Gallic Acid Alleviates Injury of Intestine Induced by Escherichia Coli: Protective Role of Metalloproteinase and Antioxidants on Small Intestine In-vivo

Gallic Acid Effects on Escherichia Coli Induced Intestine Injury

Authors

  • Muhammad Halwani Department of Microbiology, Al Baha University, Al Baha, Saudi Arabia

Keywords:

Escherichia coli; Gallic acid; anti-inflammatory; antioxidant; Metalloproteinase

Abstract

Background: Escherichia coli (E. coli) is a common pathogen that can cause significant morbidity and mortality in hospitalized patients. The aim of this study was to investigate the effects of gallic acid (GA) on a mice infected with of E. coli enteritis and evaluate the serum levels of interleukin-6 (IL-6) and matrix metalloproteinase (MMP)-9, as well as any histopathological changes before and after exposure. Materials and Methods: Forty Swiss male mice were divided into four groups: Group I (negative control), Group II (received oral GA, 80 mg/kg/b.wt), Group III (orally inoculated with E. coli, 1×107 CFU, for four days), and Group IV (received oral GA, 80 mg/kg/b.wt, for 10 days after E. coli inoculation). Serum was collected to assess IL-6 and MMP-9 levels. Intestinal samples were examined for antioxidant parameters, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase. Histopathology and immunohistochemistry were performed. Results: Group III exhibited significantly higher IL-6 and MMP-9 levels compared to the other groups (P<0.001). Antioxidant activity in the intestine, measured by SOD and GSH-Px, was lower in Group III compared to Group I. Conversely, Group IV showed significant improvements in biochemical, histopathological, and immunohistochemical outcomes, alongside reduced intestinal damage caused by E. coli. Conclusion: This study demonstrates that E. coli infection in mice increases IL-6 and MMP-9 levels while decreasing intestinal antioxidants. Concurrent administration of GA significantly improves outcomes, suggesting its potential as a therapeutic remedy for E. coli-induced intestinal damage. Furthers research is imperative to determine the underlying pathways by which GA exerts its beneficial outcomes.

References

Qadri F, Svennerholm AM, Faruque ASG, et al. Enterotoxigenic Escherichia coli in Developing Countries: Epidemiology, Microbiology, Clinical Features, Treatment, and Prevention. Clin Microbiol Rev. 2005; 18:465-483

https://doi.org/10.1128/CMR.18.3.465-483.2005

PMid:16020685 PMCid:PMC1195967

World Health Organization. Future directions for research on enterotoxigenic Escherichia coli vaccines for developing countries. Wkly Epidemiol Rec. 2006; 81:97-104.

Ren W, Yin J, Duan J, et al. Mouse intestinal innate immune responses altered by enterotoxigenic Escherichia coli (ETEC) infection. Microbes Infect. 2014; 16:954-961.

https://doi.org/10.1016/j.micinf.2014.09.005

PMid:25267358

Peng XP, Ding W, Ma JM, et al. Effect of Escherichia coli Infection on Metabolism of Dietary Protein in Intestine. Curr Protein Pept Sci. 2020; 21(8):772-776.

https://doi.org/10.2174/1389203720666191113144049

PMid:31724511

Pancu DF, Scurtu A, Macasoi IG, et al. Antibiotics: Conventional Therapy and Natural Compounds with Antibacterial Activity-A Pharmaco-Toxicological Screening. Antibiotics (Basel). 2021; 10(4):401.

https://doi.org/10.3390/antibiotics10040401

PMid:33917092 PMCid:PMC8067816

Ankri S, Mirelman D. Antimicrobial properties of allicin from garlic. Microbes Infect. 1999 Feb;1(2):125-9.

https://doi.org/10.1016/S1286-4579(99)80003-3

PMid:10594976

Chauhan A, Pandey V, Chacko KM, Khandal RK. Antibacterial activity of raw and processed honey. Electron J Biol. 2010;5:58-66. [Google Scholar]

Sanchez-Villamil JI, Navarro-Garcia F, Castillo-Romero A, Gutierrez-Gutierrez F, Tapia D, Tapia-Pastrana G. Curcumin Blocks Cytotoxicity of Enteroaggregative and Enteropathogenic Escherichia coli by Blocking Pet and EspC Proteolytic Release From Bacterial Outer Membrane. Front Cell Infect Microbiol. 2019 Sep 25;9:334.

https://doi.org/10.3389/fcimb.2019.00334

PMid:31681620 PMCid:PMC6798032

Yang K, Zhang L, et al. Impact of Gallic Acid on Gut Health: Focus on the Gut Microbiome, Immune Response, and Mechanisms of Action. Front Immunol. 2020; 11:580208.

https://doi.org/10.3389/fimmu.2020.580208

PMid:33042163 PMCid:PMC7525003

Kahkeshani N, Farzaei F, Fotouhi M, et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran J Basic Med Sci. 2019; 22(3):225-237.

