
	
		
		
		1440-1
		

	
	
		
			
				
					Abstract

					Background: Treatment of Alzheimer as a disease that is associated with cognitive impairment has been associated with some restrictions. Recently, researchers have focused on non-pharma-cological treatments, including non-invasive stimulation of the brain by transcranial electrical stimulation (tES). Four main paradigms of transcranial electrical current include transcranial direct current stimulation (tDCS), transcranial alternative current stimulation (tACS), tran-scranial random noise stimulation (tRNS), transcranial pulse current stimulation (tPCS). The tDCS is a possible new therapeutic option for patients with cognitive impairment, including Alzheimer disease. Materials and Methods: The study was done on Sprague-Dawley male rats weighing 250-270 g. to develop Alzheimer’s model, the cannula was implanted bilaterally into the hippocampus. Aβ 25-35 (5μg/ 2.5µl/day) was microinjected bilaterally for 4 days. Then, an electrical stimulation paradigm was applied to the animal for 6 days. Animal cognitive capacity was evaluated on day 11 and 12 by novel object recognition (NOR) test. Results: Our results showed that application of tDCS; tACS; tRNS and tPCS reversed beta-amyloid-induced impair-ment (P<0.05). The tRNS Group spent total exploration time around the objects compared to other groups (P<0.05). There was no significant difference between the four different paradigms in discrimination ratio and the percentage of total exploration time. Conclusion: The results of this study showed that the use of multiple sessions of different tES paradigms could improve Aβ-induced memory impairment in the NOR test. Therefore, based on evidence, it can be ex-pected that in addition to using tDCS, other stimulatory paradigms may also be considered in the treatment of AD. [GMJ.2019;8:e1440] DOI:10.31661/gmj.v8i0.1440
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				Introduction

				Alzheimer disease (AD) is a progressive and irreversible neurodegenerative dis-order which eventually leads to amnesia. AD affects cognitive and behavioral functions as a result of synaptic dysfunction. It is associ-ated with cognitive decline, neurotoxicity, and the formation of extracellular plaques, mainly of beta-amyloid (Aβ) peptides and intercellular neurofibrillary tangles, consist-ing of the hyperphosphorylation tau protein [1-4]. Previous studies have shown that Aβ injection causes pathological effects on learn-ing and memory processes. This impairment is caused not only by Aβ 1-40 and Aβ 1-42 but also caused by the C-terminal fragment of the molecule, namely Aβ 25-35 [5, 6]. The ef-fects created by this fragment are like a whole fragment [7]. In animal studies, intrahippo-campal injection of Aβ 25-35 causes learning disruption and histological and biochemical changes. Therefore, these animals are used as one of the AD models [8, 9]. Regarding the therapeutic constraints of AD by medication; induction of neuroplastic changes by non-in-vasive transcranial electrical stimulation (tES) techniques has been increasing in recent years [10]. This technique is accomplished by gen-erating direct current on the skull surface by using electrodes that are embedded in rubber coated with a sponge that is damped with sa-line or guiding gels [11]. This technique can make certain changes based on duration and polarity of the electrodes in the excitability of human motor cortex. In the most common method, an electrode is placed in a specif-ic area, while another electrode is placed in another area to establish an electrical current [12]. The position of the electrodes is neces-sary to determine the orientation and spatial distribution of the current and ultimately the effectiveness of the treatment [13]. This meth-od is a valuable tool in the treatment of many neuropsychiatric disorders such as depression, anxiety, chronic pain, Parkinson disease, and AD, as well as in the rehabilitation of cogni-tive processes [14]. Four main paradigms of tES include transcranial direct current stimu-lation (tDCS), transcranial alternative current stimulation (tACS), transcranial random noise stimulation (tRNS), transcranial pulse current 

			

		

