Generation of a Transgenic Zebrafish Model for Pancreatic Beta Cell Regeneration
DOI:
https://doi.org/10.31661/gmj.v8i.1056Keywords:
Diabetes, Pancreatic Beta Cells, Regeneration, Genetically Modified AnimalsAbstract
Background: Diabetes is a major worldwide health problem. It is widely accepted that the beta cell mass decreases in type I diabetes (T1D). Accordingly, beta cell regeneration is a promising approach to increase the beta cell mass in T1D patients. However, the underlying mechanisms of beta cell regeneration have yet to be elucidated. One promising avenue is to create a relevant animal model to explore the underlying molecular and cellular mechanisms of beta cell regeneration. The zebrafish can be considered a model in beta cell regeneration studies because the pancreas structure and gene expression pattern are highly conserved between human and zebrafish. Materials and Methods: In this study, the Tol2 transposase was exploited to generate a Tg(Ins:egfp-nfsB) zebrafish model that expressed a fusion protein composed of enhanced green fluorescent protein (EGFP) and nitroreductase (NTR) under control of the Ins promoter. Results: Metronidazole (MTZ) treatment of Tg(ins:egfp-nfsB) zebrafish larvae led to selective ablation of beta cells. Proof-of-concept evidence for beta cell regeneration in the transgenic larvae was observed two days after withdrawal of MTZ. Conclusion: This study suggests that the Tg(ins:egfp-nfsB) zebrafish can be used as a disease model to study beta cell regeneration and elucidate underlying mechanisms during the regeneration process. [GMJ.2019;8:e1056]
References
Naftanel MA, Harlan DM. Pancreatic islet transplantation. PLoS Med. 2004;1(3):e58.
https://doi.org/10.1371/journal.pmed.0010058
PMid:15630467 PMCid:PMC539048
Hering BJ, Clarke WR, Bridges ND, Eggerman TL, Alejandro R, Bellin MD, et al. Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care. 2016;39(7):1230-40.
https://doi.org/10.2337/dc15-1988
PMid:27208344 PMCid:PMC5317236
Aguayo-Mazzucato C, Bonner-Weir S. Pancreatic β Cell Regeneration as a Possible Therapy for Diabetes. Cell Metab. 2017.
https://doi.org/10.1016/j.cmet.2017.08.007
PMid:28889951 PMCid:PMC5762410
Lombardo C, Perrone VG, Amorese G, Vistoli F, Baronti W, Marchetti P, et al. Update on pancreatic transplantation on the management of diabetes. Minerva Med. 2017.
Shapiro AMJ, Pokrywczynska M, Ricordi C. Clinical pancreatic islet transplantation. Nat Rev Endocrinol. 2016.
https://doi.org/10.1038/nrendo.2016.178
PMid:27834384
Anazawa T, Iwanaga Y, Masui T, Itoh T, Kawaguchi M, Takaori K, et al. A 10-year outcome of pancreatic islet transplantation. Pancreatology. 2016;16(4):S79.
https://doi.org/10.1016/j.pan.2016.06.282
Millman JR, Xie C, Van Dervort A, Gürtler M, Pagliuca FW, Melton DA. Generation of stem cell-derived β-cells from patients with type 1 diabetes. Nat Commun. 2016;7:11463.
https://doi.org/10.1038/ncomms11463
PMid:27163171 PMCid:PMC4866045
Lilly MA, Davis MF, Fabie JE, Terhune EB, Gallicano GI. Current stem cell based therapies in diabetes. Am J Stem Cells. 2016;5(3):87.
Razavi R, Najafabadi HS, Abdullah S, Smukler S, Arntfield M, van der Kooy D. Diabetes enhances the proliferation of adult pancreatic multipotent progenitor cells and biases their differentiation to more β-cell production. Diabetes. 2015;64(4):1311-23.
https://doi.org/10.2337/db14-0070
PMid:25392245
Chera S, Baronnier D, Ghila L, Cigliola V, Jensen JN, Gu G, et al. Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature. 2014;514(7523):503.
https://doi.org/10.1038/nature13633
PMid:25141178 PMCid:PMC4209186
Arends MJ, White ES, Whitelaw CBA. Animal and cellular models of human disease. J Pathol. 2016;238(2):137-40.
https://doi.org/10.1002/path.4662
PMid:26482929
Tavares B, Lopes SS. The importance of Zebrafish in biomedical research. Acta Med Port. 2013;26(5):583-92.
