Generation of a Transgenic Zebrafish Model for Pancreatic Beta Cell Regeneration

Authors

  • Hossein Pourghadamyari Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
  • Mohammad Rezaei Fishery Faculty, Gorgan University of Agriculture Science and Natural Resources, Gorgan, Iran
  • Mohsen Basiri Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
  • Yaser Tahamtani Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
  • Behrouz Asgari Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
  • Seyedeh-Nafiseh Hassani Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
  • Reza Meshkani Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
  • Taghi Golmohammadi Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
  • Hossein Baharvand 1. Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran2. Department of Developmental Biology, University of Science and Culture, Tehran, Iran

DOI:

https://doi.org/10.31661/gmj.v8i.1056

Keywords:

Diabetes, Pancreatic Beta Cells, Regeneration, Genetically Modified Animals

Abstract

Background: Diabetes is a major worldwide health problem. It is widely accepted that the beta cell mass decreases in type I diabetes (T1D). Accordingly, beta cell regeneration is a promising approach to increase the beta cell mass in T1D patients. However, the underlying mechanisms of beta cell regeneration have yet to be elucidated. One promising avenue is to create a relevant animal model to explore the underlying molecular and cellular mechanisms of beta cell regeneration. The zebrafish can be considered a model in beta cell regeneration studies because the pancreas structure and gene expression pattern are highly conserved between human and zebrafish. Materials and Methods: In this study, the Tol2 transposase was exploited to generate a Tg(Ins:egfp-nfsB) zebrafish model that expressed a fusion protein composed of enhanced green fluorescent protein (EGFP) and nitroreductase (NTR) under control of the Ins promoter. Results: Metronidazole (MTZ) treatment of Tg(ins:egfp-nfsB) zebrafish larvae led to selective ablation of beta cells. Proof-of-concept evidence for beta cell regeneration in the transgenic larvae was observed two days after withdrawal of MTZ. Conclusion: This study suggests that the Tg(ins:egfp-nfsB) zebrafish can be used as a disease model to study beta cell regeneration and elucidate underlying mechanisms during the regeneration process. [GMJ.2019;8:e1056]

References

Naftanel MA, Harlan DM. Pancreatic islet transplantation. PLoS Med. 2004;1(3):e58.

https://doi.org/10.1371/journal.pmed.0010058

PMid:15630467 PMCid:PMC539048

Hering BJ, Clarke WR, Bridges ND, Eggerman TL, Alejandro R, Bellin MD, et al. Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care. 2016;39(7):1230-40.

https://doi.org/10.2337/dc15-1988

PMid:27208344 PMCid:PMC5317236

Aguayo-Mazzucato C, Bonner-Weir S. Pancreatic β Cell Regeneration as a Possible Therapy for Diabetes. Cell Metab. 2017.

https://doi.org/10.1016/j.cmet.2017.08.007

PMid:28889951 PMCid:PMC5762410

Lombardo C, Perrone VG, Amorese G, Vistoli F, Baronti W, Marchetti P, et al. Update on pancreatic transplantation on the management of diabetes. Minerva Med. 2017.

Shapiro AMJ, Pokrywczynska M, Ricordi C. Clinical pancreatic islet transplantation. Nat Rev Endocrinol. 2016.

https://doi.org/10.1038/nrendo.2016.178

PMid:27834384

Anazawa T, Iwanaga Y, Masui T, Itoh T, Kawaguchi M, Takaori K, et al. A 10-year outcome of pancreatic islet transplantation. Pancreatology. 2016;16(4):S79.

https://doi.org/10.1016/j.pan.2016.06.282

Millman JR, Xie C, Van Dervort A, Gürtler M, Pagliuca FW, Melton DA. Generation of stem cell-derived β-cells from patients with type 1 diabetes. Nat Commun. 2016;7:11463.

https://doi.org/10.1038/ncomms11463

PMid:27163171 PMCid:PMC4866045

Lilly MA, Davis MF, Fabie JE, Terhune EB, Gallicano GI. Current stem cell based therapies in diabetes. Am J Stem Cells. 2016;5(3):87.

Razavi R, Najafabadi HS, Abdullah S, Smukler S, Arntfield M, van der Kooy D. Diabetes enhances the proliferation of adult pancreatic multipotent progenitor cells and biases their differentiation to more β-cell production. Diabetes. 2015;64(4):1311-23.

https://doi.org/10.2337/db14-0070

PMid:25392245

Chera S, Baronnier D, Ghila L, Cigliola V, Jensen JN, Gu G, et al. Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature. 2014;514(7523):503.

https://doi.org/10.1038/nature13633

PMid:25141178 PMCid:PMC4209186

Arends MJ, White ES, Whitelaw CBA. Animal and cellular models of human disease. J Pathol. 2016;238(2):137-40.

https://doi.org/10.1002/path.4662

PMid:26482929

Tavares B, Lopes SS. The importance of Zebrafish in biomedical research. Acta Med Port. 2013;26(5):583-92.