Tian Q, Wei S, Su H, et al. Bactericidal activity of gallic acid against multi-drug resistance Escherichia coli. Microbial Pathogenesis. 2022; 173:105824.

https://doi.org/10.1016/j.micpath.2022.105824

PMid:36243382

Hyun KH, Gil KC, Kim SG, et al. Delphinidin Chloride and its Hydrolytic Metabolite Gallic Acid Promote Differentiation of Regulatory T Cells and Have an Anti-Inflammatory Effect on the Allograft Model. J Food Sci. 2019; 84:920-30.

https://doi.org/10.1111/1750-3841.14490

PMid:30977922

BenSaad LA, Kim KH, Quah CC, et al. Anti-Inflammatory Potential of Ellagic Acid, Gallic Acid and Punicalagin A&B Isolated from Punica Granatum. BMC Complement Altern Med. 2017; 17:47.

https://doi.org/10.1186/s12906-017-1555-0

PMid:28088220 PMCid:PMC5237561

Percie du Sert N, Ahluwalia A, Alam S, et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020 Jul 14;18(7):e3000411.

https://doi.org/10.1371/journal.pbio.3000411

PMid:32663221 PMCid:PMC7360025

Wang Y, Xie M, Ma G, et al. The Antioxidant and Antimicrobial Activities of Different Phenolic Acids Grafted onto Chitosan. Carbohyd Polym. 2019; 225:115238.

https://doi.org/10.1016/j.carbpol.2019.115238

PMid:31521271

Kehl SC. Role of the laboratory in the diagnosis of enterohemorrhagic Escherichia coli infections. J Clin Microbiol. 2002; 40(8):2711-5.

https://doi.org/10.1128/JCM.40.8.2711-2715.2002

PMid:12149318 PMCid:PMC120634

Raj J, Chandra M, Dogra TD, et al. Determination of median lethal dose of combination of endosulfan and cypermethrin in wistar rat. Toxicol Int. 2013; 20(1):1-5.

https://doi.org/10.4103/0971-6580.111531

PMid:23833430 PMCid:PMC3702116

Suresh K. An overview of randomization techniques: An unbiased assessment of outcome in clinical research. Journal of Human Reproductive Sciences. 2011; 4(1): 8-11.

https://doi.org/10.4103/0974-1208.82352

PMid:21772732 PMCid:PMC3136079

El-Naaa M, El-Refaei M, Nasif W, et al. In-vivo antioxidant and anti-inflammatory activity of, rosiglitazone, a peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonists in animal model of bronchial asthma. J Pharm Pharmacol. 2015; 67:1421-1430.

https://doi.org/10.1111/jphp.12445

PMid:26099551

El-Refaei MF, El-Naa MM. Inhibitory effect of caffeic acid phenethyl ester on mice bearing tumor involving angiostatic and apoptotic activities. ChemBiol Interact. 2010; 36(4):383-4.

https://doi.org/10.1016/j.cbi.2010.04.019

PMid:20433813

Nishikimi M, Rao NA, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazinemethosulfate and molecular oxygen. Biochem Biophys Res Commun. 1972; 46: 849-854.

https://doi.org/10.1016/S0006-291X(72)80218-3

PMid:4400444

Prins G, Loose J. Glutathione In: Yunis JJ, ed. Biochemical Methods in Red Cell Genetics. New York: Academic Press. 1969; 126-129.

Clairborne A. Catalase activity In. Greenwald RA, ed CRC Handbook of Methods for Oxygen Radical Research: Boca Raton, FL: CRC Press; 1985.

Khan HA, Ibrahim KE, Alrashood ST, et al. Immunohistochemistry of IL-1β, IL-6 and TNF-α in spleens of mice treated with gold nanoparticles. Saudi J Biol Sci. 2020; 27(4):1163-1168.

https://doi.org/10.1016/j.sjbs.2020.01.025

PMid:32256179 PMCid:PMC7105655

Luna LG. Manual of histological staining methods of the forces institute of pathology 3rd edition. McGraw: Hillbook, New York; 1968.

