Concurrent Effects of Exercise and Curcumin on Spatial Learning and Memory in Sensitized Male Mice Following Morphine Administration

Authors

  • Laleh Elhampour Department of Exercise Physiology, Tehran Central Branch, Islamic Azad University, Tehran, Iran
  • Mohammad Ali Azarbayjani Department of Exercise Physiology, Tehran Central Branch, Islamic Azad University, Tehran, Iran
  • Mohammad Nasehi Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
  • Maghsoud Peeri Department of Exercise Physiology, Tehran Central Branch, Islamic Azad University, Tehran, Iran

DOI:

https://doi.org/10.31661/gmj.v8i.1072

Keywords:

Curcumin, Dimethyl Sulfoxide, Exercise, Memory, Central Nervous System Sensitization

Abstract

Background: Exercise and Curcumin have positive effects on spatial memory and cognition independently. The present study aims to investigate whether the combination of ineffectual dosage of these factors can affect cognition and as a solvent if DMSO is involved in Curcumin effects. Materials and Methods: Male NMRI mice (1-month-old) swam (1 week) for 60 minutes (5days/week) and injected with morphine (2.5 mg/ml/kg, intraperitoneal) for five days. Spatial learning and memory were assessed by Moris Water Maze test on the 10th day after stopping morphine injection. Results: The findings revealed that exercise, dimethyl sulfoxide (DMSO), and Curcumin increased memory formation induced by 2.5 mg/ml/kg morphine. DMSO+exercise decreased memory formation induced by morphine, but curcumin +exercise could return the effect of DMSO on the cognition. Conclusion: As a solvent, DMSO had independent effects on memory, which lead to memory impairment in combination with exercise. Therefore, considering its unpredictable effects on cognitive performance, it should be replaced with another solvent or might be used carefully in behavioral experiments. [GMJ.2019;8:e1072]