		
			
				stimulation (tPCS). The tDCS is a method to control the neuronal transmembrane potential by flowing a weak current to the scalp. The tDCS modulates spontaneous neuronal net-work activity through polarization of the rest-ing membrane potential, rather than causing neuronal firing by suprathreshold neuronal membrane depolarization. The effect of tDCS depends on the direction of current polarity of the electrodes; anodal stimulation increases cortical activity and excitability, while cathod-al stimulation decreases. The effects of tDCS are observed not only during stimulation but also after the end of stimulation (after-effect). The factors that affect stimulation are dura-tion, intensity, the polarity of stimulation and baseline cortical excitability state [15, 16]. The tACS uses an electrical current that alter-nates between electrodes, in a sinusoidal wave. Unlike tDCS, tACS does not alter neuronal excitability but entrains the neuronal firing from a large number of underlying neurons to the exogenous frequency [17]. Neuronal en-trainment is achieved by the applied current altering the transmembrane potential of neu-rons. The polarization of neurons reflects the current applied to it, leading to a sinusoidal fluctuation of the membrane potential. As this fluctuation is both frequencies dependent and linearly proportional to the applied current, lower-frequency stimulation induces larger polarization than does higher frequencies. Un-like tDCS, which has inhibitory effects due to polarity, the effects of tACS are determined by the current frequency and independent of the polarization of the electrodes [18]. The tRNS is a special form of tACS that involves the ap-plication of random noise oscillations above selected brain regions to modulate cortical plasticity. One of the proposed mechanisms of tRNS is the increase of neuronal excitabil-ity via stochastic resonance, whereby weak neural signal detection in the central nervous system is enhanced when noise is added. The advantages of this new technique, compared with tDCS, include the lack of sensitivity to the polarity of the electrodes and the reduc-tion of skin sensitivity to the electrodes during stimulation [19].The tPCS is a direct current stimulation with a non-constant current in which the current is applied with a constant amplitude. In this paradigm, the stimulation is 

			

		

	
		
			
				interrupted at regular intervals, and the defi-nitions of pulse duration, frequency, and in-ter-pulse intervals are added to the current, and therefore a special stimulation form is created [20]. In previous studies, the effects of tPCS have been studied in some clinical conditions such as depression, anxiety and pain disorders [21-23]. It has also been shown that tPCS has potential benefits for cognitive functions [24]. Compared to the other three paradigms, tDCS has become more known and studied, and its mechanisms have been further investigat-ed. Clinical studies have shown that tDCS is considered as a therapeutic tool. Many studies have shown that tDCS is used to treat many disorders, including those that do not respond to drug therapy, including post-stroke motor disorder [25], aphasia after stroke [26], epi-lepsy [27], chronic pain [28], and Parkinson disease [29]. Several studies have also shown that the use of tDCS can improve memory in AD [30, 31]. The tDCS can improve de-scriptive memory and working memory, as well as other cognitive functions not only in patients but in healthy people [32, 33]. The precise mechanism responsible for the effects of tDCS has not been fully described, so fur-ther studies are needed for its clinical applica-tion. It has been determined that the use of an electric field with sufficient strength and time will increase the electrical conductivity of bi-ological membranes. This is due to increased permeability for small and large ions and mol-ecules. However, knowledge about the effects of neurotransmitters, neurological markers, neural pathways, or neural interactions is in-complete. It has been shown that tDCS in AD causes changes in neuronal activity, blood flow to the brain, osmotic brain activity, com-munication patterns of the brain, synaptic and non-synaptic effects, and neural modulation. Therefore, due to the mechanisms of action and mechanisms involved in tDCS disease, it can be used as a suitable treatment to improve cognitive function in AD [34]. Several stud-ies have been conducted using tDCS in AD [34]. However, the number of animal studies, which are using this technique to find out the mechanisms of this technique is increasing. Yu et al. showed that tDCS application af-ter the onset of cognitive dysfunction caused by AD leads to a positive effect on motor be-

			

		

		
			
				havior [35]. Ronso et al. in 2017 demonstrated that tDCS with training improves cognition in anomic AD and frontotemporal dementia [36]. In a case study; the use of tDCS as an adju-vant to the traditional treatment had a positive effect on overall patient cognitive function and improved performance on all the second-ary outcome measures [37]. In another study shown the synergetic application of tDCS and cognitive training led to slow down the cogni-tive decline in AD [38]. Considering the im-pairing effects of Aβ on cognitive function and suggested neuroprotective effect of tES, this study was designed to comparatively evaluate the effects of different electrical stimulation paradigm on cognitive impairment induced by Aβ 25-35 in novel object recognition (NOR) test and finally to determine which of the tES paradigms are more effective in this regard.

