Evidence for the Important Role of Oxidative Stress in the Pathogenesis of Acne

Authors

  • Bahareh Kardeh 1.Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran 
 2. Cellular and Molecular Medicine Student Research Group, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
  • Sina Kardeh 1. Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran 
 2. Cellular and Molecular Medicine Student Research Group, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
  • Seyed Arman Moein 1. Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran 
 2. Cellular and Molecular Medicine Student Research Group, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
  • Mohammad Reza Namazi 3. Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

DOI:

https://doi.org/10.31661/gmj.v8i.1291

Keywords:

Acne Vulgaris; Oxidative Stress; Reactive Oxygen Species; mTOR; PPAR; Inflammation

Abstract

Acne vulgaris is a common inflammatory skin disorder which is recognizable by dermatological lesions and scars. In addition to some pathogenetic factors such as hyperkeratinization, upregulated sebum secretion, and immunoinflammatory reactions, recent studies have also connected oxidative stress to the pathogenesis of acne vulgaris. In this article, we will briefly review clinical studies that interrogated alterations in oxidative stress biomarkers by a systematic search conducted in PubMed, Web of Science, and Scopus using “acne”, “oxidative stress”, and “reactive oxygen species” keywords. Overall, studies have shown that oxidative biomarkers (e.g. lipid peroxidation final products) are higher in acne vulgaris lesions. A significant positive correlation has also been noted between acne severity and oxidative biomarkers. In contrast, diminished levels of antioxidant enzymes (e.g. superoxide dismutase and catalase) have been observed in acne. We propose four probable mechanisms for the role of reactive oxygen species (ROS) in acne pathogenesis. We believe that ROS can contribute significantly to the acne vulgaris pathobiology via toll-like receptor (TLR), peroxisome proliferator-activated receptor (PPAR), mTOR pathway, and innate immune system, resulting in inflammation by alterations in the generation of several proinflammatory cytokines including IL-1, IL-8, and TNF-α.

