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Abstract

Background: Artificial intelligence (AI) is revolutionizing ophthalmology and optometry by 
utilizing high-resolution imaging modalities such as optical coherence tomography (OCT), fun-
dus photography, and corneal topography. These modalities generate quantifiable data suitable 
for machine learning (ML), facilitating automated diagnosis of ocular conditions like diabetic 
retinopathy, glaucoma, and age-related macular degeneration (AMD), which are leading causes 
of visual impairment worldwide. This narrative review evaluates the role of ML in improving 
diagnostic accuracy and accessibility in eye care, focusing on methodological complexities, 
supervised and unsupervised learning approaches, and challenges in clinical integration. Ma-
terials and Methods: A comprehensive narrative literature review was conducted, analyzing 
ML applications in ophthalmology. Results: AI systems exhibit high sensitivity and specificity, 
often outperforming human graders in diabetic retinopathy screening and early detection of 
glaucoma and AMD using OCT and fundus imaging. Anterior segment diseases benefit from 
AI-driven corneal topography analysis. Challenges include image quality, dataset imbalances, 
and variability in imaging protocols, necessitating fine-tuning for diverse clinical environments. 
Unsupervised learning shows potential for identifying novel biomarkers but requires further 
validation. Conclusion: AI-driven ML models significantly enhance eye disease diagnostics, 
improving accuracy and accessibility, particularly in resource-limited settings. However, chal-
lenges like data standardization and model generalizability must be addressed to ensure robust 
clinical adoption. [GMJ.2025;14:e3979] DOI:10.31661/gmj.v14i.3979
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Introduction

Artificial intelligence (AI) is changing the 
future of medicine by improving diag-

nostic accuracy and streamlining patient care 
[1]. As a visually reliant specialty, both oph-
thalmology and optometry have been at the 
forefront of the implementation of AI due to 
the fact that it relies on high-resolution im-

aging modalities such as optical coherence 
tomograph, fundoscopy, and corneal topog-
raphy [2, 3]. These imaging modalities pro-
vide standardized data that can be quantified, 
which makes them ideal for machine and deep 
learning algorithms [2, 3]. Ocular conditions 
such as diabetic retinopathy, glaucoma, and 
age-related macular degeneration are among 
the leading causes of visual disability world-
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wide [4-6]. Early detection, diagnosis and 
treatment are important to mitigate permanent 
loss of vision. AI systems have shown high po-
tential for automating the diagnosis and grad-
ing of these conditions, thereby optimizing di-
agnostic efficiency, reducing clinician work-
load, as well as enhancing access to treatment, 
particularly in under-staffed resource-limited 
settings where specialist care may not be 
readily available [7] and even as a treatment 
modality [8]. Diabetic retinopathy, the most 
studied condition for AI usage in this era, ben-
efits significantly from AI-driven screening 
using fundus photography, with studies like 
Huang et al. (2022) [9] and Grzybowski et 
al. (2020) [10] demonstrating high sensitivity 
and specificity, often surpassing human grad-
ers in primary care and low-resource settings, 
enhancing accessibility and reducing vision 
loss [7]. However, challenges such as image 
quality, patient cooperation, and integration 
into diverse healthcare systems persist, re-
quiring fine-tuning for heterogeneous clinical 
environments. In glaucoma, AI excels in de-
tecting early optic nerve damage and predict-
ing visual field loss through optical coherence 
tomography (OCT) and visual field testing, as 
shown by Li F et al. (2024) [11], offering pre-
cise segmentation and metrics for clinical de-
cision-making, though variability in imaging 
protocols limits generalizability. For AMD, 
AI models, as explored by Wei W et al. (2023) 
[12], accurately identify and grade lesions like 
geographic atrophy and drusen using fundus 
and OCT, supporting early intervention and 
progression forecasting, yet face issues with 
dataset imbalance and model interpretability. 
Anterior segment diseases, including kerato-
conus, cataracts, and angle-closure glaucoma, 
benefit from AI’s ability to analyze corneal to-
pography and anterior segment OCT for early 
diagnosis, severity grading, and surgical plan-
ning, as noted in studies by Nguyen T et al. 
(2024) [13], Soh ZD et al. (2024) [14], and 
Wu X et al. (2020) [15], though variability 
in imaging devices and diagnostic standards 
poses challenges. In this narrative review, we 
are going to read literature focused on meth-
odological complexities of ML for eye diseas-
es, to provide an introduction for clinicians to 
get familiar with fundaments of ML in medi-
cal imaging. 