				Materials and Methods

				Animals

				Adult male Sprague-Dawley rats weighing 250–270g were used. Animals were main-tained at room temperature (25 ± 2 °C) under standard 12–12h light-dark cycle with lights on at 7:00 A.M. Food and water were avail-able ad libitum. The experimental protocols were approved by the ethics committee of Shiraz University of Medical Sciences (IR.SUMS.REC.1395.S974), and the animal care was according to the NIH Guide for the care and use of laboratory animals. Fifty-six rats were randomly divided into the seven groups (n=8 per each group); the control group (cage control), the sham group, the Aβ group, the Aβ + tDCS group, the Aβ + tACS group, the Aβ + tRNS group, and the Aβ + tPCS group.

				Materials and Reagents

				Aβ 25-35 was purchased from Sigma (USA), and the electrical stimulation device was pur-chased from Medina Teb Company (Iran). Ketamine and xylazine were provided by Al-fasan Woerden Company (Netherlands).

				Surgery

				On the day of surgery, rats were anesthe-tized with intraperitoneal injection of mixed Ketamine (100mg/kg) and xylazine (10mg/kg). The rats were mounted into a stereotaxic 

			

		

	
		
			
				frame (Stoelting Company, USA) and accord-ing to Paxinos brain atlas, stainless steel guide cannula (22-gauge) were implanted bilater-ally into the dorsal hippocampus (AP−3.8, ML ± 2.2 DV−2.7). To apply electrical stim-ulation, a plastic tube (inner diameter: 2 mm) was mounted on the right frontal cortex. The cannula and plastic tube were anchored to the skull using stainless screws and acrylic ce-ment.

				Aβ 25-35 Preparation

				Aβ peptide (25-35) was dissolved in ster-ile distilled water at a concentration of 2 μg/μl and was stored in −70 °C. Aggregation of Aβ 25-35 was done by in-vitro incubation at 37 °C for 4 days [39].

				Drug Administration

				In order to inject the drug, a 10 µl Hamilton syringe was connected to the injection cannu-la through a short piece of polyethylene tube; the injection cannula was inserted 0.5mm the tip of the guide cannula. Aβ 25-35 (5 μg/ 2.5 µl/day) or its vehicle (distilled water) was in-jected bilaterally in the four doses on days 1 and 4. All microinjections were carried out at the speed of 1 µl/min by microinjection pump, and the needle was left in the place for an ad-ditional 5min to minimize the back-flow of the solution.

				Induction of Electrical Stimulation

				The plastic tube which was placed on the skull surface on surgery day was filled with sponge. Rats were covered with a towel, and the elec-trodes were inserted. The anodal electrode was placed into the plastic tube above the right frontal cortex. The cathodal electrode, with a larger contact area, was placed onto the ven-tral thorax with a corset. To reduce the con-tact impedance, sponges were moistened with saline solution prior to electrical stimulation. The tES was applied to the awake and freely moving rats for one week, 20 min per session, with current intensities of 200 μA, the current intensity was ramped for 10s. Sham stimula-tion, (electrodes were placed, but no stimula-tion was applied) was performed in the sham and the Aβ groups. Ten days after surgery (day 11), behavioral test (NOR test) was carried out.

			

		

		
			
				NOR Test

				This test is made up of a test box with dimen-sions 65× 45 × 65 cm. The protocol consists of two days. On the first day, the rats are placed in the box for 5 min without any objects, to familiarize to the test box. On the second day (test day), the rats were placed in a test box, and two objects were placed in two corners (about 30 cm apart). Objects used in this study are plastic blocks in the same size, shape, and color. The time taken to check each object within 5 minutes (as defined training session) was recorded. The rats then returned to the cage. After a period of 60 min, the rats were re-tested in the test box, and at this stage, one of the familiar objects used in the previous training session was replaced with a new ob-ject. The time taken to check each object was recorded within 5 min (as defined test ses-sion). The animals were considered to be ex-ploring when they were facing, sniffing or bit-ing the object. The test box and objects were cleaned with 70% of ethanol between trials. A discrimination index (the time spent with the novel object divided by the total time spent exploring either object) was used to measure memory preference.

