Research Progress of A20 in Acute Leukemia

A20 in Acute Leukemia

Authors

  • Hongxia Wu Department of Nuclear Medicine, The Second Hospital of Lanzhou University, Lanzhou, China
  • Jun Bai Gansu Key Laboratory of Hematology, Lanzhou University Second Hospital,Lanzhou, 730000, China
  • Qiong Fa Department of Nuclear Medicine, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation, China
  • Ke Yang Department of Hematology and Oncology, Gansu Provincial Central Hospital, Lanzhou, China
  • YanHong Li Gansu Key Laboratory of Hematology, Lanzhou University Second Hospital, Lanzhou, China

DOI:

https://doi.org/10.31661/gmj.vi.3869

Keywords:

A20; Acute Leukemia

Abstract

Acute leukemia (AL) is a malignant tumor originating from hematopoietic stem cells. Its outstanding feature is the abnormal proliferation and aggregation of clonal leukemia cells in bone marrow and other hematopoietic tissues. Although chemotherapy, targeted immunotherapy and hematopoietic stem cell transplantation have been widely used in clinic, there are still relapse and refractory cases in AL patients. Finding new therapeutic targets and screening prognostic molecules are of great significance for the treatment and prognosis of AL. A20 protein, also known as tumor necrosis factor α-induced protein 3 (TNFAIP3), is a key protein that negatively inhibits the activation of nuclear transcription factor kB (NF-κB) and plays an important role in anti-tumor immune and inflammatory response. In leukemia and lymphoma, A20 is often inactivated, mutated or deleted. Lack of A20 can significantly inhibit the surveillance function of immune cells and mediate tumor immune escape. Therefore, exploring the mechanism of A20 in AL may have important research value and clinical significance for the treatment of AL. The purpose of this paper is to review the research progress of A20 in acute leukemia, and provide new theoretical basis and reference value for the pathogenesis research and targeted therapy of leukemia.

References

Hunger SP , Mullighan CG. Acute lymphoblastic leukemia in children. New England Journal of Medicine. 2015; 373(16): 1541-1552.

https://doi.org/10.1056/NEJMra1400972

PMid:26465987

Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. New England Journal of Medicine. 2015; 373(12): 1136-1152.

https://doi.org/10.1056/NEJMra1406184

PMid:26376137

Luskin MR. Acute lymphoblastic leukemia in older adults: curtain call for conventional chemotherapy? Hematology. 2021; 2021(1):7-14.

https://doi.org/10.1182/hematology.2021000226

PMid:34889389 PMCid:PMC8791151

O'Donnell MR, et al. Acute myeloid leukemia. Journal of the National Comprehensive Cancer Network. 2012; 10(8): 984-1021.

https://doi.org/10.6004/jnccn.2012.0103

PMid:22878824

Pui CH, et al. Childhood acute lymphoblastic leukemia: progress through collaboration. Journal of Clinical Oncology. 2015; 33(27): 2938-2948.

https://doi.org/10.1200/JCO.2014.59.1636

PMid:26304874 PMCid:PMC4567699

Shimony S, Stahl M, Stone RM. Acute myeloid leukemia: 2023 update on diagnosis, risk‐stratification, and management. American journal of hematology. 2023; 98(3): 502-526.

https://doi.org/10.1002/ajh.26822

PMid:36594187

Böhme M , Kayser S. Immune-based therapeutic strategies for acute myeloid leukemia. Cancers. 2021;14(1): 105.

https://doi.org/10.3390/cancers14010105

PMid:35008269 PMCid:PMC8744886

Pantel K, Alix-Panabières C. Liquid biopsy and minimal residual disease-latest advances and implications for cure. Nature Reviews Clinical Oncology. 2019; 16(7): 409-424.

https://doi.org/10.1038/s41571-019-0187-3

PMid:30796368

Heuser M, et al. 2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party. Blood, The Journal of the American Society of Hematology. 2021; 138(26): 2753-2767.

https://doi.org/10.1182/blood.2021013626

PMid:34724563 PMCid:PMC8718623

Symeonidou V, Jakobczyk H, Bashanfer S, Malouf C, Fotopoulou F, Kotecha R S, et al. Defining the fetal origin of MLL-AF4 infant leukemia highlights specific fatty acid requirements. Cell reports. 2021;37(4):109900.