Fundamentals of Machine Learning for 
Eye Care

Machine learning (ML) models’ primary core 
stone is simply to train models based on im-
ages. This process involves multiple steps 
with wide range of methodological details 
that result in models that are able to classify 
images. AI models that could analysis images 
are known widely as vision models. Currently 
many efforts has been done in ophthalmology 
in this case and various datasets of eye images 
are established  for detecting and diagnosing 
eye diseases, primarily through retinal imag-
ing modalities like optical coherence tomog-
raphy (OCT) and fundus photography. Image 
annotation plays a crucial role in training ma-
chine learning models for diagnosing eye dis-
eases, with several datasets and methodologies 
demonstrating its impact. There are multiple 
studies, published datasets, pre-trained mod-
els on repositories of AI models like tensor-
flow like the EyeHealer dataset that provides 
large-scale, pixel-level annotations of anterior 
eye segment structures and lesions, enabling 
improved segmentation performance in deep 
learning models for anterior segment diseas-
es [16]. Similarly, Li et al. highlighted that 
dense anatomical annotations of slit-lamp im-
ages enhance diagnostic accuracy by training 
models with both structural and pathological 
labels [17]. Crowdsourcing has also been ex-
plored as a cost-effective alternative to expert 
annotation, with studies showing that non-ex-
pert annotations of retinal images can achieve 
high agreement with expert assessments when 
proper training and consensus thresholds are 
applied [18]. Additionally, Camilo et al. in-
troduced a comprehensive pupillary image 
dataset with manual annotations for glauco-
ma, diabetes, and alcohol-related conditions, 
facilitating the development of robust seg-
mentation algorithms [19]. For OCT imag-
ing, OCT5k offers multi-disease, multi-grad-
ed annotations to support automated retinal 
layer segmentation, while Soul leverages a 
human-machine collaborative framework to 
generate high-quality annotations for branch 
retinal vein occlusion (BRVO) cases [20, 21]. 
Guidelines for glaucoma imaging annotation 
further standardize the process, ensuring con-
sistency in labeling optic disc, retinal nerve fi-
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Table 1. Master Summary of Included Studies

Dataset Source Imaging 
Modality Size Diseases 

Covered Key Features Limitations

OCTDL

Kulyabin 
et al. 

(2024) 
[29]

OCT 2,000+ 
images

AMD, DME, 
ERM, RAO, 
RVO, VID

Labeled by retinal 
specialists, high-
resolution, open-

access

Limited 
representation 

of rare 
conditions

Duwairi 
et al.

Duwairi 
et al. 

(2021) 
[30]

OCT 21,991 
images

CNV, Full/
Partial Macular 

Hole, CSR, 
Geographic 

Atrophy, MRO, 
VMT

Annotated 
by Jordanian 

ophthalmologists, 
binary (84.90%) 

and multi-
class (63.68%) 
classification

Lower multi-
class accuracy, 
data imbalance

PAPILA

Kovalyk 
et al. 

(2022) 
[31]

Fundus Not 
specified Glaucoma

Includes both 
eyes, optic disc/

cup segmentation, 
ResNet-50 tested

Limited to 
glaucoma, 
dataset size 
not detailed

RFMiD 
2.0

Panchal 
et al. 