Gibson-Corley KN, Olivier AK, Meyerholz DK. Principles for valid histopathologic scoring in research. Vet Pathol. 2013; 50(6):1007-15.

https://doi.org/10.1177/0300985813485099

PMid:23558974 PMCid:PMC3795863

Faul F, Erdfelder E, Lang AG, et al. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007; 39(2):175-91.

https://doi.org/10.3758/BF03193146

PMid:17695343

Crowe AR, Yue W. Semi-quantitative Determination of Protein Expression using Immunohistochemistry Staining and Analysis: An Integrated Protocol. Bio Protoc. 2019;9(24):e3465.

https://doi.org/10.21769/BioProtoc.3465

Citation in APA style. Microsoft Corporation. Citation in Vancouver style: Microsoft Corporation Microsoft Excel; Available from: https://office.microsoft.com/excel.

Hazra A, Gogtay N. Biostatistics Series Module 3: Comparing Groups: Numerical Variables. Indian J Dermatol. 2016; 61(3):251-60.

https://doi.org/10.4103/0019-5154.182416

PMid:27293244 PMCid:PMC4885176

Jia ZF, Chen A, Bao F, et al. Effect of Nisin on Microbiome-Brain-Gut Axis Neurochemicals by Escherichia coli -Induced Diarrhea in Mice. Microb Pathog. 2018;119:65-71.

https://doi.org/10.1016/j.micpath.2018.04.005

PMid:29649517

Qin J, Li R, Raes J, et al. A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature. 2010; 464:59-65.

https://doi.org/10.1038/nature08821

PMid:20203603 PMCid:PMC3779803

Pabst R, Russell MW, Brandtzaeg P. Tissue Distribution of Lymphocytes and Plasma Cells and the Role of the Gut. Trends Immunol. 2008; 29:206-208.

https://doi.org/10.1016/j.it.2008.02.006

PMid:18394963

Hiippala K, Jouhten H, Ronkainen A, et al. The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation. Nutrients. 2018; 10:988

https://doi.org/10.3390/nu10080988

PMid:30060606 PMCid:PMC6116138

Jacobi SK, Jack O. Nutritional Factors Influencing Intestinal Health of the Neonate. Adv Nutr. 2012; 3:687-696.

https://doi.org/10.3945/an.112.002683

PMid:22983847 PMCid:PMC3648750

Ching CB, Gupta S, Li B, Cortado H, Mayne N, Jackson AR, McHugh KM, Becknell B. Interleukin-6/Stat3 signaling has an essential role in the host antimicrobial response to urinary tract infection. Kidney Int. 2018; 93(6):1320-1329.

https://doi.org/10.1016/j.kint.2017.12.006

PMid:29475562 PMCid:PMC5967986

He L, Wang C, Simujide H, et al. Effect of Early Pathogenic Escherichia coli Infection on the Intestinal Barrier and Immune Function in Newborn Calves. Front Cell Infect Microbiol. 2022; 12:818276.

https://doi.org/10.3389/fcimb.2022.818276

PMid:35265533 PMCid:PMC8900010

Fayyaz I, Zahoor MA, Shahid M, et al. Effect of Lactobacillus casei on serum interleukins following enteropathogenic E coli infection in experimental rabbits. Pak J Pharm Sci. 2018; 31(5):2131-2136.

Khmaladze I, Österlund C, Smiljanic S, et al. A novel multifunctional skin care formulation with a unique blend of antipollution, brightening and antiaging active complexes. J Cosmet Dermatol. 2020; 19(6):1415-1425.

https://doi.org/10.1111/jocd.13176

PMid:31584241

Liu S, Li J, Feng LH. Gallic acid regulates immune response in a mouse model of rheumatoid arthritis. Immun Inflamm Dis. 2023 Feb;11(2):e782.

https://doi.org/10.1002/iid3.782

PMid:36840490 PMCid:PMC9933205

Lee HS, Kim WJ. The Role of Matrix Metalloproteinase in Inflammation with a Focus on Infectious Diseases. Int J Mol Sci. 2022; 23(18):10546.

https://doi.org/10.3390/ijms231810546

PMid:36142454 PMCid:PMC9500641

Bellioglu YE, Coskun YZM, Ersoz M, et al. Effects of gallic acid on expressions of MMP-2 and MMP-9 through the pathway of p38/JNK in C6 glioma cells. Pak J Pharm Sci. 2023; 36(1):59-66.

