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					Abstract

					Background: Cervical cancer cells are known as radioresistant cells. Current treatment meth-ods have not improved the patients’ survival efficiently; thus, new therapeutic strategies are needed to enhance the efficacy of radiotherapy. Gold nanomaterials with different shapes and sizes have been explored as radiosensitizers. The present study compared the radiosensitizing effects of gold nanorods (AuNRs) with spherical gold nanoparticles (AuNPs) on the HeLa cell line irradiated with megavoltage X-rays. Materials and Methods: The cytotoxicity of AuNRs and AuNPs on HeLa cells in the presence and absence of 6-MV X-ray was investigated using the MTT assay. For this aim, HeLa cells were incubated with and AuNPs and AuNRs at various concentrations (5, 10, and 15 µg/mL) for 6 hours. Afterward, HeLa cells were irradiated with 6-MV X-ray at a single dose of 2 Gy. Results: The results showed that the addition of AuNRs and AuNPs could enhance the radiosensitivity of HeLa cells. Both AuNRs and AuNPs showed low toxicity on HeLa cells, while AuNRs were more toxic than AuNPs at the examined concen-trations. Moreover, it was found that AuNRs could enhance the radiosensitivity of HeLa cells more than spherical-shaped AuNPs. Conclusion: This study revealed that the shape of nanopar-ticles is an effective factor when they are used as radiosensitizing agents during radiotherapy. [GMJ.2020;9:e1581] DOI:10.31661/gmj.v9i0.1581
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				Introduction

				Radiotherapy, as a primary or adjuvant treatment modality, has remarkable ad-vantages in cancer therapy. Despite its appli-cation in 50% of cancer patients [1], its ad-verse effects on the surrounding healthy tis-

			

		

		
			
				sues are inevitable due to the toxicity of high-dose megavoltage X-rays, resulting in the de-livery of a limited dose to the tumor site and reduction of therapeutic efficiency [2]. In or-der to overcome the side effects of high-dose X-rays in normal tissues and enhance tumor response to radiotherapy, researchers have 

			

		

	
		
			
				promoted the application of radiosensitizer drugs and encouraged the use of high atomic number materials, such as gold nanoparticles as radiation sensitizers [3-7]. Gold nanopar-ticles have unique properties, such as low toxicity, biocompatibility, chemical stability, ease of synthesis and modification, selective accumulation in tumors, and acceptable phys-icochemical parameters [3, 8]. The mecha-nism by which gold nanoparticles exert their radiosensitivity through kilovoltage radiation involves photoelectric absorption [9]. On the other hand, megavoltage X-rays have been used clinically in the radiotherapy of cancer patients. Radiosensitivity induced by gold nanoparticles occurs when the radiation ener-gy is in the megavoltage range, and the Comp-ton effect is the major interaction [10, 11]. Therefore, there must be another mechanism making cancer cells sensitive to megavoltage X-rays in the presence of gold nanoparticles. It has been suggested that free radicals, reac-tive oxygen species (ROS) generation, and induction of oxidative stress are major chem-ical and biological factors, which lead to ra-diosensitization, DNA damage in tumor cells, irreparable damage to the cell membrane and mitochondria [12-16], and consequently dose enhancement in radiotherapy in the presence of gold nanoparticles [1, 17]. Gold nanopar-ticles are synthesized in different shapes and sizes, with different coatings and functions, depending on their application [18, 19]. Dif-ferent shapes of gold, such as nanospheres, nanorods, nanoshells, nanocages, and nano-cubes, have been investigated in therapeutic and imaging fields [7, 9, 20, 21]. Gold nano-spheres (AuNPs) are prepared from 1 nm to less than 100 nm by reducing chloroauric acid, which is beneficial for imaging and ra-diation dose enhancement [22-27]. Gold na-norods (AuNRs) are produced by reduction of the gold salt (by means of chloroauric acid) in a solution containing cetyltrimethylammoni-um bromide (CTAB), which is a cationic sur-factant [28]. These nanorods possess unique properties, including a small diameter (typi-cally 25-45 nm in the longest dimension) and maximum heat conversion efficacy. The exis-tence of two absorption peaks that correspond to transverse and longitudinal resonance is also considered a specific feature of AuNRs. 