				Data Analysis

				All behavioral tests and decoding were per-formed blind. All statistical tests were under-taken using SPSS v22.0 (SPSS Inc., Chicago, Ill., USA). Normality of data distribution was checked by using the Shapiro–Wilk test. Data were analyzed by one-way analysis of vari-ance (ANOVA) followed by post hoc LSD test for multiple comparisons. Object explora-tion time converted to the percentage of total exploration time, and a one-sample t-test was used to compare the percentage of total time of exploration spent on each object considering a theoretical mean of 50%. All results have been shown as means ± Standard Error of Mean )S.E.M (. In all statistical comparisons, P<0.05 was considered as significant difference.

				Results

				The effects of the vehicle; Aβ or/and tDCS; tACS; tRNS; tPCS on NOR test is represented in Figure-1 and 2. Figure-1 shows the discrim-ination ratio (the time spent with the novel ob-

			

		

	
		
			
				ject divided by the total time spent exploring either object) between groups. ANOVA analy-sis showed a significant difference in discrim-ination ratio between groups (P=0.003, F [8, 55] = 4.133). Post hoc LSD test following ANOVA analysis revealed that discrimination ratio in Aβ receiving group is significantly decreased compared with the other groups. Aβ group rats showed deficits in NOR. Figure-2 demonstrates only the group who received tRNS had a significant difference with the rest of the groups and spent more time around the objects (P= 0.02, F [8, 55]=2.886). In terms of the percentage of total exploration time around each object; Aβ group has spent less time than other groups around the novel ob-ject (mean; novel object = 26.19%; familiar object = 73.80%, P> 0.05; Figure-3). Animals in control, sham and Aβ25-35 + tDCS; tACS; tRNS; tPCS groups explored novel object for a greater percentage of total exploration time around novel object (mean of these groups, control; novel object=75.28%; familiar ob-ject=24.71%; P<0.05, sham; novel object = 64.28%; familiar object=35.71%; P<0.05, Aβ25-35 + tDCS; novel object=79.18%; familiar object=20.81%; P<0.05, Aβ25-

			

		

		
			
				35 + tACS; novel object =70.54%; famil-iar object =29.45%; P<0.05, Aβ25-35 + tRNS; novel object=73.71%; familiar ob-ject=26.28%; P<0.05, Aβ25-35 + tPCS; nov-el object=63.70%; familiar object=36.29%; P<0.05; Figure-3). These groups did not show deficits in NOR (P=0.05). Application of tDCS; tACS; tRNS and tPCS reversed Aβ-in-duced impairment. In these groups, there was a significant difference in the percentage of total exploration time around the novel object and familiar object (P<0.05). 

				Discussion

				The findings of this study revealed that repeat-ed administration of Aβ 25-35 induced cogni-tive impairment in NOR test. It has been shown that this method could be a more reliable way to induce a consistent and less variable model of AD in rats [40]. The findings of the present study revealed that different paradigms of tES prevented Aβ-induced cognitive impairment in the NOR test. Previous studies showed that tDCS affected the brain cortex below the stim-ulation electrode, the path of current flowing between the electrodes penetrates not only the 

			

		

		
			
				Figure 1. The effect of vehicle, Aβ 25-35 or/and tDCS; tACS; tRNS; tPCS on discrimination ratio. Discrimination ratio has significant dif-ference between groups (P=0.003). *P < 0.01 and #P< 0.001 represents the difference between animals, which receive Aβ25-35, sham, and Aβ25-35 + tDCS; tACS; tRNS; tPCS (n=8 per group).
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				cortex but also sub-cortical structures includ-ing the hippocampus [41]. The tDCS affected the brain cortex below the stimulation elec-trode, the neurophysiological, behavioral and molecular changes investigated in the previous study were related to hippocampal function. 