References

Sarici G, Cinar S, Armutcu F, Altınyazar C, Koca R, Tekin N. Oxidative stress in acne vulgaris. J Eur Acad Dermatol Venereol. 2010;24(7):763-7. https://doi.org/10.1111/j.1468-3083.2009.03505.xPMid:19943837 Berglerâ€Czop B. The aetiopathogenesis of acne vulgaris–what's new? Int J Cosmet Sci. 2014;36(3):187-94. https://doi.org/10.1111/ics.12122PMid:24575836 Zouboulis CC. Acne as a chronic systemic disease. Clin Dermatol. 2014;32(3):389-96. https://doi.org/10.1016/j.clindermatol.2013.11.005PMid:24767186 Bhate K, Williams H. Epidemiology of acne vulgaris. Br J Dermatol. 2013;168(3):474-85. https://doi.org/10.1111/bjd.12149PMid:23210645 Thiboutot D, Gollnick H, Bettoli V, Dréno B, Kang S, Leyden JJ, et al. New insights into the management of acne: an update from the Global Alliance to Improve Outcomes in Acne group. J Am Acad Dermatol. 2009;60(5):S1-S50. https://doi.org/10.1016/j.jaad.2009.01.019PMid:19376456 Gollnick H. Current concepts of the pathogenesis of acne. Drugs. 2003;63(15):1579-96. https://doi.org/10.2165/00003495-200363150-00005PMid:12887264 Allhorn M, Lundqvist K, Schmidtchen A, Ã…kerström B. Heme-scavenging role of α1-microglobulin in chronic ulcers. J Invest Dermatol. 2003;121(3):640-6. https://doi.org/10.1046/j.1523-1747.2003.12409.xPMid:12925227 Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev. 2003;8(3):223-46. PMid:12946237 Boissy RE, Manga P. On the etiology of contact/occupational vitiligo. Pigment Cell Res. 2004;17(3):208-14. https://doi.org/10.1111/j.1600-0749.2004.00130.xPMid:15140065 Al-Shobaili HA. Oxidants and Anti-Oxidants Status in Acne Vulgaris Patients with Varying Severity. Ann Clin Lab Sci. 2014;44(2):202-7. PMid:24795060 Alâ€Shobaili HA, Alzolibani AA, Al Robaee AA, Meki AR, Rasheed Z. Biochemical markers of oxidative and nitrosative stress in acne vulgaris: correlation with disease activity. J Clin Lab Anal. 2013;27(1):45-52. https://doi.org/10.1002/jcla.21560PMid:23325743 Perihan O, Ergul KB, Neslihan D, Filiz A. The activity of adenosine deaminase and oxidative stress biomarkers in scraping samples of acne lesions. J Cosmet Dermatol. 2012;11(4):323-8. https://doi.org/10.1111/jocd.12011PMid:23174057 Yang YS, Lim HK, Hong KK, Shin MK, Lee JW, Lee SW et al. Cigarette Smoke-Induced Interleukin-1 Alpha May Be Involved in the Pathogenesis of Adult Acne. Ann Dermatol. 2014;26(1):11-6. https://doi.org/10.5021/ad.2014.26.1.11PMid:24648681 PMCid:PMC3956775 Kohen R, Nyska A. Invited review: Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 2002;30(6):620-50. https://doi.org/10.1080/01926230290166724PMid:12512863 Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol. 2006;126(12):2565-75. https://doi.org/10.1038/sj.jid.5700340PMid:17108903 Kardeh S, Ashkani-Esfahani S, Alizadeh AM. Paradoxical action of reactive oxygen species in creation and therapy of cancer. Eur J Pharmacol. 2014;735:150-68. https://doi.org/10.1016/j.ejphar.2014.04.023PMid:24780648 Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 2005;15(4):316-28. https://doi.org/10.1016/j.numecd.2005.05.003PMid:16054557 Esterbauer H. Estimation of peroxidative damage. A critical review. Pathol Biol (Paris). 1996;44(1):25-8. Akamatsu H, Horio T, Hattori K. Increased hydrogen peroxide generation by neutrophils from patients with acne inflammation. Int J Dermatol. 2003;42(5):366-9. https://doi.org/10.1046/j.1365-4362.2003.01540.xPMid:12755973 Cerutti P, Shah G, Peskin A, Amstad P. Oxidant Carcinogenesis and Antioxidant Defensea. Ann N Y Acad Sci. 1992;663(1):158-66. https://doi.org/10.1111/j.1749-6632.1992.tb38659.xPMid:1482049 Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924-6. https://doi.org/10.1136/bmj.39489.470347.ADPMid:18436948 PMCid:PMC2335261 Miller LS. Toll-like receptors in skin. Adv Dermatol. 