			

		

		
			
				Therefore, irradiating nanorods in the longi-tudinal plasmon resonance with near-infrared (NIR) laser makes tumor cells more sensitive to photothermal damage [29-32]. Overall, AuNRs can have more cellular uptake, de-pending on the surface charge and type of the functional group [33-36]. Some studies have reported that both AuNPs and AuNRs can ef-fectively sensitize tumor cells to radiation in different cancer cell lines [18]. In this study, we aimed to determine which shape of gold nanoparticles, nanorods, or nanospheres can better sensitize tumor cells to radiation. For this purpose, we synthesized gold nanorods and gold nanospheres and compared their dose enhancement on the human cervical can-cer (HeLa) cell line following the exposure of the cells to 6 MV X-rays at a dose of 2Gy. 

				Materials and Methods

				Gold Nanoparticles

				Spherical and rod-shaped gold nanoparticles were provided by Nanobon Company (Teh-ran, Iran). The synthesis methods have been previously described in the literature [30, 37]. After synthesis, nanoparticles were character-ized using transmission electron microscopy (TEM; LEO906, ZEISS, Germany) to deter-mine the shape and size of both spherical and rod-shaped nanoparticles.

				The Protocol of Cell Culture

				The human cervical cancer cell line (HeLa) was purchased from the Pasteur Institute (Tehran, Iran) and cultured in Dulbecco’s Modified Eagle Medium (DMEM; Atocel, Austria), containing 10% heated-inactivated fetal bovine serum (FBS; Biowest, France), penicillin (100 U/mL), and streptomycin (100 μg/mL; Atocel, Austria) at 37ºC in a 5% CO2 atmosphere. The cell culture media were ex-changed every two days, and the cells were recovered by trypsinizing the culture media with 0.25% trypsin- 1mM EDTA resuspended in phosphate-buffered saline.

				The Cytotoxicity of AuNPs and AuNRs

				At passage 3 of the cell culture process, 103 cells were counted by hemocytometer, seed-ed onto a 96-well plate, and incubated for 12 hours to adhere. Then, the cells were treated 

			

		

	
		
			
				with 5, 10, and 15 µg/mL AuNRs and AuNPs separately for six hours (eight wells for each concentration). A group of HeLa cells receiv-ing no treatment was utilized as control cells. The percentage of cell survival was assessed after the incubation period by means of the MTT assay.

				The Cytotoxicity of AuNPs and AuNRs when Combined with Irradiation

				Nanoparticles were incubated with HeLa cells, as described in the previous section. Prior to the initiation of radiotherapy, Hela cells were rinsed with PBS three times in or-der to remove the extra nanoparticles from the cell culture media, and after that, fresh media were replaced. Afterward, cells were exposed to 6-MV X-ray at a dose of 2Gy by means of a Varian linear accelerator (Varian Associates Inc., CA, USA). When the experiment was finished, the MTT assay was utilized for cell viability in response to various treatments.

				MTT Assay

				Cell viability was examined in all cells ex-posed to different treatment procedures, uti-lizing the MTT assay [19, 21, 32, 36]. When the treatment protocols were finished, the cell culture media were removed, the cells were rinsed with PBS. Next, 100 μL FBS-free cul-ture medium, along with 10 μL of the MTT solution (5 mg/mL) was added to each well and incubated for 4 hours. When the formazan crystals were formed, the contents of the wells were discarded, and 100 μL dimethyl sulfox-ide (DMSO) was added to wells to dissolve 

			

		

		
			
				the resulting formazan crystals. At last, the optical absorbance of the wells was recorded at a wavelength of 570 nm, by means of a mi-croplate reader (DYNEX MRX, USA). The rate of cell survival was calculated by divid-ing the absorbance of treated cells to the ab-sorbance of control cells. The optical density (OD) of dissolved formazan is equivalent to the number of viable cells. Cell viability was expressed as a percentage according to the be-low formula:

				Cell viability (%)= [ODsample − ODmedi-um)/(ODcontrol – ODmedium)]×100

				All experimental procedures were performed at least in triplicate.

