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Abstract

Background: Artificial intelligence (Al) is revolutionizing ophthalmology and optometry by
utilizing high-resolution imaging modalities such as optical coherence tomography (OCT), fun-
dus photography, and corneal topography. These modalities generate quantifiable data suitable
for machine learning (ML), facilitating automated diagnosis of ocular conditions like diabetic
retinopathy, glaucoma, and age-related macular degeneration (AMD), which are leading causes
of visual impairment worldwide. This narrative review evaluates the role of ML in improving
diagnostic accuracy and accessibility in eye care, focusing on methodological complexities,
supervised and unsupervised learning approaches, and challenges in clinical integration. Ma-
terials and Methods: A comprehensive narrative literature review was conducted, analyzing
ML applications in ophthalmology. Results: Al systems exhibit high sensitivity and specificity,
often outperforming human graders in diabetic retinopathy screening and early detection of
glaucoma and AMD using OCT and fundus imaging. Anterior segment diseases benefit from
Al-driven corneal topography analysis. Challenges include image quality, dataset imbalances,
and variability in imaging protocols, necessitating fine-tuning for diverse clinical environments.
Unsupervised learning shows potential for identifying novel biomarkers but requires further
validation. Conclusion: Al-driven ML models significantly enhance eye disease diagnostics,
improving accuracy and accessibility, particularly in resource-limited settings. However, chal-
lenges like data standardization and model generalizability must be addressed to ensure robust
clinical adoption. [GMJ.2025;14:e3979] DOI:10.31661/gmj.v14i.3979
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Introduction aging modalities such as optical coherence

tomograph, fundoscopy, and corneal topog-
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rtificial intelligence (Al) is changing the

future of medicine by improving diag-
nostic accuracy and streamlining patient care
[1]. As a visually reliant specialty, both oph-
thalmology and optometry have been at the
forefront of the implementation of Al due to
the fact that it relies on high-resolution im-

raphy [2, 3]. These imaging modalities pro-
vide standardized data that can be quantified,
which makes them ideal for machine and deep
learning algorithms [2, 3]. Ocular conditions
such as diabetic retinopathy, glaucoma, and
age-related macular degeneration are among
the leading causes of visual disability world-
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wide [4-6]. Early detection, diagnosis and
treatment are important to mitigate permanent
loss of vision. Al systems have shown high po-
tential for automating the diagnosis and grad-
ing of these conditions, thereby optimizing di-
agnostic efficiency, reducing clinician work-
load, as well as enhancing access to treatment,
particularly in under-staffed resource-limited
settings where specialist care may not be
readily available [7] and even as a treatment
modality [8]. Diabetic retinopathy, the most
studied condition for Al usage in this era, ben-
efits significantly from Al-driven screening
using fundus photography, with studies like
Huang et al. (2022) [9] and Grzybowski et
al. (2020) [10] demonstrating high sensitivity
and specificity, often surpassing human grad-
ers in primary care and low-resource settings,
enhancing accessibility and reducing vision
loss [7]. However, challenges such as image
quality, patient cooperation, and integration
into diverse healthcare systems persist, re-
quiring fine-tuning for heterogeneous clinical
environments. In glaucoma, Al excels in de-
tecting early optic nerve damage and predict-
ing visual field loss through optical coherence
tomography (OCT) and visual field testing, as
shown by Li F ef al. (2024) [11], offering pre-
cise segmentation and metrics for clinical de-
cision-making, though variability in imaging
protocols limits generalizability. For AMD,
Al models, as explored by Wei W et al. (2023)
[12], accurately identify and grade lesions like
geographic atrophy and drusen using fundus
and OCT, supporting early intervention and
progression forecasting, yet face issues with
dataset imbalance and model interpretability.
Anterior segment diseases, including kerato-
conus, cataracts, and angle-closure glaucoma,
benefit from AI’s ability to analyze corneal to-
pography and anterior segment OCT for early
diagnosis, severity grading, and surgical plan-
ning, as noted in studies by Nguyen T et al.
(2024) [13], Soh ZD et al. (2024) [14], and
Wu X et al. (2020) [15], though variability
in imaging devices and diagnostic standards
poses challenges. In this narrative review, we
are going to read literature focused on meth-
odological complexities of ML for eye diseas-
es, to provide an introduction for clinicians to
get familiar with fundaments of ML in medi-
cal imaging.