Andersson O, Adams BA, Yoo D, Ellis GC, Gut P, Ryan M, et al. Adenosine signaling promotes regeneration of pancreatic β- cells in vivo. Cell Metab. 2013;15(6):885-94.

https://doi.org/10.1016/j.cmet.2012.04.018

PMid:22608007 PMCid:PMC3372708

Curado S, Anderson RM, Jungblut B, Mumm J, Schroeter E, Stainier DYR. Conditional targeted cell ablation in zebrafish: A new tool for regeneration studies. Dev Dyn. 2007;236(4):1025-35.

https://doi.org/10.1002/dvdy.21100

PMid:17326133

Fang Y, Lei X, Li X, Chen Y, Xu F, Feng X, et al. A novel model of demyelination and remyelination in a GFP-transgenic zebrafish. Biol Open [Internet]. 2015;4(1):62-8.

https://doi.org/10.1242/bio.201410736

PMid:25527642 PMCid:PMC4295166

Rubinstein AL. Zebrafish: from disease modeling to drug discovery. Curr Opin Drug Discov Dev. 2003;6(2):218-23.

Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet. 2007;8(5):353.

https://doi.org/10.1038/nrg2091

PMid:17440532

Pisharath H, Rhee JM, Swanson MA, Leach SD, Parsons MJ. Targeted ablation of beta cells in the embryonic zebrafish pancreas using E.coli nitroreductase. Mech Dev. 2008;124(3):218-29.

https://doi.org/10.1016/j.mod.2006.11.005

PMid:17223324 PMCid:PMC2583263

Koga A, Suzuki M, Inagaki H, Bessho Y, Hori H. Transposable element in fish. Nature [Internet]. 1996 Sep 5;383(6595):30-30.

https://doi.org/10.1038/383030a0

PMid:8779712

Yang Y, Wang W, Huang T, Ruan W, Cao G. Transgenesis of Tol2-mediated seamlessly constructed BAC mammary gland expression vectors in Mus musculus. J Biotechnol. 2016;218:66-72.

https://doi.org/10.1016/j.jbiotec.2015.11.024

PMid:26656225

Macdonald J, Taylor L, Sherman A, Kawakami K, Takahashi Y, Sang HM, et al. Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons. Proc Natl Acad Sci [Internet]. 2012 Jun 5;109(23):E1466-72.

https://doi.org/10.1073/pnas.1118715109

PMid:22586100 PMCid:PMC3384192

Kawakami K. Tol2: a versatile gene transfer vector in vertebrates. Genome Biol. 2007;8(1):S7.

https://doi.org/10.1186/gb-2007-8-s1-s7

PMid:18047699 PMCid:PMC2106836

Curado S, Stainier DYR, Anderson RM. Nitroreductase-mediated cell/tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies. Nat Protoc. 2008;3(6):948.

https://doi.org/10.1038/nprot.2008.58

PMid:18536643 PMCid:PMC2705989

White DT, Mumm JS. The nitroreductase system of inducible targeted ablation facilitates cell-specific regenerative studies in zebrafish. Methods. 2013;62(3):232-40.

https://doi.org/10.1016/j.ymeth.2013.03.017

PMid:23542552 PMCid:PMC3723733

Huang J, Mckee M, Huang HD, Xiang A, Davidson AJ, Lu HAJ. A zebrafish model of conditional targeted podocyte ablation and regeneration. Kidney Int. 2013;83(6):1193.

https://doi.org/10.1038/ki.2013.6

PMid:23466998 PMCid:PMC3672345

Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn. 2007;236(11):3088-99.

https://doi.org/10.1002/dvdy.21343

PMid:17937395

Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell. 2004;7(1):133-44.

https://doi.org/10.1016/j.devcel.2004.06.005

PMid:15239961

Grabher C, Wittbrodt J. Meganuclease and transposon mediated transgenesis in medaka. Genome Biol. 2007;8(1):S10.

https://doi.org/10.1186/gb-2007-8-s1-s10

PMid:18047687 PMCid:PMC2106848

Rembold M, Lahiri K, Foulkes NS, Wittbrodt J. Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nat Protoc. 2006;1(3):1133.

https://doi.org/10.1038/nprot.2006.165

PMid:17406394

Zang L, Shimada Y, Nishimura N. Development of a Novel Zebrafish Model for Type 2 Diabetes Mellitus. Sci Rep. 2017;7.

https://doi.org/10.1038/s41598-017-01432-w

PMid:28469250 PMCid:PMC5431185

Published

2019-11-06

Issue

Section

Original Article