				Statistical Analysis

				The analysis of the obtained data was carried out by the SPSS software version 19(IBM, US), and the values were presented as the means and standard deviation (mean ± SD). The difference between the experimental groups was analyzed by one-way analysis of variance (ANOVA), followed by Tukey’s post hoc test. The level of statistical significance was set at P<0.05.

				Results

				As depicted in Figure-1, the TEM micro-graphs of the prepared gold nanoparticles show that nanoparticles have spherical and rod-like shapes. An average dimension of 40nm×5nm can be observed in Figure-1(a) for AuNRs. In Figure-1(b), an average size of 40 nm is apparent for spherical AuNPs.

			

		

		
			
				Figure 1. TEM micrographs of (a) gold nanorods and (b) gold nanospheres used in this study
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				Cytotoxicity Assessment of AuNRs and AuNPs

				The evaluation of the cytotoxicity of for-mulated AuNRs and AuNPs is significant to assess the potential application of these for-mulations in clinical practice. The results in-dicated that none of the doses of AuNPs used in this study induced significant toxicity on HeLa cells in comparison with control cells. However, AuNRs caused statistically signifi-cant (P<0.05) cytotoxicity on the cells when compared with control cells. In parallel with an increase in doses of AuNPs and AuNRs, a slight difference was found in the rate of cell death; however, such a difference was not sta-tistically (P>0.05) significant (Figure-2).

				Effects of Radiation Therapy 

				For the determination and comparison of the enhancement level for AuNPs and AuNRs in the process of radiotherapy with 6-MV X-rays, HeLa cells were incubated with various con-centrations of both types of nanoparticles, and then, irradiated by a linear accelerator. As shown in Figure-3, both types of nanoparti-cles induced higher cell death in comparison 

			

		

		
			
				with radiotherapy alone (P<0.05). A dose-de-pendent trend was observed for both types of nanoparticles. Cell death increased by in-creasing the concentration of nanoparticles. At a similar concentration, it was observed that AuNRs could induce a higher level of cell death compared to AuNPs (P<0.05). For in-stance, at a concentration of 15 µg/mL, cell viability was 40% for AuNPs and 22% for AuNRs.

				Discussion

				Nanotechnology has been investigated as one of the new strategies for cancer treatment. The use of nanomaterials, with various sizes (1-100 nm) and shapes, has been of interest to researchers for multiple biological interfac-es [8]. In particular, gold nanomaterials have applications in cancer therapy. Their positive effects as radiosensitizing agents in combina-tion with radiotherapy have been examined in several in vitro and in vivo studies. For the first time, Haniefield et al. indicated the radiosen-sitizing effects of gold nanoparticles in 250-

			

		

		
			
				Figure 2. Viability of HeLa cells incubated with gold nanorods and gold nanospheres for six hours at various concentrations
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				kVp X-ray irradiation in Murine squamous cell carcinoma in vivo [38]. According to sev-eral studies, the use of gold nanoparticles with different characteristics (e.g., shape, size, sur-face functionalization, concentration, and in-cubation period) as nano-enhancers in radio-therapy produces different dose-enhancement ratios in different cell lines [39-41]. Moreover, radiation sources with different energies may alter the radiosensitizing effect of gold nano-materials [8]. Therefore, in the present study, the effect of the shape of gold nanoparticles (nanorods and nanospheres) in the presence of 6-MV X-ray on enhancing the therapeu-tic efficiency of HeLa cells was investigated. Our toxicity assessment of different concen-trations of AuNRs and AuNPs showed that AuNRs are markedly more toxic than AuNPs on the HeLa cell line (Figure-1). Overall, the cytotoxicity of gold nanomaterials is due to apoptosis, necrosis, and autophagy mecha-

