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					Abstract

					Abnormal deposition of misfolded proteins is a neuropathological characteristic shared by many neurodegenerative disorders including Alzheimer’s disease (AD). Generation of excessive amounts of aggregated proteins and impairment of degradation systems for misfolded proteins such as autophagy can lead to accumulation of proteins in diseased neurons. Molecules that contribute to both these effects are emerging as critical players in disease pathogenesis. Furthermore, impairment of autophagy under disease conditions can be both a cause and a consequence of abnormal protein accumulation. Specifically, disease-causing proteins can impair autophagy, which further enhances the accumulation of abnormal proteins. In this short review, we focus on the relationship between the microtubule-associated protein tau and autophagy to highlight a feed-forward mechanism in disease pathogenesis. [GMJ.2020;9:e1681] DOI:10.31661/gmj.v9i0.1681
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				Tau phosphorylation in physiology and dis-ease 

				Misfolded tau protein is deposited in a group of neurodegenerative diseases called tauopathies, which include common forms of dementia such as AD and fronto-temporal dementia [1, 2]. Tau is a microtu-bule-binding protein whose primary physio-logical function is to regulate the assembly and stability of microtubules in neuronal axons [3]. 

			

		

		
			
				However, tau detaches from microtubules and misfolds to form insoluble filaments in neuro-fibrillary tangles in the brains of patients with tauopathies [4-9]. Mutations of the MAPT gene, which encodes tau, are associated with dominant, inherited forms of frontotemporal dementia, indicating that tau abnormality con-tributes to disease pathogenesis [10]. Cellular and animal models of tauopathies suggest that elevated levels of tau protein are sufficient to 

			

		

	
		
			
				cause neurodegeneration [11]. Thus, abnor-mal accumulation of tau is believed to cause neuron loss in diseased brains, and modula-tion of this accumulation has been suggested as a strategy to delay or prevent disease on-set and progression. Tau contains a number of phosphorylation sites, and phosphorylation regulates both its physiological functions and pathological changes [12]. Phosphorylation of tau regulates its ability to interact with micro-tubules, its intracellular distribution, and its association with membranes [13]. Tau is na-tively unfolded, and phosphorylation alters its conformational status. Phosphorylation also affects its cleavage and further post-transla-tional modifications [9]. In the brains affected by thauopathy, tau is highly phosphorylated at certain sites and its phosphorylation status is associated with the severity of pathology [2, 6-8]. Conformational changes, mislocal-ization, and changes in protein interactions caused by pathological phosphorylation of tau have been suggested to slow down its degra-dation. A number of kinases, including pro-line-directed Ser/Thr kinases (SP/TP kinases) such as c-Jun N-terminal kinases (JNKs), cy-clin-dependent kinase 5 (Cdk5), glycogen syn-thase kinase (GSK)-3β, and mitogen-activated protein kinase (MAPK), as well as non-SP/TP kinases including adenosine monophos-phate-activated protein kinase (AMPK), cal-cium/calmodulin-dependent protein kinase II (CaMKII), checkpoint kinase 2, microtubule affinity-regulating kinase (MARK)/Par-1, NUAK family SNF1-like kinase 1 (NUAK1), p70S6K1, protein kinase A, and protein kinase C (PKC) phosphorylate tau [14-24]. Disrup-tion of intracellular signaling involving these kinases may trigger hyperphosphorylation of tau in disease pathogenesis [25]. As described in the following section, some of these kinases also regulate autophagy. 

				Mechanism and Regulation of Autophagy 

				Autophagy, or “self-eating”, is a preserved in-tracellular pathway via which accumulated or long-lived proteins and dysfunctional organ-elles undergo lysosomal degradation. Autoph-agy plays an essential role not only in cellular homeostasis and metabolism, but also in the physiopathology of several neurodegenerative disorders [26]. Autophagy can be categorized 

			

		