References

Zarrinkalam E, Heidarianpour A, Salehi I, Ranjbar K, Komaki A. Effects of endurance, resistance, and concurrent exercise on learning and memory after morphine withdrawal in rats. Life Sci. 2016;157:19-24. https://doi.org/10.1016/j.lfs.2016.05.034PMid:27234896 Ma MX, Chen YM, He J, Zeng T, Wang JH. Effects of morphine and its withdrawal on Y-maze spatial recognition memory in mice. Neuroscience. 2007;147(4):1059-65. https://doi.org/10.1016/j.neuroscience.2007.05.020PMid:17601672 Morisot N, Contarino A. The CRF1 and the CRF2 receptor mediate recognition memory deficits and vulnerability induced by opiate withdrawal. Neuropharmacology. 2016;105:500-7. https://doi.org/10.1016/j.neuropharm.2016.02.021PMid:26907806 Slamberova R, Schindler CJ, Pometlova M, Urkuti C, Purow-Sokol JA, Vathy I. Prenatal morphine exposure differentially alters learning and memory in male and female rats. Physiol Behav. 2001;73(1-2):93-103. https://doi.org/10.1016/S0031-9384(01)00469-3 Krugel U, Fischer J, Radicke S, Sack U, Himmerich H. Antidepressant effects of TNF-alpha blockade in an animal model of depression. J Psychiatr Res. 2013;47(5):611-6. https://doi.org/10.1016/j.jpsychires.2013.01.007PMid:23394815 Moraga-Amaro R, Gonzalez H, Pacheco R, Stehberg J. Dopamine receptor D3 deficiency results in chronic depression and anxiety. Behav Brain Res. 2014;274:186-93. https://doi.org/10.1016/j.bbr.2014.07.055PMid:25110304 Miladi-Gorji H, Rashidy-Pour A, Fathollahi Y, Semnanian S, Jadidi M. Effects of voluntary exercise on hippocampal long-term potentiation in morphine-dependent rats. Neuroscience. 2014;256:83-90. https://doi.org/10.1016/j.neuroscience.2013.09.056PMid:24141180 Miladi-Gorji H, Rashidy-Pour A, Fathollahi Y. Anxiety profile in morphine-dependent and withdrawn rats: effect of voluntary exercise. Physiol Behav. 2012;105(2):195-202. https://doi.org/10.1016/j.physbeh.2011.08.010PMid:21871908 Ahmed T. GA. Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer's disease. Pharmacol Biochem Behav 2009;91(4):554-9. https://doi.org/10.1016/j.pbb.2008.09.010PMid:18930076 Ahmed T ES, Gilani AH. Curcuminoids enhance memory in an amyloid-infused rat model of Alzheimer's disease. Neuroscience. 2010;169(3):1296-306. https://doi.org/10.1016/j.neuroscience.2010.05.078PMid:20538041 Mancuso C, Siciliano R, Barone E, Preziosi P. Natural substances and Alzheimer's disease: from preclinical studies to evidence based medicine. Biochim Biophys Acta. 2012;1822(5):616-24. https://doi.org/10.1016/j.bbadis.2011.09.004PMid:21939756 Oz M, Nurullahoglu Atalik KE, Yerlikaya FH, Demir EA. Curcumin alleviates cisplatin-induced learning and memory impairments. Neurobiol Learn Mem. 2015;123:43-9. https://doi.org/10.1016/j.nlm.2015.05.001PMid:25982942 Bodnar RJ. Endogenous opiates and behavior: 2009. Peptides. 2010;31(12):2325-59. https://doi.org/10.1016/j.peptides.2010.09.016PMid:20875476 Ray B, Lahiri DK. Neuroinflammation in Alzheimer's disease: different molecular targets and potential therapeutic agents including curcumin. Curr Opin Pharmacol. 2009;9(4):434-44. https://doi.org/10.1016/j.coph.2009.06.012PMid:19656726 Shimizu S, Simon RP, Graham SH. Dimethylsulfoxide (DMSO) treatment reduces infarction volume after permanent focal cerebral ischemia in rats. Neuroscience letters. 1997;239(2-3):125-7. https://doi.org/10.1016/S0304-3940(97)00915-4 Di Giorgio AM, Hou Y, Zhao X, Zhang B, Lyeth BG, Russell MJ. Dimethyl sulfoxide provides neuroprotection in a traumatic brain injury model. Restor Neurol Neurosci. 2008;26(6):501-7. Jacob SW, de la Torre JC. Pharmacology of dimethyl sulfoxide in cardiac and CNS damage. Pharmacol Rep. 2009;61(2):225-35. https://doi.org/10.1016/S1734-1140(09)70026-X Otrock ZK, Beydoun A, Barada WM, Masroujeh R, Hourani R, Bazarbachi A. Transient global amnesia associated with the infusion of DMSO-cryopreserved autologous peripheral blood stem cells. Haematologica. 2008;93(3):e36-7. https://doi.org/10.3324/haematol.12249PMid:18310533 Prickaerts J, van Staveren WC, Sik A, Markerink-van Ittersum M, Niewohner U, van der Staay FJ et al. Effects of two selective phosphodiesterase type 5 inhibitors, sildenafil and vardenafil, on object recognition memory and hippocampal cyclic GMP levels in the rat. Neuroscience. 2002;113(2):351-61. https://doi.org/10.1016/S0306-4522(02)00199-9 Akbari E, Motamedi F, Naghdi N, Noorbakhshnia M. The effect of antagonization of orexin 1 receptors in CA1 and dentate gyrus regions on memory processing in passive avoidance task. Behav Brain Res. 2008;187(1):172-7. https://doi.org/10.1016/j.bbr.2007.09.019PMid:17977608 Sharifzadeh M, Naghdi N, Khosrovani S, Ostad SN, Sharifzadeh K, Roghani A. Post-training intrahippocampal infusion of the COX-2 inhibitor celecoxib impaired spatial memory retention in rats. European journal of pharmacology. 2005;511(2-3):159-66. https://doi.org/10.1016/j.ejphar.2005.01.041PMid:15792784 Lavie V, Becker M, Cohen-Kupiec R, Yacoby I, Koppel R, Wedenig M et al. EFRH-phage immunization of Alzheimer's disease animal model improves behavioral performance in Morris water maze trials. J Mol Neurosci. 2004;24(1):105-13. https://doi.org/10.1385/JMN:24:1:105 Zots MA, Ivashkina OI, Ivanova AA, Anokhin KV. Formation of spatial and nonspatial memory in different condensed versions of short-term learning in Morris water maze. Bull Exp Biol Med. 2014;156(5):602-4. https://doi.org/10.1007/s10517-014-2404-5PMid:24770737 Markvartova V, Cendelin J, Vozeh F. Effect of dimethyl sulfoxide in cerebellar mutant Lurcher mice. Neuroscience letters. 