			

		

		
			
				Figure 3. Viability of HeLa cells incubated with gold nanorods and gold nanospheres for six hours at various concentrations and irradiated with 2 Gy of 6-MV X-ray

				
					[image: ]
				

			

		

		
			
				nisms [42]. As displayed in Figure-2, AuN-Rs had a more significant impact on the dose enhancement of HeLa cells in comparison with AuNPs when treated with 6-MV X-ray at a dose of 2Gy. There are several studies, which showed the radiosensitization of gold nanoparticles with different shapes and coat-ing materials [43, 44]. In a previous study, it was shown that gold nanorods enhanced ra-diotherapy treatment of KB cell line in vitro. The researchers revealed that the viability of KB cells, which were treated with radiothera-py alone or 15 µg/mL of AuNRs during radio-therapy, was 81.6% and 55.1%, respectively [36]. In a study conducted by Chithrani and colleagues, they evaluated the radiosensitiz-ing effects of 50-nm gold nanoparticles on HeLa cells and found that gold nanoparticles in combination with 6-MV X-ray enhanced radiotherapy by a factor of 1.17 [41]. In addi-tion, Xu et al. applied gold nanorods on A375 melanoma cells and examined the radiosen-sitization effect of gold nanorods in 6-MV X-ray irradiation. They revealed that the ad-dition of gold nanorods enhanced radiosensi-tivity by a factor of 1.14 due to the increase of double-stranded DNA and apoptosis in the cells [45]. As shown in Figure-2, radiosen-sitization could be seen in both AuNRs and AuNPs treatment groups. The mechanism of the radiosensitizing effect of gold nanoparti-cles in the presence of megavoltage energies cannot be described by photoelectric absorp-tion of Au. In the presence of megavoltage en-ergies, increasing the dose-enhancement ratio may be associated with the generation of a high level of ROS in cells, which enhances the level of oxidative stress and leads to a higher apoptosis rate [39]. Furthermore, the produc-tion of secondary electrons by MV photons and nanoparticles near DNA may cause irrep-arable damage to cells and enhance the effect of radiotherapy [12]. In summary, we found that AuNRs are more potent than AuNPs in enhancing the radiotherapy of HeLa cells at the examined synthesized sizes and concen-trations. As cervical cancer cells are radiore-sistant, radiotherapy success for patients with cervical cancer depends on better dose en-hancement, which can be achieved by radio-sensitizers; therefore, type and shape of gold nanomaterials are among factors, which may 
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				help achieve this goal. However, further in-vestigation of the combination of AuNRs with different sizes and coating materials must be carried out on HeLa cells. 

				Conclusion

				In this study, we evaluated the effects of AuNRs and AuNPs on the radiosensitivity of HeLa cells. Our findings indicated that both AuNPs and AuNRs substantially improved the radiosensitivity of HeLa cells; however, the radiosensitization of AuNRs was remark-ably higher than that of AuNPs. Therefore, it is inferred that AuNRs are useful candidates 

			

		

		
			
				for the induction of cell death in tumor cells for patients with cervical cancer who undergo radiotherapy; however, further investigations are warranted to elucidate the precise mecha-nism underlying this effect.

				Acknowledgment

				The current study was supported by the Shiraz University of Medical Sciences 

				Conflict of Interest

				None.

			

		

	
		
			
				5-fluorouracil: in vivo drug release, anti-tumor, and pro-apoptotic effects on CT26 cells allograft model. J. Biomater. Appl.. 2014;29(4):548-56.

				Shakeri-Zadeh A, Khoee S, Shiran M-B, Sharifi AM, Khoei S. Synergistic effects of magnetic drug targeting using a newly developed nanocapsule and tumor irradiation by ultrasound on CT26 tumors in BALB/c mice. J. Mater. Chem. B. 2015;3(9):1879-87.