(2023) 
[32]

Fundus 860 
images

AMD, DR, 
cataracts, 

glaucoma, rare 
diseases

Multi-class, multi-
label, annotated by 
three eye specialists

Small 
dataset size, 

regional focus 
(Maharashtra)

FIVES
Jin et al. 
(2022) 
[33]

Fundus 800 
images

Vessel 
segmentation 
for multiple 
conditions

High-resolution, 
pixel-wise 

annotations, 
crowdsourced by 

experts

Limited 
to vessel 

segmentation, 
scarce for 
other tasks

OCTDL: Optical Coherence Tomography Dataset for Image-Based Deep Learning; RFMiD: Retinal Fun-
dus Multi-Disease Image Dataset; FIVES: fundus image vessel segmentation;

ber layer, and anterior chamber structures for 
AI applications [22]. Moreover, Punithavathi 
et al. demonstrated the effectiveness of SVM 
with active learning in automating retinal im-
age annotation, achieving high precision in 
disease classification [23].
At the core of the methodological aspects of 
machine deep learning for the eye disease 
detection is Python, a versatile programming 
language that acts like a digital toolbox, al-
lowing developers to write scripts that handle 
everything from image manipulation to com-
plex calculations without needing advanced 
coding expertise upfront [24]. Common pack-
ages like PyTorch and TensorFlow serve as 
ready-made frameworks for building neural 
networks, think of them as pre-assembled en-
gines that power machine learning models to 

"learn" patterns in images, such as identifying 
irregular shapes in the cornea or retina. For 
image preprocessing, libraries like OpenCV 
function as image editors on steroids, en-
abling simple tasks like converting colorful 
eye scans to grayscale for clearer focus or en-
hancing contrast to highlight abnormalities, 
while tools like Keras simplify the creation 
of convolutional neural networks, which are 
specialized algorithms that scan images layer 
by layer to detect features like blood vessels 
or ulcers [24]. 
The SUSTech-SYSU dataset, comprising 712 
fluorescein-stained ocular images, facilitates 
advanced segmentation and classification 
of corneal ulcers, addressing the scarcity of 
high-quality datasets for supervised learning 
in ophthalmology [25]. This dataset includes 
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detailed annotations for flaky corneal ulcers 
and three-tiered classification labels, gener-
al ulcer patterns, specific types, and severity 
grades. The baseline methodology employs 
adjacent scale fusion and corneal position 
embedding within a convolutional neural 
network, leveraging Python and PyTorch for 
training on an RTX 3090 GPU with CUDA 
11.0 [26]. 
Retinal vessel segmentation and eye disease 
classification have also advanced through 
deep learning frameworks, notably fully con-
volutional neural networks (FCNs) and U-Net 
models. One approach integrates stationary 
wavelet transform for multiscale analysis with 
an FCN, using rotation-based data augmenta-
tion and prediction refinement to achieve high 
sensitivity (0.8315) and specificity (0.9858) 
on datasets like DRIVE, STARE, and 
CHASE_DB1 [27]. Another project employs 
CNNs inspired by VGG-16 for multi-label 
classification of retinal abnormalities, such 
as diabetic retinopathy and glaucoma, with 
preprocessing steps like grayscale conversion 
and Keras ImageGenerator augmentation to 
address class imbalances, achieving a valida-
tion accuracy of 92% [25]. Ensemble meth-
ods, such as stacking InceptionV3, VGG19, 
and InceptionResNetV2 into a meta-neural 
network, showed a 98.31% accuracy for cat-
aract detection, demonstrating robustness 
through high precision and sensitivity [25].
Challenges like overfitting and limited dataset 
size persist, particularly in diabetic retinopa-
thy classification, where a deep convolutional 
neural network with white top-hat preprocess-
ing and binary cross-entropy loss achieves a 
test accuracy of 63% on the IDRiD dataset 
[25]. The HEI-MED dataset, with 169 fundus 
images, supports exudate-based diabetic mac-
ular edema detection, utilizing manual seg-
mentations and automated vasculature analy-
sis to enhance diagnostic precision [28]. 
Other notable datasets include OCTDL, which 
contains over 2,000 OCT images labeled for 
diseases such as age-related macular degener-
ation (AMD), diabetic macular edema (DME), 
epiretinal membrane (ERM), retinal artery oc-
clusion (RAO), retinal vein occlusion (RVO), 
and vitreomacular interface disease (VID), 
acquired using an Optovue Avanti RTVue XR 
and annotated by retinal specialists for deep 