Artificial Intelligence in Ophthalmic Diseases Detection

Fundamentals of Machine Learning for
Eye Care

Machine learning (ML) models’ primary core
stone is simply to train models based on im-
ages. This process involves multiple steps
with wide range of methodological details
that result in models that are able to classify
images. Al models that could analysis images
are known widely as vision models. Currently
many efforts has been done in ophthalmology
in this case and various datasets of eye images
are established for detecting and diagnosing
eye diseases, primarily through retinal imag-
ing modalities like optical coherence tomog-
raphy (OCT) and fundus photography. Image
annotation plays a crucial role in training ma-
chine learning models for diagnosing eye dis-
eases, with several datasets and methodologies
demonstrating its impact. There are multiple
studies, published datasets, pre-trained mod-
els on repositories of Al models like tensor-
flow like the EyeHealer dataset that provides
large-scale, pixel-level annotations of anterior
eye segment structures and lesions, enabling
improved segmentation performance in deep
learning models for anterior segment diseas-
es [16]. Similarly, Li et al. highlighted that
dense anatomical annotations of slit-lamp im-
ages enhance diagnostic accuracy by training
models with both structural and pathological
labels [17]. Crowdsourcing has also been ex-
plored as a cost-effective alternative to expert
annotation, with studies showing that non-ex-
pert annotations of retinal images can achieve
high agreement with expert assessments when
proper training and consensus thresholds are
applied [18]. Additionally, Camilo et al. in-
troduced a comprehensive pupillary image
dataset with manual annotations for glauco-
ma, diabetes, and alcohol-related conditions,
facilitating the development of robust seg-
mentation algorithms [19]. For OCT imag-
ing, OCT5k offers multi-disease, multi-grad-
ed annotations to support automated retinal
layer segmentation, while Soul leverages a
human-machine collaborative framework to
generate high-quality annotations for branch
retinal vein occlusion (BRVO) cases [20, 21].
Guidelines for glaucoma imaging annotation
further standardize the process, ensuring con-
sistency in labeling optic disc, retinal nerve fi-
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Table 1. Master Summary of Included Studies
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OCTDL: Optical Coherence Tomography Dataset for Image-Based Deep Learning; RFMiID: Retinal Fun-
dus Multi-Disease Image Dataset; FIVES: fundus image vessel segmentation;

ber layer, and anterior chamber structures for
Al applications [22]. Moreover, Punithavathi
et al. demonstrated the effectiveness of SVM
with active learning in automating retinal im-
age annotation, achieving high precision in
disease classification [23].

At the core of the methodological aspects of
machine deep learning for the eye disease
detection is Python, a versatile programming
language that acts like a digital toolbox, al-
lowing developers to write scripts that handle
everything from image manipulation to com-
plex calculations without needing advanced
coding expertise upfront [24]. Common pack-
ages like PyTorch and TensorFlow serve as
ready-made frameworks for building neural
networks, think of them as pre-assembled en-
gines that power machine learning models to

"learn" patterns in images, such as identifying
irregular shapes in the cornea or retina. For
image preprocessing, libraries like OpenCV
function as image editors on steroids, en-
abling simple tasks like converting colorful
eye scans to grayscale for clearer focus or en-
hancing contrast to highlight abnormalities,
while tools like Keras simplify the creation
of convolutional neural networks, which are
specialized algorithms that scan images layer
by layer to detect features like blood vessels
or ulcers [24].

The SUSTech-SYSU dataset, comprising 712
fluorescein-stained ocular images, facilitates
advanced segmentation and classification
of corneal ulcers, addressing the scarcity of
high-quality datasets for supervised learning
in ophthalmology [25]. This dataset includes
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detailed annotations for flaky corneal ulcers
and three-tiered classification labels, gener-
al ulcer patterns, specific types, and severity
grades. The baseline methodology employs
adjacent scale fusion and corneal position
embedding within a convolutional neural
network, leveraging Python and PyTorch for
training on an RTX 3090 GPU with CUDA
11.0 [26].