		
			
				into three classes based on the mechanism by which cytoplasmic contents are targeted to the lysosome for degradation: microautopha-gy, macroautophagy and chaperone-mediated autophagy [27]. Macroautophagy enables the bulk degradation of cytosolic contents trans-ferred to the lysosome by autophagosomes, whereas microautophagy is a process which results in the direct engulfment of cytoplas-mic contents through lysosomal invagination. Chaperone-mediated autophagy degrades the cytosolic proteins that have the penta-peptide motifs. These proteins bind to heat shock cognate protein 70 and form complexes that are recognizable to a lysosomal chaper-one-mediate autophagy receptor, LAMP2A. Consequently, the proteins are unfolded and translocated to the lysosome through lyso-somal lumen [28]. In this article, we focus on macroautophagy, which is the major and well-known type of autophagy. Hereafter, we refer to macroautophagy simply as “autoph-agy”. The process of autophagy begins with formation of the phagophore, a cup-shaped double-membrane structure that surrounds au-tophagic substrates destined for degradation. Both edges of the phagophore elongate and close to form an isolated vacuole named an autophagosome. Thereafter, autophagosomes are transported toward the perinuclear region via dynein microtubule motors to fuse with lysosomes and to generate autolysosomes, which ultimately leads to degradation of their contents by lysosomal enzymes [29, 30]. Au-tophagy is a conserved catabolic process that degrades cytoplasmic components in response to a lack of amino acids. Consequently, it is regulated by several signaling pathways that mediate nutrition sensing and stress respons-es. Mechanistic target of rapamycin (mTOR) plays critical roles in autophagic regulation in two different complexes mTORC1 and mTORC2. The primary function of mTORC2 is to modulate cellular morphology and cell migration, while mTORC1 plays a central role in the maintenance of energy homeosta-sis. mTORC1 suppresses autophagy and is regulated by upstream regulatory proteins that reflect the cellular levels of nutrients, growth factors, energy, and oxygen [31]. Inhibition of mTORC1 due to cellular stress, nutrient depletion, or low levels of energy or oxygen 

			

		

	
		
			
				induces autophagy to promote cell survival by maintaining cellular homeostasis. Overactiva-tion of mTORC1 signaling has been detected in AD brains and an animal model of AD [32, 33]. AMPK signaling regulates autophagy in response to energy depletion [34]. Even a slight decrease in the cellular ATP/AMP ratio activates AMPK. Activation of AMPK can di-rectly induce autophagy by inhibiting mTOR signaling and indirectly by stimulating ULK1 phosphorylation [34]. The inositol signaling pathway regulates autophagy independently of mTOR [35]. In this pathway, a reduction in the intracellular 1,4,5-inositol trisphosphate level induces autophagy. 

				Autophagy-Mediated Degradation of Tau

				Tau degradation can be mediated by both the ubiquitin-proteasome pathway and autophagy pathway depending on its post-translation-al modifications, such as its phosphorylation state, folding, and solubility. Molecular chap-erones recognize specific tau species and tar-get them for proteasome-mediated degradation [36, 37]. Induction of chaperones results in the selective clearance of tau phosphorylated at proline-directed sites such as pS202/T205 and pS396/S404 as well as conformationally altered tau [37]. Interestingly, tau phosphory-lated at non-SP/TP sites (pS262/S356) evades this mechanism and remains stable [37]. On the other hand, a wide range of tau species can be degraded by autophagy. Induction of autophagy reduces the levels of tau phosphor-ylated at S262/356 that are not directed to pro-teasome [38, 36]. Dolan et al. demonstrated that tau truncated at D421 is predominantly degraded by autophagy, while full-length tau is more prone to proteasomal degradation [39]. Another study suggested that induction of autophagy by trehalose in a mouse model of tauopathy decreases the amounts of insolu-ble tau and tau phosphorylated at T212/S214 (AT100) [40]. Altogether, long-lived or aggre-gation-prone tau species, such as phosphory-lated tau, are more likely to be degraded by the autophagy pathway, while soluble monomeric and non-phosphorylated tau are degraded by the ubiquitin-proteasome pathway [41, 42]. Thus, inhibition of autophagy may impair the degradation of high molecular weight tau spe-cies that accumulate in AD brains [43, 44].