				Shakeri-Zadeh A, Khoei S, Khoee S, Sharifi AM, Shiran M-B. Combination of ultrasound and newly synthesized magnetic nanocapsules affects the temperature profile of CT26 tumors in BALB/c mice. J. Med. Ultrasound 2015;42(1):9-16.

				Butterworth KT, McMahon SJ, Currell FJ, Prise KM. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale. 2012;4(16):4830-8.

				Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, et al. Metal-based nanoenhancers for future radiotherapy: radiosensitizing and synergistic effects on tumor cells. Theranostics. 2018;8(7):1824.

				Neshastehriz A, Khosravi Z, Ghaznavi H, Shakeri-Zadeh A. Gold-coated iron oxide nanoparticles trigger apoptosis in the process of thermo-radiotherapy of U87-MG human glioma cells. Radiat. Environ. Biophys.. 2018;57(4):405-18.

				Samadian H, Hosseini-Nami S, Kamrava SK, Ghaznavi H, Shakeri-Zadeh A. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J CANCER RES CLIN 2016;142(11):2217-29.

				Eyvazzadeh N, Shakeri-Zadeh A, Fekrazad R, Amini E, Ghaznavi H, Kamrava SK. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer. LASER MED SCI. 2017;32(7):1469-77.

				Lee J, Chatterjee DK, Lee MH, Krishnan S. Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett... 2014;347(1):46-53.

				Beik J, Abed Z, Ghadimi-Daresajini A, Nourbakhsh M, Shakeri-Zadeh A, Ghasemi MS, et al. Measurements of nanoparticle-enhanced heating from 1 MHz ultrasound in solution and in mice bearing CT26 colon tumors. J. Therm. Biol. 2016;62:84-9.

				Shakeri-Zadeh A, Kamrava SK, Farhadi M, Hajikarimi Z, Maleki S, Ahmadi A. A scientific paradigm for targeted 

			

		

		
			
				nanophotothermolysis; the potential for nanosurgery of cancer. LASER MED SCI. 2014;29(2):847-53.

				Beik J, Shiran MB, Abed Z, Shiri I, Ghadimi-Daresajini A, Farkhondeh F, et al. Gold nanoparticle-induced sonosensitization enhances the antitumor activity of ultrasound in colon tumor-bearing mice. Med Phys. 2018;45(9):4306-14.

				Farashahi A, Zare-Sadeghi A, Shakeri-Zadeh A, Kamrava SK, Maleki S, Ghaznavi H, et al. Real-Time Mapping of Heat Generation and Distribution in a Laser Irradiated Agar Phantom Loaded with Gold Nanoparticles Using MR Temperature Imaging. PHOTODIAGN PHOTODYN. 2019;25:66-73.

				Beik J, Abed Z, Shakeri-Zadeh A, Nourbakhsh M, Shiran MB. Evaluation of the sonosensitizing properties of nano-graphene oxide in comparison with iron oxide and gold nanoparticles. Physica E Low Dimens 2016;81:308-14.

				Sau TK, Murphy CJ. Seeded high yield synthesis of short Au nanorods in aqueous solution. LANGD5. 2004;20(15):6414-20.

				Huang X, Neretina S, El-Sayed MA. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv. Mater. 2009;21(48):4880-910.

				Mehdizadeh A, Pandesh S, Shakeri-Zadeh A, Kamrava SK, Habib-Agahi M, Farhadi M, et al. The effects of folate-conjugated gold nanorods in combination with plasmonic photothermal therapy on mouth epidermal carcinoma cells. LASER MED SCI. 2014;29(3):939-48.

				Mirrahimi M, Abed Z, Beik J, Shiri I, Dezfuli AS, Mahabadi VP, et al. A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy. Pharmacol. Res. Commun.. 2019;In press.

