Evaluation of Short-Term Exposure to 2.4 GHz Radiofrequency Radiation Emitted from Wi-Fi Routers on the Antimicrobial Susceptibility of Pseudomonas aeruginosa and Staphylococcus aureus

Authors

  • Samad Amani 1. Shiraz University of Medical Sciences, Shiraz, Iran
  • Mohammad Taheri 2. Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
  • Mohammad Mehdi Movahedi 3. Department of Medical Physics and Medical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran 
 4. Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
  • Mohammad Mohebi 5. School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
  • Fatemeh Nouri 6. Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
  • Alireza Mehdizadeh 3. Department of Medical Physics and Medical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

DOI:

https://doi.org/10.31661/gmj.v9i.1580

Keywords:

Pseudomonas aeruginosa; Staphylococcus aureus; Radiofrequency; Drug Resistance

Abstract

Background: Overuse of antibiotics is a cause of bacterial resistance. It is known that electromagnetic waves emitted from electrical devices can cause changes in biological systems. This study aimed at evaluating the effects of short-term exposure to electromagnetic fields emitted from common Wi-Fi routers on changes in antibiotic sensitivity to opportunistic pathogenic bacteria. Materials and Methods: Standard strains of bacteria were prepared in this study. Antibiotic susceptibility test, based on the Kirby-Bauer disk diffusion method, was carried out in Mueller-Hinton agar plates. Two different antibiotic susceptibility tests for Staphylococcus aureus and Pseudomonas aeruginosa were conducted after exposure to 2.4-GHz radiofrequency radiation. The control group was not exposed to radiation. Results: Our findings revealed that by increasing the duration of exposure to electromagnetic waves at a frequency of 2.4 GHz, bacterial resistance increased against S. aureus and P. aeruginosa, especially after 24 hours (P<0.05). Conclusion: The use of electromagnetic waves with a frequency of 2.4 GHz can be a suitable method for infection control and treatment. [GMJ.2020;9:e1580]

