Cytotoxic Effects of Coated Gold Nanoparticles on PC12 Cancer Cell
DOI:
https://doi.org/10.31661/gmj.v7i.1110Keywords:
Gold Nanoparticle, Cancer, Apoptosis, ROS, LDHAbstract
Background: The use of gold nanoparticles in medicine and especially in cancer treatment has been of interest to researchers. The effectiveness of this nanoparticle on cells significantly depends on the amount of its entry into the cells. This study was performed to compare the rate and mechanism of effect of gold nanoparticles coated with different amino acid on PC12 cancer cell line.
Materials and Methods: The PC12 cells line were exposed to various concentrations of amino acid coated and uncoated gold nanoparticles (0.5, 2.5 and 5 μM). Cell death rate was determined according to level of Lactate dehydrogenase (LDH) release from cells and MTT assay. In addition cell morphology and the amount of Cellular Reactive oxygen species (ROS) were studied.
Results: The uncoated gold nanoparticles have shown minor effects on cellular life. Gold nanoparticles coated by tryptophan at high concentrations (2.5, 5 and 25μM) increase in cancer cells metabolic activity. Gold nanoparticles coated by Aspartate also produce the largest amount of LDH and ROS in cancer cells and therefore caused of highest rate of apoptosis.
Conclusion: The results showed that the nanoparticles coated with amino acids are affected on cellular metabolism and apoptosis more than uncoated nanoparticles. Also the smallest coated nanoparticles (coated by aspartate) have the most influence and by increasing the size, this effect was reduced. [GMJ.2018;7:e1110]
References
Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ. Nanomaterials in combating cancer: therapeutic applications and developments. Nanomedicine. 2014;10(1):19-34. https://doi.org/10.1016/j.nano.2013.07.001PMid:23871761 Marzouni HZ, Lavasani Z, Shalilian M, Najibpour R, Fakhr MS, Nazarzadeh R, et al. Women's Awareness and Attitude Toward Breast Self-Examination in Dezful City, Iran, 2013. Iran Red Crescent Med J. 2015;17(1). Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481(7381):287-94. https://doi.org/10.1038/nature10760 Hosang M, Shooter EM. Molecular characteristics of nerve growth factor receptors on PC12 cells. J Biol Chem. 1985;260(1):655-62. PMid:2981225 Genchi GG, Ciofani G, Polini A, Liakos I, Iandolo D, Athanassiou A, et al. PC12 neuronâ€like cell response to electrospun poly (3â€hydroxybutyrate) substrates. J Tissue Eng Regen Med. 2015;9(2):151-61. https://doi.org/10.1002/term.1623 https://doi.org/10.1111/apt.12814PMid:24912650 Szymanski MS, Porter RA. Preparation and quality control of silver nanoparticle–antibody conjugate for use in electrochemical immunoassays. J Immunol Methods. 2013;387(1):262-9. https://doi.org/10.1016/j.jim.2012.11.003PMid:23153725 Ravindran A, Chandran P, Khan SS. Biofunctionalized silver nanoparticles: advances and prospects. Colloids Surf B Biointerfaces. 2013;105:342-52. https://doi.org/10.1016/j.colsurfb.2012.07.036PMid:23411404 Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer. 2012;12(1):39-50. https://doi.org/10.1038/nrc3180PMid:22193407 Wason MS, Colon J, Das S, Seal S, Turkson J, Zhao J, et al. Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine. 2013;9(4):558-69. https://doi.org/10.1016/j.nano.2012.10.010PMid:23178284 PMCid:PMC3606274 He L, Lai H, Chen T. Dual-function nanosystem for synergetic cancer chemo-/radiotherapy through ROS-mediated signaling pathways. Biomaterials. 2015;51:30-42. https://doi.org/10.1016/j.biomaterials.2015.01.063PMid:25770995 Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys med biol. 2004;49(18):N309. https://doi.org/10.1088/0031-9155/49/18/N03PMid:15509078 Jia Z, Sun H, Gu Q. Preparation of Ag nanoparticles with triethanolamine as reducing agent and their antibacterial property. Colloids Surf A Physicochem Eng Asp. 2013;419:174-9. https://doi.org/10.1016/j.colsurfa.2012.12.003 Philip D. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E. 2010;42(5):1417-24. https://doi.org/10.1016/j.physe.2009.11.081 Dubey SP, Lahtinen M, Sillanpaa M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochemistry. 2010;45(7):1065-71. https://doi.org/10.1016/j.procbio.2010.03.024 https://doi.org/10.1667/RR1984.1PMid:20518651 Jain S, Coulter JA, Hounsell AR, Butterworth KT, McMahon SJ, Hyland WB, et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys. 2011;79(2):531-9. https://doi.org/10.1016/j.ijrobp.2010.08.044PMid:21095075 PMCid:PMC3015172 Liu P, Huang Z, Chen Z, Xu R, Wu H, Zang F, et al. Silver nanoparticles: a novel radiation sensitizer for glioma? Nanoscale. 2013;5(23):11829-36. https://doi.org/10.1039/c3nr01351kPMid:24126539 Tamarov KP, Osminkina LA, Zinovyev SV, Maximova KA, Kargina JV, Gongalsky MB, et al. Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy. Sci Rep. 2014;4:7034. https://doi.org/10.1038/srep07034PMid:25391603 PMCid:PMC5382688 Sumer B, Gao J. Theranostic nanomedicine for cancer. Nanomedicine; 2008;3(2):137-40. https://doi.org/10.2217/17435889.3.2.137PMid:18373419 Yang J, Wang H, Wang Z, Tan X, Song C, Zhang R, et al. Interaction between antitumor drug and silver nanoparticles: combined fluorscence and surface enhanced Raman scattering study. Chinese Optics Letters. 2009;7(10):894-7. https://doi.org/10.3788/COL20090710.0894 Logunov S, Ahmadi T, El-Sayed M, Khoury J, Whetten R. Electron dynamics of passivated gold nanocrystals probed by subpicosecond transient absorption spectroscopy. J Phys Chem B. 1997;101(19):3713-9. https://doi.org/10.1021/jp962923f Link S, El-Sayed MA. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B. 1999;103(21):4212-7. https://doi.org/10.1021/jp984796o Inbathamizh L, Ponnu TM, Mary EJ. In vitro evaluation of antioxidant and anticancer potential of Morinda pubescens synthesized silver nanoparticles. J Pharm Res. 2013;6(1):32-8. https://doi.org/10.1016/j.jopr.2012.11.010 Sulaiman GM, Mohammed WH, Marzoog TR, Al-Amiery AAA, Kadhum AAH, Mohamad AB. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac J Trop Biomed. 2013;3(1):58-63. https://doi.org/10.1016/S2221-1691(13)60024-6 Su WT, Liao YF, Wu TW, Wang BJ, Shih YY. Microgrooved patterns enhanced PC12 cell growth, orientation, neurite elongation, and neuritogenesis. J Biomed Mater Res A. 2013;101(1):185-94. https://doi.org/10.1002/jbm.a.34318 Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem rev. 2004;104(1):293-346. https://doi.org/10.1021/cr030698+PMid:14719978 Louis C, Pluchery O. Gold nanoparticles for physics, chemistry and biology: World Scientific; 2012. https://doi.org/10.1142/p815 Selvakannan P, Mandal S, Phadtare S, Gole A, Pasricha R, Adyanthaya S, et al. Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J Colloid Interface Sci. 2004;269(1):97-102. https://doi.org/10.1016/S0021-9797(03)00616-7 Higashi N, Kawahara J, Niwa M. Preparation of helical peptide monolayer-coated gold nanoparticles. J Colloid Interface Sci. 2005;288(1):83-7. https://doi.org/10.1016/j.jcis.2005.02.086PMid:15927565 Kasibhatla S, Amarante-Mendes GP, Finucane D, Brunner T, Bossy-Wetzel E, Green DR. Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. CSH Protoc. 2006;2006(3). Jakubowski W, Bartosz G. 2, 7â€DICHLOROFLUORESCIN OXIDATION AND REACTIVE OXYGEN SPECIES: WHAT DOES IT MEASURE? Cell Biol Int. 2000;24(10):757-60. https://doi.org/10.1006/cbir.2000.0556PMid:11023655 Shhzamani k, Zare Marzouni H, Tarkhan F, Lashgarian HE. A Study of Mechanism and Rate of PC12 Cancer Cell Destruction Induced by Lysine-Coated Gold Nanoparticle. J Babol Univ Med Sci. 2016;18(8):41-7. Ravi Shukla VB, Minakshi Chaudhary, Atanu Basu, Ramesh R. Bhonde, Murali Sastry. Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview. Langmuir. 2005;21(23):10. Hui Chen AD, Sonia Saad, Dominic J. Hare, Michael B. Cortie, Stella M. Valenzuela. In Vivo Study of Spherical Gold Nanoparticles: Inflammatory Effects and Distribution in Mice. PLOS ONE. 2013;8(2):8. Martin T, Grishanin R. PC12 cells as a model for studies of regulated secretion in neuronal and endocrine cells. Methods Cell Biol. 2003;71:267-86. https://doi.org/10.1016/S0091-679X(03)01012-4 Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl. 2008;19(1):17-32. https://doi.org/10.2147/NSA.S3788PMCid:PMC3808249 https://doi.org/10.1039/c0nr00478bPMid:21229159 https://doi.org/10.1002/smll.200700378PMid:17963284 https://doi.org/10.1021/nl070363yPMid:17465586 Rana S, Bajaj A, Mout R, Rotello VM. Monolayer coated gold nanoparticles for delivery applications. Adv Drug Deliv Rev. 2012;64(2):200-16. https://doi.org/10.1016/j.addr.2011.08.006PMid:21925556 PMCid:PMC3258479 Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small. 2009;5(18):2067-76. https://doi.org/10.1002/smll.200900466PMid:19642089 Krysko DV, Berghe TV, D'Herde K, Vandenabeele P. Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods. 2008;44(3):205-21. https://doi.org/10.1016/j.ymeth.2007.12.001PMid:18314051 Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73(4):1907-16. https://doi.org/10.1128/IAI.73.4.1907-1916.2005PMid:15784530 PMCid:PMC1087413 Patra HK, Banerjee S, Chaudhuri U, Lahiri P, Dasgupta AK. Cell selective response to gold nanoparticles. Nanomedicine. 2007;3(2):111-9. https://doi.org/10.1016/j.nano.2007.03.005PMid:17572353 Kang B, Mackey MA, El-Sayed MA. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Amer Chem Soc. 2010;132(5):1517-9. https://doi.org/10.1021/ja9102698PMid:20085324 Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1(3):325-7. https://doi.org/10.1002/smll.200400093 Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? https://doi.org/10.1007/s11051-010-9911-8PMid:21170131 PMCid:PMC2988217 https://doi.org/10.1021/ar800035uPMid:18712884 https://doi.org/10.1021/la052102ePMid:16342975