Tian Q, Wei S, Su H, et al. Bactericidal activity of gallic acid against multi-drug resistance Escherichia coli. Microb Pathog. 2022; 173:105824.

https://doi.org/10.1016/j.micpath.2022.105824

PMid:36243382

Saxena P, Selvaraj K, Khare SK, et al. Superoxide dismutase as multipotent therapeutic antioxidant enzyme: Role in human diseases. Biotechnol Lett. 2022; 44(1):1-22.

https://doi.org/10.1007/s10529-021-03200-3

PMid:34734354

Lin X, Bai D, Wei Z, et al. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One. 2019; 14(5):e0216711.

https://doi.org/10.1371/journal.pone.0216711

PMid:31112588 PMCid:PMC6528975

Esmaeilzadeh M, Heidarian E, Shaghaghi M, et al. Gallic acid mitigates diclofenac-induced liver toxicity by modulating oxidative stress and suppressing IL-1β gene expression in male rats. Pharm Biol. 2020; 58(1):590-596.

https://doi.org/10.1080/13880209.2020.1777169

PMid:32633182 PMCid:PMC7470116

Santos A, Finlay BB. Bringing down the host: enteropathogenic and enterohaemorrhagic Escherichia coli effector-mediated subversion of host innate immune pathways. Cell Microbiol. 2015;17(3):318-332.

https://doi.org/10.1111/cmi.12412

PMid:25588886

Bai J, Zhang Y, Tang C, et al. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomedicine & Pharmacotherapy. 2021;133:110985.

https://doi.org/10.1016/j.biopha.2020.110985

PMid:33212373

Zheng L, Duan SL, Dai YC, et al. Role of adherent invasive Escherichia coli in pathogenesis of inflammatory bowel disease. World J Clin Cases. 2022; 10(32):11671-11689.

https://doi.org/10.12998/wjcc.v10.i32.11671

PMid:36405271 PMCid:PMC9669839

Brauner A, Söderhäll M, Jacobson SH, et al. Escherichia coli-induced expression of IL-1 alpha, IL-1 beta, IL-6 and IL-8 in normal human renal tubular epithelial cells. Clin Exp Immunol. 2001; 124(3):423-8.

https://doi.org/10.1046/j.1365-2249.2001.01533.x

PMid:11472403 PMCid:PMC1906084

Albrecht LJ, Tauber SC, Merres J, et al. Lack of Proinflammatory Cytokine Interleukin-6 or Tumor Necrosis Factor Receptor-1 Results in a Failure of the Innate Immune Response after Bacterial Meningitis. Mediators Inflamm. 2016; 2016:7678542.

https://doi.org/10.1155/2016/7678542

PMid:27057100 PMCid:PMC4749820

Seo CS, Jeong SJ, Yoo SR, Lee NR, Shin HK. Quantitative Analysis and In vitro Anti-inflammatory Effects of Gallic Acid, Ellagic Acid, and Quercetin from Radix Sanguisorbae. Pharmacogn Mag. 2016;12(46):104-8.

https://doi.org/10.4103/0973-1296.177908

PMid:27076745 PMCid:PMC4809163

Pandurangan AK, Mohebali N, Esa NM, et al. Gallic acid suppresses inflammation in dextran sodium sulfate-induced colitis in mice: possible mechanisms. Int Immunopharmacol. 2015; 28:1034-43.

https://doi.org/10.1016/j.intimp.2015.08.019

PMid:26319951

Kim H, Venancio VP, Fang C, et al. Mango (Mangifera indica L.) polyphenols reduce IL-8, GRO, and GM-SCF plasma levels and increase Lactobacillus species in a pilot study in patients with inflammatory bowel disease. Nutr Res. 2020; 75:85-94.

https://doi.org/10.1016/j.nutres.2020.01.002

PMid:32109839

Savkovic SD, Villanueva J, Turner JR, et al. Mouse model of enteropathogenic Escherichia coli infection. Infect Immun. 2005; 73(2):1161-70.

https://doi.org/10.1128/IAI.73.2.1161-1170.2005

PMid:15664959 PMCid:PMC546940

Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004; 2(2):123-40.

https://doi.org/10.1038/nrmicro818

PMid:15040260

Lin TH, Wu CC, Tseng CY, et al. Effects of gallic acid on capsular polysaccharide biosynthesis in Klebsiella pneumoniae. J Microbiol Immunol Infect. 2022; 55(6):1255-1262.

https://doi.org/10.1016/j.jmii.2021.07.002

PMid:34326026

Lee J, Choi KH, Min J, et al. Functionalized ZnO Nanoparticles with Gallic Acid for Antioxidant and Antibacterial Activity against Methicillin-Resistant S aureus. Nanomaterials (Basel). 2017; 7(11):365.

https://doi.org/10.3390/nano7110365

PMid:29099064 PMCid:PMC5707582

Downloads

Published

2024-08-10

Issue

Section

Original Article