https://doi.org/10.1016/j.celrep.2021.109900

PMid:34706236 PMCid:PMC8567312

Greaves M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nature Reviews Cancer. 2018; 18(8): 471-484.

https://doi.org/10.1038/s41568-018-0015-6

PMid:29784935 PMCid:PMC6986894

Luthringer M, Marziale J. Childhood Myeloid Proliferations Associated with Down Syndrome Treatment (PDQ®). Treatment-Health Professional Information [NCI]: ; 2020.

Baruchel A, Bourquin J P, Crispino J, Cuartero S, Hasle H, Hitzler J, et al. Down syndrome and leukemia: from basic mechanisms to clinical advances. Haematologica. 2023; 108(10): 2570.

https://doi.org/10.3324/haematol.2023.283225

PMid:37439336 PMCid:PMC10542835

CHEN C, ZHOU L, ZHU L, et al. TNFAIP3 mutation is an independent poor overall survival factor for patients with T-cell acute lymphoblastic leukemia [J]. Cancer medicine. 2023; 12(4): 3952-61.

https://doi.org/10.1002/cam4.5196

PMid:36056685 PMCid:PMC9972139

CHEN C, CHEN Z, HUANG L, et al. TNFAIP3 mutation may be associated with favorable overall survival for patients with T-cell lymphoma [J]. Cancer cell international. 2021; 21(1): 490.

https://doi.org/10.1186/s12935-021-02191-5

PMid:34526012 PMCid:PMC8444556

MOMTAZI G, LAMBRECHT B N, NARANJO J R, et al. Regulators of A20 (TNFAIP3): new drug-able targets in inflammation [J]. American journal of physiology Lung cellular and molecular physiology. 2019; 316(3): L456-l69.

https://doi.org/10.1152/ajplung.00335.2018

PMid:30543305

LINA S, YA'NAN H, YING Y, et al. Haploinsufficiency of A20 caused by a novel pathogenic missense variant of TNFAIP3 and successfully treated with anti-TNF and immunosuppressive therapies [J]. Cellular immunology. 2023; 391-392: 104753.

https://doi.org/10.1016/j.cellimm.2023.104753

PMid:37535999

BAI W, HUO S, LI J, et al. Advances in the Study of the Ubiquitin-Editing Enzyme A20 [J]. Frontiers in pharmacology. 2022; 13: 845262.

https://doi.org/10.3389/fphar.2022.845262

PMid:35592427 PMCid:PMC9110840

Canh NX, Giang NV, Nghia VX, et al. Regulation of cell activation by A20 through STAT signaling in acute lymphoblastic leukemia. J Recept Signal Transduct Res. 2021;41(4):331-338.

https://doi.org/10.1080/10799893.2020.1808678

PMid:32808859

Eisele L, Klein-Hitpass L, Chatzimanolis N, et al. Differential expression of drug-resistance-related genes between sensitive and resistant blasts in acute myeloid leukemia. Acta Haematol. 2007;117(1):8-15.

https://doi.org/10.1159/000096854

PMid:17095854

ZHOU M, HE J, SHI Y, et al. ABIN3 Negatively Regulates Necroptosis-induced Intestinal Inflammation Through Recruiting A20 and Restricting the Ubiquitination of RIPK3 in Inflammatory Bowel Disease [J]. Journal of Crohn's & colitis. 2021; 15(1): 99-114.

https://doi.org/10.1093/ecco-jcc/jjaa131

PMid:32599618

PERGA S, MONTAROLO F, MARTIRE S, et al. Overexpression of the ubiquitin-editing enzyme A20 in the brain lesions of Multiple Sclerosis patients: moving from systemic to central nervous system inflammation [J]. Brain pathology (Zurich, Switzerland). 2021; 31(2): 283-96.

https://doi.org/10.1111/bpa.12906

PMid:33051914 PMCid:PMC8018032

Luo M, Wang X, Wu S, et al. A20 promotes colorectal cancer immune evasion by upregulating STC1 expression to block "eat-me" signal. Signal Transduct Target Ther. 2023;8(1):312.