learning applications [29]. Another significant 
dataset, provided by Duwairi et al., compris-
es 21,991 OCT images from Jordan, covering 
seven eye diseases (e.g., choroidal neovascu-
larization, macular holes, central serous reti-
nopathy) and normal cases, achieving 84.90% 
accuracy in binary classification and 63.68% 
in multi-class classification using a modified 
U-Net model [30]. The PAPILA dataset focus-
es on glaucoma, offering fundus images and 
clinical data from both eyes of patients, an-
notated for optic disc and cup segmentation, 
and tested with ResNet-50 for classification 
[31]. The RFMiD 2.0 dataset, with 860 fun-
dus images annotated for multiple diseases 
including AMD, diabetic retinopathy, and rare 
conditions, supports multi-class and multi-la-
bel classification, collected from patients in 
Maharashtra, India [32]. Lastly, the FIVES 
dataset provides 800 high-resolution fundus 
images with pixel-wise vessel segmentation, 
aimed at enhancing AI-based vessel analysis 
for various clinical conditions [33]. These 
datasets, while advancing AI-driven diagnos-
tics, face challenges such as data imbalance, 
limited annotations for rare diseases, and vari-
ability in imaging protocols, necessitating fur-
ther standardization and validation for robust 
clinical application. 

Supervised Learning and Deep Learning 
Models for Disease Classification

Supervised learning is a fundamental para-
digm in machine learning where models are 
trained on labeled datasets to predict out-
comes or classify data based on input fea-
tures. In this approach, the algorithm learns 
from examples that include both input data 
and corresponding correct outputs, enabling 
it to map relationships between them. During 
training, the model adjusts its parameters to 
minimize errors between predicted and actual 
labels, often using techniques such as back-
propagation in neural networks [34, 35]. This 
method contrasts with unsupervised learning, 
which deals with unlabeled data, and is par-
ticularly effective in tasks requiring high ac-
curacy, such as medical image classification, 
where precise annotations guide the learning 
process [34, 35].
Recent advancements in supervised learning 
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have significantly enhanced the classifica-
tion of eye diseases using retinal imaging, 
with convolutional neural networks (CNNs) 
emerging as a dominant architecture. Models 
like ResNet50 and DenseNet121 have been 
employed to classify conditions such as cata-
racts, diabetic retinopathy, and glaucoma from 
color fundus photography, achieving high ac-
curacy rates on diverse datasets [36]. These 
supervised approaches leverage pre-trained 
networks to extract hierarchical features from 
images, enabling effective differentiation be-
tween normal and pathological states. In an-
other study, deep learning models including 
VGGNet and MobileNet were trained on large 
retinal scan datasets to predict multiple ocular 
disorders, outperforming traditional machine 
learning methods like support vector ma-
chines with accuracies exceeding 98% [37]. 
Such supervised frameworks benefit from ex-
plicit label guidance, which improves model 
generalization in clinical settings, though they 
often require substantial annotated data to 
mitigate overfitting. Supervised learning re-
mains a cornerstone for accurate eye disease 
diagnosis, with ongoing research focusing on 
optimizing architectures to reduce dependen-
cy on large labeled datasets while preserving 
clinical utility [36-42].
Supervised learning techniques have also been 
integrated into multi-modal frameworks for 
improved eye disease detection, combining 
retinal images with other data sources to boost 
diagnostic precision. A novel architecture fus-
ing fundus images, optical coherence tomog-
raphy scans, and clinical metadata through 
CNN-based feature extraction demonstrated 
superior performance in identifying cataracts 
and glaucoma, with accuracy rates reaching 
95% [42]. This supervised fusion strategy 
enhances feature representation by learning 
from labeled multi-source inputs, addressing 
challenges like image variability. Similarly, 
supervised models applied to out-of-distribu-
tion datasets have shown robustness in glau-
coma classification, using normalized loss 
functions to handle data shifts and maintain 
high AUC scores [41]. 
Despite their strengths, supervised learning 
models for eye disease classification face lim-
itations in data-scarce environments, prompt-
ing explorations of hybrid approaches. For 