				Hosseini V, Mirrahimi M, Shakeri-Zadeh A, Koosha F, Ghalandari B, Maleki S, et al. Multimodal cancer cell therapy using Au@ Fe2O3 core–shell nanoparticles in combination with photo-thermo-radiotherapy. PHOTODIAGN PHOTODYN 2018;24:129-35.

				Huff TB, Hansen MN, Zhao Y, Cheng J-X, Wei A. Controlling the cellular uptake of gold nanorods. LANGD5. 2007;23(4):1596-9.

				Hauck TS, Ghazani AA, Chan WC. Assessing the effect of surface chemistry 

			

		

	
		
			
				on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small. 2008;4(1):153-9.

				Alamzadeh Z, Beik J, Mahabadi VP, Ardakani AA, Ghader A, Kamrava SK, et al. Ultrastructural and optical characteristics of cancer cells treated by a nanotechnology based chemo-photothermal therapy method. J Photochem Photobiol B. 2019;192:19-25.

				Movahedi MM, Mehdizadeh A, Koosha F, Eslahi N, Mahabadi VP, Ghaznavi H, et al. Investigating the photo-thermo-radiosensitization effects of folate-conjugated gold nanorods on KB nasopharyngeal carcinoma cells. PHOTODIAGN PHOTODYN. 2018;24:324-31.

				Neshastehriz A, Tabei M, Maleki S, Eynali S, Shakeri-Zadeh A. Photothermal therapy using folate conjugated gold nanoparticles enhances the effects of 6MV X-ray on mouth epidermal carcinoma cells. J Photochem Photobiol B. 2017;172:52-60.

				Hainfeld JF, Dilmanian FA, Zhong Z, Slatkin DN, Kalef-Ezra JA, Smilowitz HM. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys. Med. Biol.. 2010;55(11):3045.

				Geng F, Song K, Xing JZ, Yuan C, Yan S, Yang Q, et al. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology. 2011;22(28):285101.

			

		

		
			
				Jain J, Coulter A. Hounsell, KT Butterworth, SJ McMahon, WB Hyland, MF Muir, GR Dickson, KM Prise, FJ Currell, J. M. O’Sullivan, and DG Hirst,“Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies,”. Int J Radiat Oncol, Biol, Phys. 2011;79:531-9.

				Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG, et al. Gold nanoparticles as radiation sensitizers in cancer therapy. RADIATION RESEARCH. 2010;173(6):719-28.

				Sun H, Jia J, Jiang C, Zhai S. Gold nanoparticle-induced cell death and potential applications in nanomedicine. Int. J. Mol. Sci.. 2018;19(3):754.

				Zhang SX, Gao J, Buchholz TA, Wang Z, Salehpour MR, Drezek RA, et al. Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a monte carlo simulation study. Biomed. Microdevices 2009;11(4):925.

				M. Herold ID, CC Stobbe, RV Iyer, JD Chapman, D. Gold microspheres: a selective technique for producing biologically effective dose enhancement. INT J RADIAT BIOL. 2000;76(10):1357-64.

				Xu W, Luo T, Pang B, Li P, Zhou C, Huang P, et al. The radiosensitization of melanoma cells by gold nanorods irradiated with MV X-ray. Nano Biomed 2012;4(1).

			

		

	OEBPS/image/24.png


OEBPS/image/20.png


OEBPS/image/Image32880.png


OEBPS/toc.xhtml

		
			
			


		
		
		PageList


			
						1


						2


						3


						4


						5


						6


						7


						8


			


		
		
		Landmarks


			
						Cover


			


		
	

OEBPS/image/25.png


OEBPS/image/4.png


OEBPS/image/3.png


OEBPS/image/Orginal.jpg


OEBPS/image/27.png


OEBPS/image/Image32887.png


OEBPS/image/6.png


OEBPS/image/21.png


OEBPS/image/1.png


OEBPS/image/26.png


OEBPS/image/Image32868.png


