Kumar A. Reactive oxygen species: sources, consequences and targeted therapy in type 2 diabetes. Journal of drug targeting. 2017; 25(2): 93-101.
- 225. Gerber PA, Rutter GA. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxidants & redox signaling. 2017; 26(10): 501-518.
- 226. Rendra E, et al. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology. 2019; 224(2): 242-253.
- 227. Shen Y, et al. Isoquercitrin delays denervated soleus muscle atrophy by inhibiting oxidative stress and inflammation. Frontiers in physiology. 2020; 11: 988.
- 228. Ying W, et al. The role of macrophages

- in obesity-associated islet inflammation and β-cell abnormalities. Nature Reviews Endocrinology. 2020; 16(2): 81-90.
- 229. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006; 440(7086): 944-948.
- 230. Sharma VK, Singh TG. Chronic stress and diabetes mellitus: interwoven pathologies. Current diabetes reviews. 2020; 16(6): 546-556.
- 231. Martín AI, Priego T, López-Calderón A. Hormones and muscle atrophy. Muscle Atrophy. 2018: 207-233.
- 232. Beaupere C, et al. Molecular mechanisms of glucocorticoid-induced insulin resistance. International journal of molecular sciences. 2021; 22(2): 623.
- 233. Fappi A, et al. Omega-3 multiple effects increasing glucocorticoid-induced muscle atrophy: autophagic, AMPK and UPS mechanisms. Physiological reports. 2019; 7(1): e13966.
- 234. Wang XJ, et al. Excessive glucocorticoidinduced muscle MuRF1 overexpression is independent of Akt/FoXO1 pathway. Bioscience reports. 2017; 37(6): BSR20171056.
- 235. Sun H, et al. TRAF6 inhibition rescues dexamethasone-induced muscle atrophy. International journal of molecular sciences. 2014; 15(6): 11126-11141.
- 236. Xie Y, et al. Glucocorticoid-induced CREB activation and myostatin expression in C2C12 myotubes involves phosphodiesterase-3/4 signaling. Biochemical and biophysical research communications. 2018; 503(3): 1409-1414.
- 237. Son YH, et al. Sulforaphane prevents dexamethasone-induced muscle atrophy via regulation of the Akt/Foxo1 axis in C2C12 myotubes. Biomedicine & Pharmacotherapy. 2017; 95: 1486-1492.
- 238. Cid-Díaz T, et al. Obestatin signalling counteracts glucocorticoid-induced skeletal muscle atrophy via NEDD4/KLF15 axis. Journal of cachexia, sarcopenia and muscle. 2021; 12(2): 493-505.
- 239. Schiaffino S, et al. Mechanisms regulating skeletal muscle growth and atrophy. The FEBS journal. 2013; 280(17): 4294-4314.
- 240. Kalaitzoglou E, et al. Diabetes pharmacotherapy and effects on the musculoskeletal system. Diabetes/metabolism research and reviews. 2019; 35(2): e3100.

24 GMJ.2025;14:e3884 www.gmj.ir

Nakhaei Amroodi M, et al.

- 241. Kaneto H, et al. Multifaceted mechanisms of action of metformin which have been unraveled one after another in the long history. International Journal of Molecular Sciences. 2021; 22(5): 2596.
- 242. Peixoto LG, et al. Metformin attenuates the TLR4 inflammatory pathway in skeletal muscle of diabetic rats. Acta diabetologica. 2017; 54: 943-951.
- 243. Kim DH, et al. Vitamin D and endothelial function. Nutrients. 2020; 12(2): 575.
- 244. Chen S, Villalta SA, Agrawal DK. FOXO1 mediates vitamin D deficiency—induced insulin resistance in skeletal muscle. Journal of bone and mineral research. 2016; 31(3): 585-595.
- 245. Rogero MM ,Calder PC. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients. 2018; 10(4): 432.
- 246. DiNicolantonio JJ ,O'Keefe JH. Importance of maintaining a low omega–6/omega–3 ratio for reducing inflammation. Open heart. 2018; 5(2): e000946.
- 247. Dupont J, et al. The role of omega-3 in the prevention and treatment of sarcopenia. Aging clinical and experimental research. 2019; 31(6): 825-836.
- 248. Lai TC, et al. Combined exposure to fine particulate matter and high glucose aggravates endothelial damage by increasing inflammation and mitophagy: the involvement of vitamin D. Particle and Fibre Toxicology. 2022; 19(1): 25.
- 249. Vos T, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The lancet. 2012; 380(9859): 2163-2196.
- 250. CDC P. National diabetes statistics report: estimates of diabetes and its burden in the United States 2014. Atlanta: US Department of Health and Human Services. 2014;2014: .
- 251. Lawrence RC, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: Part II.

 Arthritis & Rheumatism. 2008; 58(1): 26-35.
- 252. Visser A, et al. The relative contribution of mechanical stress and systemic processes in different types of osteoarthritis: the NEO study. Annals of the rheumatic diseases. 2015; 74(10): 1842-1847.
- 253. Teodoro JS, et al. High-fat and obesogenic diets: current and future strategies to fight obesity and diabetes. Genes & nutrition. 2014; 9: 1-15.
- 254. Barbour KE, et al. Prevalence of doctor-