https://doi.org/10.1038/s41392-023-01545-x

PMid:37607946 PMCid:PMC10444827

Zhang M, Peng LL, Wang Y, et al. Roles of A20 in autoimmune diseases. Immunol Res. 2016;64(2):337-344.

https://doi.org/10.1007/s12026-015-8677-6

PMid:26135958

Zhang X, Su Y, Song H, Yu Z, Zhang B, Chen H. Attenuated A20 expression of acute myeloid leukemia-derived dendritic cells increased the anti-leukemia immune response of autologous cytolytic T cells. Leuk Res. 2014;38(6):673-681.

https://doi.org/10.1016/j.leukres.2014.03.011

PMid:24713261

CHEN X, QIAN B, KONG X, et al. A20 protects neuronal apoptosis stimulated by lipopolysaccharide-induced microglial exosomes [J]. Neuroscience letters. 2019; 712: 134480.

https://doi.org/10.1016/j.neulet.2019.134480

PMid:31493550

Xu Y, Hu J, Wang X, et al. Overexpression of MALT1-A20-NF-κB in adult B-cell acute lymphoblastic leukemia. Cancer Cell Int. 2015;15:73. Published 2015 Jul 25

https://doi.org/10.1186/s12935-015-0222-0

PMid:26213496 PMCid:PMC4514975

Chen S, Xing H, Li S, et al. Up-regulated A20 promotes proliferation, regulates cell cycle progression and induces chemotherapy resistance of acute lymphoblastic leukemia cells. Leuk Res. 2015;39(9):976-983.

https://doi.org/10.1016/j.leukres.2015.06.004

PMid:26159495

CHEN Q, PANG M H, YE X H, et al. The Toxoplasma gondii ME-49 strain upregulates levels of A20 that inhibit NF-κB activation and promotes apoptosis in human leukaemia T-cell lines [J]. Parasites & vectors. 2018; 11(1): 305.

https://doi.org/10.1186/s13071-018-2837-1

PMid:29776374 PMCid:PMC5960183

Osako M, Itsumi M, Yamaguchi H, Takeuchi H, Yamaoka S. A20 restores phorbol ester-induced differentiation of THP-1 cells in the absence of nuclear factor-κB activation. J Cell Biochem. 2018;119(2):1475-1487.

https://doi.org/10.1002/jcb.26308

PMid:28771803

LU J, SUN Z, FANG Y, et al. Melatonin Suppresses Microglial Necroptosis by Regulating Deubiquitinating Enzyme A20 After Intracerebral Hemorrhage [J]. Frontiers in immunology. 2019; 10: 1360.

https://doi.org/10.3389/fimmu.2019.01360

PMid:31258534 PMCid:PMC6587666

WANG J, ZHONG W, SU H, et al. Histone Methyltransferase Dot1L Contributes to RIPK1 Kinase-Dependent Apoptosis in Cerebral Ischemia/Reperfusion [J]. Journal of the American Heart Association. 2021; 10(23): e022791.

https://doi.org/10.1161/JAHA.121.022791

PMid:34796721 PMCid:PMC9075366

JIA F, DENG F, XU P, et al. NOD1 Agonist Protects Against Lipopolysaccharide and D-Galactosamine-Induced Fatal Hepatitis Through the Upregulation of A20 Expression in Hepatocytes [J]. Frontiers in immunology. 2021; 12: 603192.

https://doi.org/10.3389/fimmu.2021.603192

PMid:33746949 PMCid:PMC7969647

CAO X, WANG Y, GAO L. CHRFAM7A Overexpression Attenuates Cerebral Ischemia-Reperfusion Injury via Inhibiting Microglia Pyroptosis Mediated by the NLRP3/Caspase-1 pathway [J]. Inflammation. 2021; 44(3): 1023-34.

https://doi.org/10.1007/s10753-020-01398-4

PMid:33405023

LOPEZ-CASTEJON G. Control of the inflammasome by the ubiquitin system [J]. The FEBS journal. 2020; 287(1): 11-26.