Retinal vessel segmentation and eye disease
classification have also advanced through
deep learning frameworks, notably fully con-
volutional neural networks (FCNs) and U-Net
models. One approach integrates stationary
wavelet transform for multiscale analysis with
an FCN, using rotation-based data augmenta-
tion and prediction refinement to achieve high
sensitivity (0.8315) and specificity (0.9858)
on datasets like DRIVE, STARE, and
CHASE DBI [27]. Another project employs
CNNs inspired by VGG-16 for multi-label
classification of retinal abnormalities, such
as diabetic retinopathy and glaucoma, with
preprocessing steps like grayscale conversion
and Keras ImageGenerator augmentation to
address class imbalances, achieving a valida-
tion accuracy of 92% [25]. Ensemble meth-
ods, such as stacking InceptionV3, VGG19,
and InceptionResNetV2 into a meta-neural
network, showed a 98.31% accuracy for cat-
aract detection, demonstrating robustness
through high precision and sensitivity [25].
Challenges like overfitting and limited dataset
size persist, particularly in diabetic retinopa-
thy classification, where a deep convolutional
neural network with white top-hat preprocess-
ing and binary cross-entropy loss achieves a
test accuracy of 63% on the IDRiD dataset
[25]. The HEI-MED dataset, with 169 fundus
images, supports exudate-based diabetic mac-
ular edema detection, utilizing manual seg-
mentations and automated vasculature analy-
sis to enhance diagnostic precision [28].
Other notable datasets include OCTDL, which
contains over 2,000 OCT images labeled for
diseases such as age-related macular degener-
ation (AMD), diabetic macular edema (DME),
epiretinal membrane (ERM), retinal artery oc-
clusion (RAO), retinal vein occlusion (RVO),
and vitreomacular interface disease (VID),
acquired using an Optovue Avanti RTVue XR
and annotated by retinal specialists for deep
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learning applications [29]. Another significant
dataset, provided by Duwairi et al., compris-
es 21,991 OCT images from Jordan, covering
seven eye diseases (e.g., choroidal neovascu-
larization, macular holes, central serous reti-
nopathy) and normal cases, achieving 84.90%
accuracy in binary classification and 63.68%
in multi-class classification using a modified
U-Net model [30]. The PAPILA dataset focus-
es on glaucoma, offering fundus images and
clinical data from both eyes of patients, an-
notated for optic disc and cup segmentation,
and tested with ResNet-50 for classification
[31]. The RFMID 2.0 dataset, with 860 fun-
dus images annotated for multiple diseases
including AMD, diabetic retinopathy, and rare
conditions, supports multi-class and multi-la-
bel classification, collected from patients in
Maharashtra, India [32]. Lastly, the FIVES
dataset provides 800 high-resolution fundus
images with pixel-wise vessel segmentation,
aimed at enhancing Al-based vessel analysis
for various clinical conditions [33]. These
datasets, while advancing Al-driven diagnos-
tics, face challenges such as data imbalance,
limited annotations for rare diseases, and vari-
ability in imaging protocols, necessitating fur-
ther standardization and validation for robust
clinical application.

Supervised Learning and Deep Learning
Models for Disease Classification

Supervised learning is a fundamental para-
digm in machine learning where models are
trained on labeled datasets to predict out-
comes or classify data based on input fea-
tures. In this approach, the algorithm learns
from examples that include both input data
and corresponding correct outputs, enabling
it to map relationships between them. During
training, the model adjusts its parameters to
minimize errors between predicted and actual
labels, often using techniques such as back-
propagation in neural networks [34, 35]. This
method contrasts with unsupervised learning,
which deals with unlabeled data, and is par-
ticularly effective in tasks requiring high ac-
curacy, such as medical image classification,
where precise annotations guide the learning
process [34, 35].

Recent advancements in supervised learning
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have significantly enhanced the classifica-
tion of eye diseases using retinal imaging,
with convolutional neural networks (CNNs)
emerging as a dominant architecture. Models
like ResNet50 and DenseNetl21 have been
employed to classify conditions such as cata-
racts, diabetic retinopathy, and glaucoma from
color fundus photography, achieving high ac-
curacy rates on diverse datasets [36]. These
supervised approaches leverage pre-trained
networks to extract hierarchical features from
images, enabling effective differentiation be-
tween normal and pathological states. In an-
other study, deep learning models including
VGGNet and MobileNet were trained on large
retinal scan datasets to predict multiple ocular
disorders, outperforming traditional machine
learning methods like support vector ma-
chines with accuracies exceeding 98% [37].
Such supervised frameworks benefit from ex-
plicit label guidance, which improves model
generalization in clinical settings, though they
often require substantial annotated data to
mitigate overfitting. Supervised learning re-
mains a cornerstone for accurate eye disease
diagnosis, with ongoing research focusing on
optimizing architectures to reduce dependen-
cy on large labeled datasets while preserving
clinical utility [36-42].