2013;543:142-5. https://doi.org/10.1016/j.neulet.2013.03.034PMid:23570728 Naghdi N, Majlessi N, Bozorgmehr T. The effect of intrahippocampal injection of testosterone enanthate (an androgen receptor agonist) and anisomycin (protein synthesis inhibitor) on spatial learning and memory in adult, male rats. Behav Brain Res. 2005;156(2):263-8. https://doi.org/10.1016/j.bbr.2004.05.032PMid:15582112 Penazzi L, Lorengel J, Sundermann F, Golovyashkina N, Marre S, Mathis CMB et al. DMSO modulates CNS function in a preclinical Alzheimer's disease model. Neuropharmacology. 2017;113(Pt A):434-44. https://doi.org/10.1016/j.neuropharm.2016.10.020PMid:27773645 Shanmugasundaram B, Aher YD, Aradska J, Ilic M, Daba Feyissa D, Kalaba P et al. R-Modafinil exerts weak effects on spatial memory acquisition and dentate gyrus synaptic plasticity. PloS one. 2017;12(6):e0179675. https://doi.org/10.1371/journal.pone.0179675PMid:28644892 PMCid:PMC5482457 Budinich CS, Tucker LB, Lowe D, Rosenberger JG, McCabe JT. Short and long-term motor and behavioral effects of diazoxide and dimethyl sulfoxide administration in the mouse after traumatic brain injury. Pharmacology, biochemistry, and behavior. 2013;108:66-73. https://doi.org/10.1016/j.pbb.2013.04.001PMid:23583443 Venditti P, Napolitano G, Barone D, Di Meo S. Effect of training and vitamin E administration on rat liver oxidative metabolism. Free Radic Res. 2014;48(3):322-32. https://doi.org/10.3109/10715762.2013.867959PMid:24255967 da Silva LA, Pinho CA, Rocha LG, Tuon T, Silveira PC, Pinho RA. Effect of different models of physical exercise on oxidative stress markers in mouse liver. Appl Physiol Nutr Metab. 2009;34(1):60-5. https://doi.org/10.1139/H08-132PMid:19234586 Botezelli JD, Mora RF, Dalia RA, Moura LP, Cambri LT, Ghezzi AC et al. Exercise counteracts fatty liver disease in rats fed on fructose-rich diet. Lipids Health Dis. 2010;9:116. https://doi.org/10.1186/1476-511X-9-116PMid:20946638 PMCid:PMC2964725 Smith MA, Lynch WJ. Exercise as a potential treatment for drug abuse: evidence from preclinical studies. Front Psychiatry. 2011;2:82. https://doi.org/10.3389/fpsyt.2011.00082PMid:22347866 PMCid:PMC3276339 Damghani F, Bigdeli I, Miladi-Gorji H, Fadaei A. Swimming exercise attenuates psychological dependence and voluntary methamphetamine consumption in methamphetamine withdrawn rats. Iran J Basic Med Sci. 2016;19(6):594-600. Kim K, Chung E, Kim CJ, Lee S. Swimming exercise during pregnancy alleviates pregnancy-associated long-term memory impairment. Physiol Behav. 2012;107(1):82-6. https://doi.org/10.1016/j.physbeh.2012.06.004PMid:22705471 Khabour OF, Alzoubi KH, Alomari MA, Alzubi MA. Changes in spatial memory and BDNF expression to simultaneous dietary restriction and forced exercise. Brain Res Bull. 2013;90:19-24. https://doi.org/10.1016/j.brainresbull.2012.08.005PMid:23000024 Nieto MM, Wilson J, Cupo A, Roques BP, Noble F. Chronic morphine treatment modulates the extracellular levels of endogenous enkephalins in rat brain structures involved in opiate dependence: a microdialysis study. J Neurosci. 2002;22(3):1034-41. https://doi.org/10.1523/JNEUROSCI.22-03-01034.2002PMid:11826132 PMCid:PMC6758524 Montpied P, Weizman A, Weizman R, Kook KA, Morrow AL, Paul SM. Repeated swim-stress reduces GABAA receptor alpha subunit mRNAs in the mouse hippocampus. Brain Res Mol Brain Res. 1993;18(3):267-72. https://doi.org/10.1016/0169-328X(93)90199-Y Petit-Demouliere B, Chenu F, Bourin M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl). 2005;177(3):245-55. https://doi.org/10.1007/s00213-004-2048-7PMid:15609067 A Wu ZY, F Gomez-Pinilla. The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. European Journal of Neuroscience. 2004;19(7):1699-707. https://doi.org/10.1111/j.1460-9568.2004.03246.xPMid:15078544 Duclos M, Corcuff JB, Arsac L, Moreau-Gaudry F, Rashedi M, Roger P et al. Corticotroph axis sensitivity after exercise in endurance-trained athletes. Clin Endocrinol (Oxf). 1998;48(4):493-501. https://doi.org/10.1046/j.1365-2265.1998.00334.xPMid:9640417 Wittert GA, Livesey JH, Espiner EA, Donald RA. Adaptation of the hypothalamopituitary adrenal axis to chronic exercise stress in humans. Med Sci Sports Exerc. 1996;28(8):1015-9. https://doi.org/10.1097/00005768-199608000-00011PMid:8871911 Papp M, Klimek V, Willner P. Parallel changes in dopamine D2 receptor binding in limbic forebrain associated with chronic mild stress-induced anhedonia and its reversal by imipramine. Psychopharmacology (Berl). 1994;115(4):441-6. https://doi.org/10.1007/BF02245566PMid:7871087 Ak T, Gulcin I. Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact. 2008;174(1):27-37. https://doi.org/10.1016/j.cbi.2008.05.003PMid:18547552 Motaghinejad M, Motevalian M, Asadi-Ghalehni M, Motaghinejad O. Attenuation of morphine withdrawal signs, blood cortisol and glucose level with forced exercise in comparison with clonidine. Adv Biomed Res. 2014;3:171. https://doi.org/10.4103/2277-9175.139181PMid:25250285 PMCid:PMC4166059 Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol. 2012;39(3):283-99. https://doi.org/10.1111/j.1440-1681.2011.05648.xPMid:22118895 PMCid:PMC3288651 Matsushita Y, Ueda H. Curcumin blocks chronic morphine analgesic tolerance and brain-derived neurotrophic factor upregulation. Neuroreport. 2009;20(1):63-8. https://doi.org/10.1097/WNR.0b013e328314decbPMid:19033880

Published

2019-12-29

Issue

Section

Original Article