			

		

		
			
				Indeed, anodal tDCS enhanced long-term po-tentiation at hippocampal CA3-CA1 synapses and improved spatial and recognition memory assessed by two validated behavioral tests of hippocampal-dependent memory, i.e., Morris water maze and NOR [42]. The result of this 

			

		

		
			
				Figure 3. The effect of vehicle, Aβ 25-35 or/and tDCS; tACS; tRNS; tPCS on the percentage of total exploration time around the objects. Data are shown as mean and S.E.M of the percentage of total exploration time. *P<0.05 on one sample t-test, n = 8 per group)
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				Figure 2. The effect of vehicle, Aβ 25-35 or/and tDCS; tACS; tRNS; tPCS on total exploration time around the objects (P = 0.02). *P<0.05 represents the difference between Aβ25-35+tRNS animals and animals, which recieve Aβ25-35, sham, and Aβ25-35 + tDCS; tACS; tPCS (n=8 per group). 
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				study confirmed the results of the previous studies, with the difference that in this study, six sessions of electrical stimulation were car-ried out and also, these four paradigms also had amelioration effects on animal behavior. Forasmuch as, setting up the water maze is a complicated procedure and the testing con-dition is somewhat stressful to the animals. A more simple and friendly behavioral test would be helpful to evaluate a large number of potentially beneficial compounds in AD ani-mal models. The previous study demonstrated that the NOR test is a facile and sensitive be-havioral test in APP/PS1 AD model [43]. The NOR test is based on the spontaneous behav-ior of rodents to explore novelty and is a pure working memory test free of reference [44]. Hippocampus is important in the formation of recognition memory [45]. The two advantag-es of NOR test compared to other behavior-al tests are that, firstly, this test is relatively simple and friendly. This test does not require spatial learning and the use of positive or neg-ative reinforcement stimuli. A major problem in testing a water maze or shuttle box is the involvement of negative stimuli, such as deep water or electric shock. These stimuli may cause stress or even depression in rodents. Stress as a negative factor affects learning and memory [46, 47]. The features of this test are comparable to those commonly used in hu-man memory tests. Secondly, this test requires a shorter period and is more repeatable. The simplicity of this test allows a large number of animals to be evaluated in a short time. In the previous study, it has been shown that an-odal tPCS with a specific pulse duration has significant effects on corticospinal excitabili-ty compared to tDCS in healthy people [20]. However, in this study, all four methods had similar effects, and no significant difference was observed between them.In our study, the effect of different paradigms of tES on Aβ 25-35 induced cognitive impairment in the NOR test was investigated. Aβ efficiently disrupted the recognition memory for the NOR test; a task used to evaluate recognition memory per-formance in rodents [43, 48]. This issue was confirmed in the present study, and the effect of four paradigms of transcranial electrical stimulation on this disorder was investigated. 

				The groups that received tDCS, tACS, tRNS 

			

		

		
			