- diagnosed arthritis and arthritis-attributable activity limitation—United States, 2010—2012. Morbidity and mortality weekly report. 2013; 62(44): 869.
- 255. Gierisch JM, et al. Prioritization of patientcentered comparative effectiveness research for osteoarthritis. Annals of internal medicine. 2014; 160(12): 836-841.
- 256. Rahman MM, et al. Risk of cardiovascular disease in patients with osteoarthritis: a prospective longitudinal study. Arthritis care & research. 2013; 65(12): 1951-1958.
- 257. Scanzello C, et al. Local cytokine profiles in knee osteoarthritis: elevated synovial fluid interleukin-15 differentiates early from endstage disease. Osteoarthritis and cartilage. 2009; 17(8):1040-1048.
- 258. Stenholm S, et al. Adipocytokines and the metabolic syndrome among older persons with and without obesity: the InCHIANTI study. Clinical endocrinology. 2010; 73(1): 55-65.
- 259. Andrikopoulos S, et al. Evaluating the glucose tolerance test in mice. American Journal of Physiology-Endocrinology and Metabolism. 2008; 295(6): E1323-E1332.
- 260. Scanzello CR, Plaas A, Crow MK. Innate immune system activation in osteoarthritis: is osteoarthritis a chronic wound? Current opinion in rheumatology. 2008; 20(5): 565-572.
- 261. Rosa S, et al. Expression and function of the insulin receptor in normal and osteoarthritic human chondrocytes: modulation of anabolic gene expression, glucose transport and GLUT-1 content by insulin. Osteoarthritis and Cartilage. 2011; 19(6): 719-727.
- 262. Rosa SC, et al. Role of glucose as a modulator of anabolic and catabolic gene expression in normal and osteoarthritic human chondrocytes. Journal of cellular biochemistry. 2011; 112(10): 2813-2824.
- 263. Rufino AT, et al. Expression and function of K (ATP) channels in normal and osteoarthritic human chondrocytes: possible role in glucose sensing. Journal of cellular biochemistry. 2013; 114(8): 1879-1889.
- 264. Mobasheri A. Glucose: an energy currency and structural precursor in articular cartilage and bone with emerging roles as an extracellular signaling molecule and metabolic regulator. Frontiers in endocrinology. 2012; 3: 29297.
- 265. Oren TW, et al. Arthroplasty in veterans: analysis of cartilage, bone, serum, and synovial fluid reveals differences and

- similarities in osteoarthritis with and without comorbid diabetes. Journal of rehabilitation research and development. 2011; 48(10): 1195.
- 266. Loeser RF, et al. Articular chondrocytes express the receptor for advanced glycation end products: potential role in osteoarthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 2005; 52(8): 2376-2385.
- 267. Yammani RR, et al. Increase in production of matrix metalloproteinase 13 by human articular chondrocytes due to stimulation with S100A4: Role of the receptor for advanced glycation end products. Arthritis & Rheumatism. 2006; 54(9): 2901-2911.
- 268. DeGroot J, et al. Accumulation of advanced glycation endproducts reduces chondrocytemediated extracellular matrix turnover in human articular cartilage. Osteoarthritis and cartilage. 2001; 9(8): 720-726.
- 269. Reddy GK. Glucose-mediated in vitro glycation modulates biomechanical integrity of the soft tissues but not hard tissues.

 Journal of orthopaedic research. 2003; 21(4): 738-743.
- 270. Vos PA, et al. Elevation of cartilage AGEs does not accelerate initiation of canine experimental osteoarthritis upon mild surgical damage. Journal of Orthopaedic Research. 2012; 30(9): 1398-1404.
- 271. Zhang P, et al. Osmotic stress, not aldose reductase activity, directly induces growth factors and MAPK signaling changes during sugar cataract formation. Experimental eye research. 2012; 101: 36-43.
- 272. Cheng X, et al. Polyol pathway mediates enhanced degradation of extracellular matrix via p38 MAPK activation in intervertebral disc of diabetic rats. Connective tissue research. 2013; 54(2): 118-122.
- 273. McNulty AL, et al. The effects of adipokines on cartilage and meniscus catabolism.

 Connective tissue research. 2011; 52(6): 523-533.

- 274. Wu CL, et al. Dietary fatty acid content regulates wound repair and the pathogenesis of osteoarthritis following joint injury.

 Annals of the rheumatic diseases. 2015; 74(11):2076-2083.
- 275. Al-Hamodi Z, et al. Association of adipokines, leptin/adiponectin ratio and C-reactive protein with obesity and type 2 diabetes mellitus. Diabetology & metabolic syndrome. 2014; 6: 1-8.
- 276. Won HY, et al. Effect of hyperglycemia on apoptosis of notochordal cells and intervertebral disc degeneration in diabetic rats. Journal of Neurosurgery: Spine. 2009; 11(6): 741-748.
- 277. Gazzarrini C, et al. Possible mechanism of inhibition of cartilage alkaline phosphatase by insulin. Acta diabetologia latina. 1989; 26: 321-327.
- 278. Chen YJ, et al. PPARγ is involved in the hyperglycemia-induced inflammatory responses and collagen degradation in human chondrocytes and diabetic mouse cartilages. Journal of Orthopaedic Research. 2015; 33(3): 373-381.
- 279. McInnes IB ,O'Dell JR. State-of-the-art: rheumatoid arthritis. Annals of the rheumatic diseases. 2010; 69(11): 1898-1906.
- 280. Tian Z, et al. The relationship between rheumatoid arthritis and diabetes mellitus: a systematic review and meta-analysis.

 Cardiovascular endocrinology & metabolism. 2021; 10(2): 125-131.
- 281. Blum A, Adawi M. Rheumatoid arthritis (RA) and cardiovascular disease. Autoimmunity reviews. 2019; 18(7): 679-690.
- 282. Chung CP, et al. Prevalence of the metabolic syndrome is increased in rheumatoid arthritis and is associated with coronary atherosclerosis. Atherosclerosis. 2008; 196(2): 756-763.
- 283. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. The lancet. 2017; 389(10085): 2239-2251.

26 GMJ.2025;14:e3884 www.gmj.ir