https://doi.org/10.1111/febs.15118

PMid:31679183 PMCid:PMC7138099

YAN K, WU C, YE Y, et al. A20 inhibits osteoclastogenesis via TRAF6-dependent autophagy in human periodontal ligament cells under hypoxia [J]. Cell proliferation. 2020; 53(3): e12778.

https://doi.org/10.1111/cpr.12778

PMid:32027437 PMCid:PMC7106956

Matsuzawa Y, Oshima S, Takahara M, et al. TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy. Autophagy. 2015;11(7):1052-1062.

https://doi.org/10.1080/15548627.2015.1055439

PMid:26043155 PMCid:PMC4590588

Liu Z, Smith KR, Khong HT, et al. miR-125b regulates differentiation and metabolic reprogramming of T cell acute lymphoblastic leukemia by directly targeting A20. Oncotarget. 2016;7(48):78667-78679.

https://doi.org/10.18632/oncotarget.12018

PMid:27637078 PMCid:PMC5346668

Mizuguchi M, Takatori M, Sakihama S, et al. Acute type adult T-cell leukemia cells proliferate in the lymph nodes rather than in peripheral blood. Cancer Gene Ther. 2022;29(11):1570-1577.

https://doi.org/10.1038/s41417-022-00475-0

PMid:35459881

Castro I, Sampaio-Marques B, Ludovico P. Targeting Metabolic Reprogramming in Acute Myeloid Leukemia. Cells. 2019;8(9):967.

https://doi.org/10.3390/cells8090967

PMid:31450562 PMCid:PMC6770240

Sbirkov Y, Burnusuzov H, Sarafian V. Metabolic reprogramming in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2020;67(6):e28255.

https://doi.org/10.1002/pbc.28255

PMid:32293782

Roma A, Tcheng M, Ahmed N, et al. Glutamine Metabolism Mediates Sensitivity to Respiratory Complex II Inhibition in Acute Myeloid Leukemia. Mol Cancer Res. 2022;20(11):1659-1673.

https://doi.org/10.1158/1541-7786.MCR-21-1032

PMid:35994381

Wang N, Bai X, Wang X, et al. A Novel Fatty Acid Metabolism-Associated Risk Model for Prognosis Prediction in Acute Myeloid Leukaemia. Curr Oncol. 2023;30(2):2524-2542.

https://doi.org/10.3390/curroncol30020193

PMid:36826154 PMCid:PMC9955245

Damrauer SM, Studer P, da Silva CG, et al. A20 modulates lipid metabolism and energy production to promote liver regeneration. PLoS One. 2011;6(3):e17715.

https://doi.org/10.1371/journal.pone.0017715

PMid:21437236 PMCid:PMC3060102

Catrysse L, Maes B, Mehrotra P, et al. A20 deficiency in myeloid cells protects mice from diet-induced obesity and insulin resistance due to increased fatty acid metabolism. Cell Rep. 2021;36(12):109748.

https://doi.org/10.1016/j.celrep.2021.109748

PMid:34551300

Feng Y, Zhang Y, Cai Y, Liu R, Lu M, Li T, et al. A20 targets PFKL and glycolysis to inhibit the progression of hepatocellular carcinoma. Cell Death & Disease. 2020; 11(2): 89.

https://doi.org/10.1038/s41419-020-2278-6

PMid:32015333 PMCid:PMC6997366

Liu T, Kishton R J, Macintyre A N, Gerriets V A, Xiang H, Liu X,et al. Glucose transporter 1-mediated glucose uptake is limiting for B-cell acute lymphoblastic leukemia anabolic metabolism and resistance to apoptosis. Cell death & disease. 2014; 5(10): e1470-e1470.

https://doi.org/10.1038/cddis.2014.431

PMid:25321477 PMCid:PMC4237255

Downloads

Published

2025-06-21

How to Cite

Wu, H., Bai, J., Fa, Q., Yang, K., & Li, Y. (2025). Research Progress of A20 in Acute Leukemia: A20 in Acute Leukemia. Galen Medical Journal, e3869. https://doi.org/10.31661/gmj.vi.3869

Issue

Section

Review Article