				and tPCS stimulation took significant time around the novel object compared to Aβ groups. The Aβ group spent more time around the familiar object than the novel object. Oth-er groups spent more time around the novel object. In the previous studies, it has been shown that anodal tDCS enhances long term potentiation in the mouse hippocampus and improves memory and spatial learning [49]. In this study, all four electrical stimulation para-digms improved memory impairment induced by Aβ in the NOR test. Unlike tDCS the oth-er three stimulation patterns, it has not been studied much, and in this study, we examined the effect of three other stimuli on cognitive function. Past studies have shown that tACS can modulate cortical excitability and EEG oscillations and cognitive processes [50-52]. Also, it has been demonstrated that tACS can modulate brain oscillations and affect cogni-tive functions such as memory due to the re-lationship between brain oscillations and cog-nitive processes [53, 54]. In the present study, the effect of this paradigm on cognition was determined. It has also been shown that these functions change in brain oscillations with selective intervention [55]. Abnormal brain rhythms are associated with pathologic condi-tions. As shown in a study, these rhythms vary in Alzheimer patients [56]. Thus, the research-ers are trying to the treatment of these neu-rological diseases by modulating these brain rhythms, and tACS paradigm with the appli-cation of a specific frequency creates this abil-ity. The prevailing hypothesis about the action of tACS is that alternating fields can increase or decrease the power of oscillatory rhythms in the brain, and in the frequency dependent manner, through synchronizing and desyn-chronizing neuronal networks [18]. This study could partly prove the positive effects of tACS in this regard. Previous studies have shown that transcranial high-frequency random noise stimulation increases the brain excitability [57, 58]. In a study by Mulquiney et al., it has been shown that tRNS can improve working memory performance [59]. In a comparison of tDCS, tACS, and tRNS, one study in 2016 showed that tRNS is the most effective tES method for increasing cortical excitability of the motor cortex [60]. In our study, the effect of tRNS on the improvement of the perfor-
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				mance of memory-impaired rats in NOR test was shown and had significant differences in total exploration time compared to other groups, and in this case, it seems more ef-fective than other paradigms. In the previous study, it has been shown that anodal tPCS with a specific pulse duration has significant effects on corticospinal excitability compared to tDCS in healthy people [20]. In our study, tPCS did not significant difference compared to the other paradigm but could improve the Aβ-induced deficit in NOR test. However, re-garding the number of stimulation sessions, the results of our study showed that all four paradigms had significant effects on the NOR test. According to the results of our study and previous studies, the effect of tDCS on the improvement of memory impairment in-duced by Aβ in NOR test seems to be well supported. Besides, current research has sug-gested that other stimulation paradigms may retain the efficiency in remediating cognitive 

			

		

		
			
				impairment in an AD rodent model. Overall, the results of this study showed that the use of multiple sessions of different paradigms of tES could improve the memory impairment induced by Aβ in a rat model. Therefore, based on such evidence, it could be expect-ed that, in addition to the use of tDCS in the treatment of AD, other stimulatory paradigms may also be considered as treatments in AD. However, more research is needed to make these methods available in clinical settings.

				Acknowledgment

				This work was derived from the Ph.D. thesis of Amir Hossein Zarifkar and supported by a grant number:12527 from Shiraz University of Medical Sciences.

				Conflict of Interest

				Authors have no conflict of interests.

			

		

	
		
			
				2006;80(3):216-27.

				Vanneste S, Langguth B, De Ridder D. Do tDCS and TMS influence tinnitus transiently via a direct cortical and indirect somatosensory modulating effect? A combined TMS-tDCS and TENS study. Brain Stimul. 2011;4(4):242-52.

				Guleyupoglu B, Schestatsky P, Edwards D, Fregni F, Bikson M. Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. J Neurosci Methods. 2013;219(2):297-311.

				Baudewig J, Nitsche MA, Paulus W, Frahm J. Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation. Magn Reson Med. 2001;45(2):196-201.

				Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, et al. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016;9(5):641-61.

				Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527 Pt 3:633-9.

				Nitsche MA, Seeber A, Frommann K, Klein CC, Rochford C, Nitsche MS, et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol. 2005;568(Pt 1):291-303.

				Battleday RM, Muller T, Clayton MS, Cohen Kadosh R. Mapping the mechanisms of transcranial alternating current stimulation: a pathway from network effects to cognition. Front Psychiatry. 2014;5:162.

				Reato D, Rahman A, Bikson M, Parra LC. Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies. Front Hum Neurosci. 2013;7:687.

				Antal A, Herrmann CS. Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms. Neural Plast. 2016;2016:3616807.

				Jaberzadeh S, Bastani A, Zoghi M, Morgan P, Fitzgerald PB. Anodal Transcranial Pulsed Current Stimulation: The Effects of Pulse Duration on Corticospinal Excitability. PLoS One. 2015;10(7):e0131779.

				Gilula MF, Barach PR. Cranial electrotherapy stimulation: a safe neuromedical treatment for anxiety, depression, or insomnia. South Med J. 2004;97(12):1269-70.