Andersson O, Adams BA, Yoo D, Ellis GC, Gut P, Ryan M, et al. Adenosine signaling promotes regeneration of pancreatic β- cells in vivo. Cell Metab. 2013;15(6):885-94.
https://doi.org/10.1016/j.cmet.2012.04.018
PMid:22608007 PMCid:PMC3372708
Curado S, Anderson RM, Jungblut B, Mumm J, Schroeter E, Stainier DYR. Conditional targeted cell ablation in zebrafish: A new tool for regeneration studies. Dev Dyn. 2007;236(4):1025-35.
https://doi.org/10.1002/dvdy.21100
PMid:17326133
Fang Y, Lei X, Li X, Chen Y, Xu F, Feng X, et al. A novel model of demyelination and remyelination in a GFP-transgenic zebrafish. Biol Open [Internet]. 2015;4(1):62-8.
https://doi.org/10.1242/bio.201410736
PMid:25527642 PMCid:PMC4295166
Rubinstein AL. Zebrafish: from disease modeling to drug discovery. Curr Opin Drug Discov Dev. 2003;6(2):218-23.
Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet. 2007;8(5):353.
https://doi.org/10.1038/nrg2091
PMid:17440532
Pisharath H, Rhee JM, Swanson MA, Leach SD, Parsons MJ. Targeted ablation of beta cells in the embryonic zebrafish pancreas using E.coli nitroreductase. Mech Dev. 2008;124(3):218-29.
https://doi.org/10.1016/j.mod.2006.11.005
PMid:17223324 PMCid:PMC2583263
Koga A, Suzuki M, Inagaki H, Bessho Y, Hori H. Transposable element in fish. Nature [Internet]. 1996 Sep 5;383(6595):30-30.
https://doi.org/10.1038/383030a0
PMid:8779712
Yang Y, Wang W, Huang T, Ruan W, Cao G. Transgenesis of Tol2-mediated seamlessly constructed BAC mammary gland expression vectors in Mus musculus. J Biotechnol. 2016;218:66-72.
https://doi.org/10.1016/j.jbiotec.2015.11.024
PMid:26656225
Macdonald J, Taylor L, Sherman A, Kawakami K, Takahashi Y, Sang HM, et al. Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons. Proc Natl Acad Sci [Internet]. 2012 Jun 5;109(23):E1466-72.
https://doi.org/10.1073/pnas.1118715109
PMid:22586100 PMCid:PMC3384192
Kawakami K. Tol2: a versatile gene transfer vector in vertebrates. Genome Biol. 2007;8(1):S7.
https://doi.org/10.1186/gb-2007-8-s1-s7
PMid:18047699 PMCid:PMC2106836
Curado S, Stainier DYR, Anderson RM. Nitroreductase-mediated cell/tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies. Nat Protoc. 2008;3(6):948.
https://doi.org/10.1038/nprot.2008.58
PMid:18536643 PMCid:PMC2705989
White DT, Mumm JS. The nitroreductase system of inducible targeted ablation facilitates cell-specific regenerative studies in zebrafish. Methods. 2013;62(3):232-40.
https://doi.org/10.1016/j.ymeth.2013.03.017
PMid:23542552 PMCid:PMC3723733
Huang J, Mckee M, Huang HD, Xiang A, Davidson AJ, Lu HAJ. A zebrafish model of conditional targeted podocyte ablation and regeneration. Kidney Int. 2013;83(6):1193.
https://doi.org/10.1038/ki.2013.6
PMid:23466998 PMCid:PMC3672345
Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn. 2007;236(11):3088-99.
https://doi.org/10.1002/dvdy.21343
PMid:17937395
Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell. 2004;7(1):133-44.
https://doi.org/10.1016/j.devcel.2004.06.005
PMid:15239961
Grabher C, Wittbrodt J. Meganuclease and transposon mediated transgenesis in medaka. Genome Biol. 2007;8(1):S10.
https://doi.org/10.1186/gb-2007-8-s1-s10
PMid:18047687 PMCid:PMC2106848
Rembold M, Lahiri K, Foulkes NS, Wittbrodt J. Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nat Protoc. 2006;1(3):1133.
https://doi.org/10.1038/nprot.2006.165
PMid:17406394
Zang L, Shimada Y, Nishimura N. Development of a Novel Zebrafish Model for Type 2 Diabetes Mellitus. Sci Rep. 2017;7.
https://doi.org/10.1038/s41598-017-01432-w
PMid:28469250 PMCid:PMC5431185
Published
Issue
Section
License
Copyright (c) 2019 Galen Medical Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.