References

Ng K-H, editor. Non-ionizing radiations-sources, biological effects, emissions and exposures. ICNIR 2003. Belyaev I. Non-thermal biological effects of microwaves. Microw. Rev. 2005;11(2):13-29. Strašák L, Vetterl Vr, Šmarda J. Effects of low-frequency magnetic fields on bacteria Escherichia coli. Bioelectrochemistry. 2002;55(1-2):161-4. https://doi.org/10.1016/S1567-5394(01)00152-9 Fojt L, Strašák L, Vetterl Vr, Šmarda J. Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus. Bioelectrochemistry. 2004;63(1-2):337-41. https://doi.org/10.1016/j.bioelechem.2003.11.010PMid:15110299 Justo OR, Pérez VH, Alvarez DC, Alegre RM. Growth of Escherichia coli under extremely low-frequency electromagnetic fields. Biotechnol Appl Biochem. 2006;134(2):155-63. https://doi.org/10.1385/ABAB:134:2:155 Inhan-Garip A, Aksu B, Akan Z, Akakin D, Ozaydin AN, San T. Effect of extremely low frequency electromagnetic fields on growth rate and morphology of bacteria. Int J Radiat Biol. 2011;87(12):1155-61. https://doi.org/10.3109/09553002.2011.560992PMid:21401315 Belyaev I. Toxicity and SOS-response to ELF magnetic fields and nalidixic acid in E. coli cells. Mutat Res Genet Toxicol Environ Mutagen. 2011;722(1):56-61. https://doi.org/10.1016/j.mrgentox.2011.03.012PMid:21497670 Gaafar E-SA, Hanafy MS, Tohamy EY, Ibrahim MH. Stimulation and control of E. coli by using an extremely low frequency magnetic field. Rom J Biophys. 2006;16(4):283-96. Ishak NH, Ariffin R, Ali A, Sagiruddin MA, Tawi FMT, editors. Biological effects of WiFi electromagnetic radiation. 2011 IEEE International Conference on Control System, Computing and Engineering; 2011: IEEE. https://doi.org/10.1109/ICCSCE.2011.6190587 Taheri M, Mortazavi S, Moradi M, Mansouri S, Hatam G, Nouri F. Evaluation of the effect of radiofrequency radiation emitted from Wi-Fi router and mobile phone simulator on the antibacterial susceptibility of pathogenic bacteria Listeria monocytogenes and Escherichia coli. Dose-Response. 2017;15(1):1559325816688527. https://doi.org/10.1177/1559325816688527PMid:28203122 PMCid:PMC5298474 Taheri M, Mortazavi S, Moradi M, Mansouri S, Nouri F, Mortazavi S et al. Klebsiella pneumonia, a microorganism that approves the non-linear responses to antibiotics and window theory after exposure to Wi-Fi 2.4 GHz electromagnetic radiofrequency radiation. JBPE. 2015;5(3):115. Arora D, Jindal N, Kumar R, Romit M. Emerging antibiotic resistance in Pseudomonas-A challenge. Int J Pharm Pharm Sci. 2011;3(2):82-4. March SB, Ratnam S. Sorbitol-MacConkey medium for detection of Escherichia coli O157: H7 associated with hemorrhagic colitis. J Clin Microbiol. 1986;23(5):869-72. https://doi.org/10.1128/JCM.23.5.869-872.1986 Wendelboe AM, Baumbach J, Blossom DB, Frank P, Srinivasan A, Sewell CM. Outbreak of cystoscopy related infections with Pseudomonas aeruginosa: New Mexico, 2007. J Urol. 2008;180(2):588-92. https://doi.org/10.1016/j.juro.2008.04.003PMid:18554660 Cambray G, Guerout A-M, Mazel D. Integrons. Annu Rev Genet. 2010;44:141-66. https://doi.org/10.1146/annurev-genet-102209-163504PMid:20707672 Fridkin SK. Increasing prevalence of antimicrobial resistance in intensive care units. Crit Care Med. 2001;29(4):N64-N8. https://doi.org/10.1097/00003246-200104001-00002PMid:11292878 Upreti N, Rayamajhee B, Sherchan SP, Choudhari MK, Banjara MR. Prevalence of methicillin resistant Staphylococcus aureus, multidrug resistant and extended spectrum β-lactamase producing gram negative bacilli causing wound infections at a tertiary care hospital of Nepal. Antimicrob Resist Infect Control. 2018;7(1):121. https://doi.org/10.1186/s13756-018-0408-zPMid:30338059 PMCid:PMC6174564 Yüksel M, Nazıroğlu M, Özkaya MO. Long-term exposure to electromagnetic radiation from mobile phones and Wi-Fi devices decreases plasma prolactin, progesterone, and estrogen levels but increases uterine oxidative stress in pregnant rats and their offspring. Endocrine. 2016;52(2):352-62. https://doi.org/10.1007/s12020-015-0795-3PMid:26578367 Stansell MJ, Winters WD, Doe RH, Dart BK. Increased antibiotic resistance of E. coli exposed to static magnetic fields. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, Bioelectromagnetics. 2001;22(2):129-37. https://doi.org/10.1002/1521-186X(200102)22:2 Segatore B, Setacci D, Bennato F, Cardigno R, Amicosante G, Iorio R. Evaluations of the effects of extremely low-frequency electromagnetic fields on growth and antibiotic susceptibility of Escherichia coli and Pseudomonas aeruginosa. Int J Microbiol. 2012;2012. https://doi.org/10.1155/2012/587293PMid:22577384 PMCid:PMC3335185 Salmen SH, Alharbi SA, Faden AA, Wainwright M. Evaluation of effect of high frequency electromagnetic field on growth and antibiotic sensitivity of bacteria. Saudi J Biol Sci. 2018;25(1):105-10. https://doi.org/10.1016/j.sjbs.2017.07.006PMid:29379365 PMCid:PMC5775109 Taheri M, Moradi M, Mortazavi S, Mansouri S, Hatam G, Nouri F. Evaluation of the 900 MHz Radiofrequency Radiation Effects on the Antimicrobial Susceptibility and Growth Rate of Klebsiella pneumoniae. Shiraz E Med J. 2017;18(3). https://doi.org/10.17795/semj44946 Torgomyan H, Trchounian A. Low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies enhances the effects of disulfide bonds reducer on Escherichia coli growth and affects the bacterial surface oxidation-reduction state. Biochem Biophys Res Commun. 2011;414(1):265-9. https://doi.org/10.1016/j.bbrc.2011.09.069PMid:21951849 Torgomyan H, Kalantaryan V, Trchounian A. Low intensity electromagnetic irradiation with 70.6 and 73 GHz frequencies affects Escherichia coli growth and changes water properties. Cell Biochem Biophys. 2011;60(3):275-81. https://doi.org/10.1007/s12013-010-9150-8PMid:21229332 Torgomyan H, Ohanyan V, Blbulyan S, Kalantaryan V, Trchounian A. Electromagnetic irradiation of Enterococcus hirae at low-intensity 51.8-and 53.0-GHz frequencies: changes in bacterial cell membrane properties and enhanced antibiotics effects. FEMS Microbiol Lett. 2012;329(2):131-7. https://doi.org/10.1111/j.1574-6968.2012.02512.xPMid:22288948 Torgomyan H, Trchounian A. Escherichia coli membrane-associated energy-dependent processes and sensitivity toward antibiotics changes as responses to low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies. Cell Biochem Biophys. 2012;62(3):451-61. https://doi.org/10.1007/s12013-011-9327-9PMid:22101511 Xu C, Lin X, Ren H, Zhang Y, Wang S, Peng X. Analysis of outer membrane proteome of Escherichia coli related to resistance to ampicillin and tetracycline. Proteomics. 2006;6(2):462-73. https://doi.org/10.1002/pmic.200500219PMid:16372265 Torgomyan H, Trchounian A. Bactericidal effects of low-intensity extremely high frequency electromagnetic field: an overview with phenomenon, mechanisms, targets and consequences. Crit Rev Microbiol. 2013;39(1):102-11. https://doi.org/10.3109/1040841X.2012.691461PMid:22667685

Published

2020-03-14

Issue

Section

Original Article