			

		

		
			
				Kirsch DL, Smith RB. The use of cranial electrotherapy stimulation in the management of chronic pain: A review. NeuroRehabilitation. 2000;14(2):85-94.

				Lichtbroun AS, Raicer MM, Smith RB. The treatment of fibromyalgia with cranial electrotherapy stimulation. J Clin Rheumatol. 2001;7(2):72-8; discussion 8.

				Datta A, Dmochowski JP, Guleyupoglu B, Bikson M, Fregni F. Cranial electrotherapy stimulation and transcranial pulsed current stimulation: a computer based high-resolution modeling study. Neuroimage. 2013;65:280-7.

				Edwards DJ, Krebs HI, Rykman A, Zipse J, Thickbroom GW, Mastaglia FL, et al. Raised corticomotor excitability of M1 forearm area following anodal tDCS is sustained during robotic wrist therapy in chronic stroke. Restor Neurol Neurosci. 2009;27(3):199-207.

				Monti A, Cogiamanian F, Marceglia S, Ferrucci R, Mameli F, Mrakic-Sposta S, et al. Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry. 2008;79(4):451-3.

				Nitsche MA, Paulus W. Noninvasive brain stimulation protocols in the treatment of epilepsy: current state and perspectives. Neurotherapeutics. 2009;6(2):244-50.

				Boggio PS, Amancio EJ, Correa CF, Cecilio S, Valasek C, Bajwa Z, et al. Transcranial DC stimulation coupled with TENS for the treatment of chronic pain: a preliminary study. Clin J Pain. 2009;25(8):691-5.

				Benninger DH, Lomarev M, Lopez G, Wassermann EM, Li X, Considine E, et al. Transcranial direct current stimulation for the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2010;81(10):1105-11.

				Boggio PS, Ferrucci R, Mameli F, Martins D, Martins O, Vergari M, et al. Prolonged visual memory enhancement after direct current stimulation in Alzheimer’s disease. Brain Stimul. 2012;5(3):223-30.

				Boggio PS, Valasek CA, Campanha C, Giglio AC, Baptista NI, Lapenta OM, et al. Non-invasive brain stimulation to assess and modulate neuroplasticity in Alzheimer’s disease. Neuropsychol Rehabil. 2011;21(5):703-16.

				Javadi AH, Walsh V. Transcranial direct current stimulation (tDCS) of the left dorsolateral prefrontal cortex modulates declarative memory. Brain Stimul. 2012;5(3):231-41.

				Andrews SC, Hoy KE, Enticott PG, 

			

		

	
		
			
				Daskalakis ZJ, Fitzgerald PB. Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stimul. 2011;4(2):84-9.

				Hansen N. Action mechanisms of transcranial direct current stimulation in Alzheimer’s disease and memory loss. Front Psychiatry. 2012;3:48.

				Yu SH, Park SD, Sim KC. The Effect of tDCS on Cognition and Neurologic Recovery of Rats with Alzheimer’s Disease. J Phys Ther Sci. 2014;26(2):247-9.

				Roncero C, Kniefel H, Service E, Thiel A, Probst S, Chertkow H. Inferior parietal transcranial direct current stimulation with training improves cognition in anomic Alzheimer’s disease and frontotemporal dementia. Alzheimers Dement (N Y). 2017;3(2):247-53.

				Andrade SM dMC, Pereira TCL, Fernandez-Calvo B, Araújo RCN, Alves NT. Adjuvant transcranial direct current stimulation for treating Alzheimer’s disease: A case study. Dementia Neuropsychologia. 2016.

				Penolazzi B, Bergamaschi S, Pastore M, Villani D, Sartori G, Mondini S. Transcranial direct current stimulation and cognitive training in the rehabilitation of Alzheimer disease: A case study. Neuropsychol Rehabil. 2015;25(6):799-817.

				Ghasemi R, Zarifkar A, Rastegar K, maghsoudi N, Moosavi M. Insulin protects against Abeta-induced spatial memory impairment, hippocampal apoptosis and MAPKs signaling disruption. Neuropharmacology. 2014;85:113-20.