2008;24:71. https://doi.org/10.1016/j.yadr.2008.09.004PMid:19256306 PMCid:PMC2633625 Lavieri R, Piccioli P, Carta S, Delfino L, Castellani P, Rubartelli A. TLR costimulation causes oxidative stress with unbalance of proinflammatory and anti-inflammatory cytokine production. J Immunol. 2014;192(11):5373-81. https://doi.org/10.4049/jimmunol.1303480PMid:24771848 Kim J, Ochoa M-T, Krutzik SR, Takeuchi O, Uematsu S, Legaspi AJ, et al. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol. 2002;169(3):1535-41. https://doi.org/10.4049/jimmunol.169.3.1535PMid:12133981 PMCid:PMC4636337 Dispenza MC, Wolpert EB, Gilliland KL, Dai JP, Cong Z, Nelson AM, et al. Systemic isotretinoin therapy normalizes exaggerated TLR-2-mediated innate immune responses in acne patients. J Invest Dermatol. 2012;132(9):2198-205. https://doi.org/10.1038/jid.2012.111PMid:22513780 PMCid:PMC3614089 Selway JL, Kurczab T, Kealey T, Langlands K. Toll-like receptor 2 activation and comedogenesis: implications for the pathogenesis of acne. BMC dermatol. 2013;13(1):10. https://doi.org/10.1186/1471-5945-13-10PMid:24011352 PMCid:PMC3846817 Ingham E, Eady EA, Goodwin CE, Cove JH, Cunliffe WJ. Pro-Inflammatory Levels of Interleukin-1α-Like Bioactivity Are Present in the Majority of Open Comedones in Acne Vulgaris. J Invest Dermatol. 1992;98(6):895-901. https://doi.org/10.1111/1523-1747.ep12460324PMid:1534342 Romero MM, Basile JI, Corra Feo L, Lopez B, Ritacco V, Aleman M. Reactive oxygen species production by human dendritic cells involves TLR2 and dectin-1 and is essential for efficient immune response against Mycobacteria. Cell microbiol. 2016;18(6):875-86. https://doi.org/10.1111/cmi.12562PMid:26709456 Kavoosi G, Ardestani SK, Kariminia A. The involvement of TLR2 in cytokine and reactive oxygen species (ROS) production by PBMCs in response to Leishmania major phosphoglycans (PGs). Parasitology. 2009;136(10):1193-9. https://doi.org/10.1017/S0031182009990473PMid:19631014 Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat Rev Immunol. 2013;13(5):349-61. https://doi.org/10.1038/nri3423PMid:23618831 PMCid:PMC4250048 Sasada M, Pabst M, Johnston R. Activation of mouse peritoneal macrophages by lipopolysaccharide alters the kinetic parameters of the superoxide-producing NADPH oxidase. J Biol Chem. 1983;258(16):9631-5. PMid:6309777 Moldovan L, Irani K, Moldovan NI, Finkel T, Goldschmidt-Clermont PJ. The actin cytoskeleton reorganization induced by Rac1 requires the production of superoxide. Antioxid Redox Signal. 1999;1(1):29-43. https://doi.org/10.1089/ars.1999.1.1-29PMid:11225730 Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev. 2006;58(4):726-41. https://doi.org/10.1124/pr.58.4.5PMid:17132851 Ferré P. The biology of peroxisome proliferator-activated receptors. Diabetes. 2004;53(suppl 1):S43-S50. https://doi.org/10.2337/diabetes.53.2007.S43PMid:14749265 Ottaviani M, Camera E, Picardo M. Lipid mediators in acne. Mediators Inflamm. 2010;2010. Zouboulis C, Bettoli V. Management of severe acne. Br J Dermatol. 2015;172(S1):27-36. https://doi.org/10.1111/bjd.13639PMid:25597508 Alestas T, Ganceviciene R, Fimmel S, Müller-Decker K, Zouboulis CC. Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands. J Mol Med. 2006;84(1):75-87. https://doi.org/10.1007/s00109-005-0715-8PMid:16388388 Weindl G, Schäfer-Korting M, Schaller M, Korting HC. Peroxisome Proliferator-Activated Receptors and their Ligands. Drugs. 2005;65(14):1919-34. https://doi.org/10.2165/00003495-200565140-00002PMid:16162018 Koreck A, Pivarcsi A, Dobozy A, Kemeny L. The role of innate immunity in the pathogenesis of acne. Dermatology. 2003;206(2):96-105. https://doi.org/10.1159/000068476PMid:12592074 Briganti S, Picardo M. Antioxidant activity, lipid peroxidation and skin diseases. What's new. J Eur Acad Dermatol Venereol. 