			

		

		
			
				Mechanisms that Regulate Both the Genera-tion of Neurotoxic Tau and Autophagy

				Several kinases involved in autophagic regu-lation are also tau kinases or their regulators. GSK-3β phosphorylates tau at multiple sites and plays critical roles in tau toxicity [45]. Upregulation of the mTOR pathway not only downregulates autophagy but also elevates phosphorylation of tau via GSK-3β [46]. S6K downstream of mTOR also phosphorylates tau or affects degradation of tau; however, its roles in accumulation of tau remain controver-sial [32, 38]. Lithium is a well-known GSK-3β inhibitor and stimulates autophagy through the inositol signaling pathway [47]. AMPK and members of the AMPK-related family of kinases, such as MARK/Par-1 and NUAK1, phosphorylate tau at S262 and S356 in the mi-crotubule-binding repeats and induce its accu-mulation [48, 24]. MARK4 inhibits mTORC1 activity and thus upregulates autophagy [49]. A sustained increase in the intracellular Ca2+ level activates Ca2+-sensitive tau kinases such as CaMKII and PKC [50]. It also induces activation of calpains, which cleave and thus activate the tau kinases GSK-3 and Cdk5 [51]. In addition, calpain cleaves the N-terminus of tau to generate neurotoxic fragments [52]. Al-though elevation of the intracellular Ca2+ level can induce or inhibit autophagy via several pathways [53], disruption of Ca2+ homeostasis has been implicated in disease pathogenesis and may affect these pathways to promote ac-cumulation of tau.

				Autophagy Impairment Caused by Pathologi-cal Tau Species

				Accumulation of abnormal tau species may occur upstream of autophagic defects un-der disease conditions. Autophagy-mediated degradation requires stepwise maturation of autophagy vacuoles, which requires microtu-bule-dependent transport [54]. Tau regulates microtubule stability, while abnormal tau spe-cies can disrupt it. It has been reported that overexpression of tau impedes vesicle and organelle trafficking by disrupting the inter-actions between microtubules and motor pro-teins [55]. Expression of human wild-type or mutant tau causes deficits in axonal transport in transgenic mice [56, 57] and Drosophila [58], as well as presynaptic defects in Caenor-

			

		

	
		
			
				habditis elegans [59]. These defects in mem-brane trafficking in neurons may impair the trafficking and maturation of autophagic ves-icles. Neuronal autophagy is highly compart-mentalized [60], and deficits in axonal trans-port caused by tau may significantly impact functionally distinct compartments such as synapses. Synaptic activity regulates autopha-gy in neurons, especially at synaptic terminals [54]. Synaptic dysfunction is one of the earli-est pathological manifestations in AD and oth-er tauopathies, and tau induces early synaptic deficits that precede synapse and neuron loss [61]. Abnormal tau species are missorted to pre- and postsynaptic terminals under disease conditions. It has been reported that tau in the presynaptic terminal reduces vesicle mobil-ity and release rates via structural changes, Ca2+ dysregulation [62], or direct association with synaptic vesicles [63, 64]. Tau disrupts the trafficking of postsynaptic receptors and thus suppresses postsynaptic neuronal activity [65]. Synaptic activity increases tau accumu-lation in lysosomes, and induction of synaptic activity stimulates the autophagic degradation of pathological tau levels, in mouse models 

			

		

		
			
				Figure 1. A possible feed-forward cycle between pathological tau species and inhibition of autophagy.
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				of tauopathy [66]. These studies suggest that accumulation of abnormal tau caused by im-paired autophagy can, in turn, suppress au-tophagic activity directly or indirectly (Fig-ure-1).

				Conclusion

				Accumulating evidence highlights the dis-ruption of autophagy as a common theme in age-related neurodegenerative diseases with proteinopathy including AD [67]. This re-view focused on tau protein; however, other proteins deposited in diseased brains, such as α-synuclein and TDP-43, are also reported to interact with the autophagy pathway [68-70]. 

				Enhancement of autophagy holds promise as a mechanism-based therapy to delay the on-set and slow down the progression of diseas-es caused by abnormal protein accumulation [67]. However, autophagy has unique func-tions and regulatory mechanisms in neurons. Fine-tuning of autophagy is essential for normal neuronal development and functions such as synaptic transmission and memory formation [54]. Overactivation of autophagy 
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