example, CNN architectures trained under 
supervised paradigms on datasets like EyeQ 
and AIROGS achieved promising results in 
multi-class glaucoma grading, with sensitiv-
ities around 93% [39]. However, comparisons 
with self-supervised alternatives highlight 
that while supervised methods excel with am-
ple labels, they may underperform when an-
notations are limited, as seen in OCT image 
classification tasks where supervised base-
lines lagged behind multi-stage models [40]. 
Advancements in deep learning have signifi-
cantly improved the automated classification 
of eye diseases through the analysis of retinal 
and Optical Coherence Tomography (OCT) 
scans. 
Researchers have employed CNNs to create 
robust systems for identifying multiple ocu-
lar conditions, with a particular emphasis on 
myopia while extending capabilities to disor-
ders like diabetic retinopathy, glaucoma, cat-
aract, and age-related macular degeneration. 
Through the use of transfer learning and mod-
el fine-tuning, these approaches have attained 
impressive accuracy levels, such as over 97% 
in myopia detection, showing the potential of 
AI to enhance diagnostic precision and facili-
tate early intervention in vision care [43].
Comparative assessments of deep learning 
frameworks, encompassing CNNs, Trans-
former-based models, and efficient light-
weight variants, reveal their strengths in multi-
class ocular disease identification. Techniques 
like data augmentation and transfer learning 
have been instrumental in overcoming data-
set imbalances, leading to superior outcomes 
in detecting intricate pathologies such as di-
abetic retinopathy. These insights offer prac-
tical recommendations for designing AI tools 
that balance accuracy with computational de-
mands, ultimately aiding the development of 
effective clinical aids [44].
Innovative applications of architectures like 
EfficientNetB3 have demonstrated strong 
performance in classifying eye ailments from 
fundus imagery, achieving around 93% overall 
accuracy across categories including cataract, 
glaucoma, diabetic retinopathy, and normal 
states. Complementing this, hybrid systems 
integrating multiple transfer learning models 
with feature selection methods, such as linear 
discriminant analysis combined with recur-



6 GMJ.2025;14:e3979
www.gmj.ir

Bokhary KA Artificial Intelligence in Ophthalmic Diseases Detection Artificial Intelligence in Ophthalmic Diseases Detection Bokhary KA

rent neural networks, have pushed boundaries 
further, yielding near-100% metrics in train-
ing and high validation scores. Such strategies 
reduce processing overhead while boosting 
generalization, positioning deep learning as a 
transformative force in accessible ophthalmic 
diagnostics [45, 46]. 

Unsupervised Learning for Pattern Discov-
ery in Eye Diseases

Unsupervised learning is a machine learn-
ing approach where algorithms analyze and 
identify patterns in data without predefined 
labels or explicit guidance. Unlike supervised 
learning, which relies on labeled datasets to 
train models, unsupervised learning discov-
ers hidden structures or relationships within 
unlabeled data. Common techniques include 
clustering (K-means, hierarchical clustering) 
to group similar data points and dimensional-
ity reduction (principal component analysis) 
to simplify complex datasets while preserv-
ing key features. In the context of eye disease 
classification, such as in Liang et al. (2020) 
[47], unsupervised learning extracts radiomic 
features from optical coherence tomography 
images to identify distinct patient clusters 
with varying treatment outcomes for diabetic 
macular edema. Similarly, Tang et al. (2020) 

[48] used it for anomaly detection in corneal 
microscopy images, showing its ability to un-
cover novel biomarkers without prior knowl-
edge of disease characteristics. This approach 
is particularly valuable in medical imaging, 
enabling the discovery of new patterns, im-
proving diagnostic accuracy, and facilitating 
personalized treatment strategies for complex 
conditions [49, 50].

Conclusion

Literature shows a strict worldwide intention 
for development of ML models for aiding eye 
image diagnosis. As most studies have relied 
on supervised learning, the need for labeling 
image datasets by human supervision for data 
training shows extensive necessity of clinical 
specialists and machine learning specialists; 
while unsupervised methodologies can de-
crease the effort needed for manual labeling 
but needs validations. Some imaging modali-
ties are also less studied as well as the fundus 
images, that warrant further studies in this era. 
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