2003;17(6):663-9. https://doi.org/10.1046/j.1468-3083.2003.00751.xPMid:14761133 Akamatsu H, Horio T. The possible role of reactive oxygen species generated by neutrophils in mediating acne inflammation. Dermatology. 1998;196(1):82-5. https://doi.org/10.1159/000017876PMid:9557235 Matsubara T, Ziff M. Increased superoxide anion release from human endothelial cells in response to cytokines. J Immunol. 1986;137(10):3295-8. PMid:3021851 Kasama T, Kobayashi K, Fukushima T, Tabata M, Ohno I, Negishi M, et al. Production of interleukin 1-like factor from human peripheral blood monocytes and polymorphonuclear leukocytes by superoxide anion: the role of interleukin 1 and reactive oxygen species in inflamed sites. Clin immunol immunopathol. 1989;53(3):439-48. https://doi.org/10.1016/0090-1229(89)90006-8 Thielitz A, Helmdach M, Röpke EM, Gollnick H. Lipid analysis of follicular casts from cyanoacrylate strips as a new method for studying therapeutic effects of antiacne agents. Br J Dermatol. 2001;145(1):19-27. https://doi.org/10.1046/j.1365-2133.2001.04276.xPMid:11453902 Miyachi Y, Yoshioka A, Imamura S, Niwa Y. Effect of antibiotics on the generation of reactive oxygen species. J Invest Dermatol. 1986;86(4):449-53. https://doi.org/10.1111/1523-1747.ep12285793PMid:3755739 Laplante M, Sabatini DM. mTOR signaling at a glance. J cell sci. 2009;122(Pt 20):3589-94. https://doi.org/10.1242/jcs.051011PMid:19812304 PMCid:PMC2758797 Melnik B. Dietary intervention in acne: Attenuation of increased mTORC1 signaling promoted by Western diet. Dermatoendocrinol. 2012;4(1):20-32. https://doi.org/10.4161/derm.19828PMid:22870349 PMCid:PMC3408989 Laplante M, Sabatini DM. mTOR Signaling in Growth Control and Disease. Cell. 2012;149. https://doi.org/10.1016/j.cell.2012.03.017 Pierdominici M, Vacirca D, Delunardo F, Ortona E. mTOR signaling and metabolic regulation of T cells: new potential therapeutic targets in autoimmune diseases. Curr pharm des. 2011;17(35):3888-97. https://doi.org/10.2174/138161211798357809PMid:21933144 Kwon HH, Yoon JY, HONg JS, Jung J, Park MS, Suh DH. Clinical and histological effect of a low glycaemic load diet in treatment of acne vulgaris in Korean patients: a randomized, controlled trial. Acta Derm Venereol. 2012;92(3):241-6. https://doi.org/10.2340/00015555-1346PMid:22678562 Smith RN, Mann NJ, Braue A, Mäkeläinen H, Varigos GA. A low-glycemic-load diet improves symptoms in acne vulgaris patients: a randomized controlled trial. Am J Clin Nutr. 2007;86(1):107-15. https://doi.org/10.1093/ajcn/86.1.107PMid:17616769 Jewell JL, Guan K-L. Nutrient signaling to mTOR and cell growth. Trends Biochem Sci. 2013;38(5):233-42. https://doi.org/10.1016/j.tibs.2013.01.004PMid:23465396 PMCid:PMC3634910 Melnik BC, Zouboulis CC. Potential role of FoxO1 and mTORC1 in the pathogenesis of Western dietâ€induced acne. Exp Dermatol. 2013;22(5):311-5. https://doi.org/10.1111/exd.12142PMid:23614736 PMCid:PMC3746128 Agamia N, Abdallah D, Sorour O, Mourad B, Younan D. Skin expression of mammalian target of rapamycin and forkhead box transcription factor O1, and serum insulinâ€like growth factorâ€1 in patients with acne vulgaris and their relationship with diet. Br J Dermatol. 2016;174(6):1299-307. https://doi.org/10.1111/bjd.14409PMid:26799159 Monfrecola G, Lembo S, Caiazzo G, De Vita V, Di Caprio R, Balato A, et al. Mechanistic target of rapamycin (mTOR) expression is increased in acne patients' skin. Exp Dermatol. 2016;25(2):153-5. https://doi.org/10.1111/exd.12885PMid:26477999 Melnik B. Acne vulgaris: an inflammasomopathy of the sebaceous follicle induced by deviated FoxO1/mTORC1 signalling. Br J Dermatol. 2016;174(6):1186-8. https://doi.org/10.1111/bjd.14564PMid:27317281

Published

2019-04-10

Issue

Section

Review Article