Supervised learning techniques have also been
integrated into multi-modal frameworks for
improved eye disease detection, combining
retinal images with other data sources to boost
diagnostic precision. A novel architecture fus-
ing fundus images, optical coherence tomog-
raphy scans, and clinical metadata through
CNN-based feature extraction demonstrated
superior performance in identifying cataracts
and glaucoma, with accuracy rates reaching
95% [42]. This supervised fusion strategy
enhances feature representation by learning
from labeled multi-source inputs, addressing
challenges like image variability. Similarly,
supervised models applied to out-of-distribu-
tion datasets have shown robustness in glau-
coma classification, using normalized loss
functions to handle data shifts and maintain
high AUC scores [41].

Despite their strengths, supervised learning
models for eye disease classification face lim-
itations in data-scarce environments, prompt-
ing explorations of hybrid approaches. For
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example, CNN architectures trained under
supervised paradigms on datasets like EyeQ
and AIROGS achieved promising results in
multi-class glaucoma grading, with sensitiv-
ities around 93% [39]. However, comparisons
with self-supervised alternatives highlight
that while supervised methods excel with am-
ple labels, they may underperform when an-
notations are limited, as seen in OCT image
classification tasks where supervised base-
lines lagged behind multi-stage models [40].
Advancements in deep learning have signifi-
cantly improved the automated classification
of eye diseases through the analysis of retinal
and Optical Coherence Tomography (OCT)
scans.

Researchers have employed CNNs to create
robust systems for identifying multiple ocu-
lar conditions, with a particular emphasis on
myopia while extending capabilities to disor-
ders like diabetic retinopathy, glaucoma, cat-
aract, and age-related macular degeneration.
Through the use of transfer learning and mod-
el fine-tuning, these approaches have attained
impressive accuracy levels, such as over 97%
in myopia detection, showing the potential of
Al to enhance diagnostic precision and facili-
tate early intervention in vision care [43].
Comparative assessments of deep learning
frameworks, encompassing CNNs, Trans-
former-based models, and efficient light-
weight variants, reveal their strengths in multi-
class ocular disease identification. Techniques
like data augmentation and transfer learning
have been instrumental in overcoming data-
set imbalances, leading to superior outcomes
in detecting intricate pathologies such as di-
abetic retinopathy. These insights offer prac-
tical recommendations for designing Al tools
that balance accuracy with computational de-
mands, ultimately aiding the development of
effective clinical aids [44].

Innovative applications of architectures like
EfficientNetB3 have demonstrated strong
performance in classifying eye ailments from
fundus imagery, achieving around 93% overall
accuracy across categories including cataract,
glaucoma, diabetic retinopathy, and normal
states. Complementing this, hybrid systems
integrating multiple transfer learning models
with feature selection methods, such as linear
discriminant analysis combined with recur-
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rent neural networks, have pushed boundaries
further, yielding near-100% metrics in train-
ing and high validation scores. Such strategies
reduce processing overhead while boosting
generalization, positioning deep learning as a
transformative force in accessible ophthalmic
diagnostics [45, 46].

Unsupervised Learning for Pattern Discov-
ery in Eye Diseases

Unsupervised learning is a machine learn-
ing approach where algorithms analyze and
identify patterns in data without predefined
labels or explicit guidance. Unlike supervised
learning, which relies on labeled datasets to
train models, unsupervised learning discov-
ers hidden structures or relationships within
unlabeled data. Common techniques include
clustering (K-means, hierarchical clustering)
to group similar data points and dimensional-
ity reduction (principal component analysis)
to simplify complex datasets while preserv-
ing key features. In the context of eye disease
classification, such as in Liang et al. (2020)
[47], unsupervised learning extracts radiomic
features from optical coherence tomography
images to identify distinct patient clusters
with varying treatment outcomes for diabetic
macular edema. Similarly, Tang et al. (2020)

Artificial Intelligence in Ophthalmic Diseases Detection

[48] used it for anomaly detection in corneal
microscopy images, showing its ability to un-
cover novel biomarkers without prior knowl-
edge of disease characteristics. This approach
is particularly valuable in medical imaging,
enabling the discovery of new patterns, im-
proving diagnostic accuracy, and facilitating
personalized treatment strategies for complex
conditions [49, 50].

Conclusion

Literature shows a strict worldwide intention
for development of ML models for aiding eye
image diagnosis. As most studies have relied
on supervised learning, the need for labeling
image datasets by human supervision for data
training shows extensive necessity of clinical
specialists and machine learning specialists;
while unsupervised methodologies can de-
crease the effort needed for manual labeling
but needs validations. Some imaging modali-
ties are also less studied as well as the fundus
images, that warrant further studies in this era.
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