				Ghasemi R, Zarifkar A, Rastegar K, Maghsoudi N, Moosavi M. Repeated intra-hippocampal injection of beta-amyloid 25-35 induces a reproducible impairment of learning and memory: considering caspase-3 and MAPKs activity. Eur J Pharmacol. 2014;726:33-40.

				Bolzoni F, Baczyk M, Jankowska E. Subcortical effects of transcranial direct current stimulation in the rat. J Physiol. 2013;591(16):4027-42.

				Vorhees CV, Williams MT. Assessing spatial learning and memory in rodents. ILAR J. 2014;55(2):310-32.

				Zhang R, Xue G, Wang S, Zhang L, Shi C, Xie X. Novel object recognition as a facile behavior test for evaluating drug effects in AbetaPP/PS1 Alzheimer’s disease mouse 

			

		

		
			
				model. J Alzheimers Dis. 2012;31(4):801-12.

				Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res. 1988;31(1):47-59.

				45.	Barker GR, Warburton EC. When is the hippocampus involved in recognition memory? The Journal of neuroscience : the official journal of the Society for Neuroscience. 2011;31(29):10721-31.

				Park CR, Campbell AM, Diamond DM. Chronic psychosocial stress impairs learning and memory and increases sensitivity to yohimbine in adult rats. Biol Psychiatry. 2001;50(12):994-1004.

				Duncko R, Johnson L, Merikangas K, Grillon C. Working memory performance after acute exposure to the cold pressor stress in healthy volunteers. Neurobiol Learn Mem. 2009;91(4):377-81.

				Prado Lima MG, Schimidt HL, Garcia A, Dare LR, Carpes FP, Izquierdo I, et al. Environmental enrichment and exercise are better than social enrichment to reduce memory deficits in amyloid beta neurotoxicity. Proc Natl Acad Sci U S A. 2018;115(10):E2403-E9.

				Podda MV, Cocco S, Mastrodonato A, Fusco S, Leone L, Barbati SA, et al. Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression. Sci Rep. 2016;6:22180.

				Antal A, Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci. 2013;7:317.

				Herrmann CS, Rach S, Neuling T, Struber D. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci. 2013;7:279.

				Marshall L, Binder S. Contribution of transcranial oscillatory stimulation to research on neural networks: an emphasis on hippocampo-neocortical rhythms. Front Hum Neurosci. 2013;7:614.

				Basar E, Basar-Eroglu C, Karakas S, Schurmann M. Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol. 2001;39(2-3):241-8.

				Herrmann CS, Munk MH, Engel AK. Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn Sci. 2004;8(8):347-55.

				Sejnowski TJ, Paulsen O. Network oscillations: emerging computational 

			

		

	
		
			
				principles. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2006;26(6):1673-6.

				Montez T, Poil SS, Jones BF, Manshanden I, Verbunt JP, van Dijk BW, et al. Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease. Proc Natl Acad Sci U S A. 2009;106(5):1614-9.

				Laczo B, Antal A, Rothkegel H, Paulus W. Increasing human leg motor cortex excitability by transcranial high frequency random noise stimulation. Restor Neurol Neurosci. 2014;32(3):403-10.

				Terney D, Chaieb L, Moliadze V, Antal A, Paulus W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2008;28(52):14147-55.

			

		

		
			
				Mulquiney PG, Hoy KE, Daskalakis ZJ, Fitzgerald PB. Improving working memory: exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex. Clin Neurophysiol. 2011;122(12):2384-9.

				Inukai Y, Saito K, Sasaki R, Tsuiki S, Miyaguchi S, Kojima S, et al. Comparison of Three Non-Invasive Transcranial Electrical Stimulation Methods for Increasing Cortical Excitability. Front Hum Neurosci. 2016;10:668.

			

		

	
		
			
			

		
		
		PageList

			
					1

					2

					3

					4

					5

					6

					7

					8

					9

					10

					11

			

		
		
		Landmarks

			
					Cover

			

		
	