Does Bromelain-Cisplatin Combination Afford In-Vitro Synergistic Anticancer Effects on Human Prostatic Carcinoma Cell Line, PC3?
DOI:
https://doi.org/10.31661/gmj.v9i.1749Keywords:
PC3 Cells; Bromelain; Cisplatin; Synergistic Effect; Clonogenic Cell Assay; p53 GeneAbstract
Background: Bromelain enhances anticancer impacts to chemotherapeutic agents. The question as to whether bromelain does promote in-vitro cytotoxic and proapoptotic effects of cisplatin on human prostatic carcinoma PC3 cell line was investigated. Materials and Methods: PC3 (human prostatic carcinoma) cells were treated either single or in combination with bromelain and/or cisplatin. MTT, clonogenic assay, flow cytometry and real-time quantitative polymerase chain reaction were used to investigate cell viability, colony formation, proapoptotic potential and p53 gene expression, respectively. Results: Cisplatin (IC10) combined with bromelain (IC40) significantly affected PC3 cell viability, inhibited colony formation, as well increased p53 proapoptotic gene expression compared to cisplatin single treatment. Nevertheless, bromelain-cisplatin chemoherbal combination did not display any additive proapoptotic effect compared to single treatments. Conclusion: Bromelain-cisplatin chemoherbal combination demonstrated synergistic in-vitro anticancer effect on human prostatic carcinoma cell line, PC3, that drastically reduced required cisplatin dose. [GMJ.2020;9:e1749]
References
Ahel J, Hudorović N, ViÅ¡nja ViÄić-Hudorović C, Nikles H. TGF-BETA in the natural history of prostate cancer. Acta Clin Croat. 2019;58(1):128-38. https://doi.org/10.20471/acc.2019.58.01.17PMid:31363335 PMCid:PMC6629207 DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 2014;64(6):252-71. https://doi.org/10.3322/caac.21235PMid:24890451 Campana LG, Edhemovic I, Soden D, Perrone AM, Scarpa M, Campanacci L, et al. Electrochemotherapy-Emerging applications technical advances, new indications, combined approaches, and multi-institutional collaboration. Eur J Surg Oncol. 2019;45(2):92-102. https://doi.org/10.1016/j.ejso.2018.11.023PMid:30528893 Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg Chem. 2019;88:102925. https://doi.org/10.1016/j.bioorg.2019.102925PMid:31003078 Damia G, Broggini M. Platinum Resistance in Ovarian Cancer: Role of DNA Repair. Cancers (Basel). 2019;11(1):119. https://doi.org/10.3390/cancers11010119PMid:30669514 PMCid:PMC6357127 Sun W, Sanderson PE, Zheng W. Drug combination therapy increases successful drug repositioning. Drug Discov Today. 2016;21(7):1189-95. https://doi.org/10.1016/j.drudis.2016.05.015PMid:27240777 PMCid:PMC4907866 Lin SR, Chang CH, Hsu CF, Tsai MJ, Cheng H, Leong MK, et al. Natural compounds as potential adjuvants to cancer therapy: preclinical evidence. Br J Pharmacol. 2019;177(6):1409-23. https://doi.org/10.1111/bph.14816PMid:31368509 PMCid:PMC7056458 Rathnavelu V, Alitheen NB, Sohila S, Kanagesan S, Ramesh R. Potential role of bromelain in clinical and therapeutic applications. Biomed Rep. 2016;5(3):283-8. https://doi.org/10.3892/br.2016.720PMid:27602208 PMCid:PMC4998156 Soheilifar S, Bidgoli M, Hooshyarfard A, Shahbazi A, Vahdatinia F, Khoshkhooie F. Effect of Oral Bromelain on Wound Healing, Pain, and Bleeding at Donor Site Following Free Gingival Grafting: A Clinical Trial. J Dent (Tehran). 2018;15(5):309-16. Amini A, Masoumi-Moghaddam S, Ehteda A, Liauw W, Morris DL. Potentiation of chemotherapeutics by bromelain and N-acetylcysteine: sequential and combination therapy of gastrointestinal cancer cells. Am J Cancer Res. 2016;6(2):350-69. Tysnes BB, Maurer HR, Porwol T, Probst B, Bjerkvig R, Hoover F. Bromelain reversibly inhibits invasive properties of glioma cells. Neoplasia. 2001;3(6):469-79. https://doi.org/10.1038/sj.neo.7900196PMid:11774029 PMCid:PMC1506565 Pauzi AZ, Yeap SK, Abu N, Lim KL, Omar AR, Aziz SA, et al. Combination of cisplatin and bromelain exerts synergistic cytotoxic effects against breast cancer cell line MDA-MB-231 in vitro. Chin Med. 2016;11:46. https://doi.org/10.1186/s13020-016-0118-5PMid:27891174 PMCid:PMC5111264 Satari A, Amini AS, Raeisi E, Lemoigne Y, Hiedarian E. Synergetic impact of combined 5-fluorouracil and rutin on apoptosis in pc3 cancer cells through the modulation of p53 gene expression. Adv Pharm Bull. 2019;9(3):462-9. https://doi.org/10.15171/apb.2019.055PMid:31592435 PMCid:PMC6773939 Raeisi F, Shahbazi-Gahrouei D, Raeisi E, Heidarian E. Evaluation of the radiosensitizing potency of bromelain for radiation therapy of 4T1 breast cancer cells. J Med Signals Sens. 2019;9(1):68-74. https://doi.org/10.4103/jmss.JMSS_25_18PMid:30967992 PMCid:PMC6419564 Groeben C, Wirth MP. Prostate cancer: Basics on clinical appearance, diagnostics and treatment. Med Monatsschr Pharm. 2017;40(5):192-201. Kalra N, Bhui K, Roy P, Srivastava S, George J, Prasad S, et al. Regulation of p53,nuclear factor kappaB and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin. Toxicol Appl Pharmacol. 2008;226(1):30-7. https://doi.org/10.1016/j.taap.2007.08.012PMid:17889918 Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol. 2005;205(2):275-92. https://doi.org/10.1002/path.1706PMid:15641020 Oun R, Moussa YE, Wheate NJ. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans. 2018;47(19):6645-53. https://doi.org/10.1039/C8DT00838HPMid:29632935 Hoseinzadeh S, Raeisi E, Lemoigne Y, Heidarian E. Effects of combined 5-Fluorouracil and ZnO NPs on human breast cancer MCF-7 Cells: P53 gene expression, Bcl-2 signaling pathway, and invasion activity. Nanomed J. 2019;6(3):232-40. Wei Y, Yang P, Cao S, Zhao L. The combination of curcumin and 5-fluorouracil in cancer therapy. Arch Pharm Res. 2018;41(1):1-13. https://doi.org/10.1007/s12272-017-0979-xPMid:29230689 Alaufi OM, Noorwali A, Zahran F, Al-Abd AM, Al-Attas S. Cytotoxicity of thymoquinone alone or in combination with cisplatin (CDDP) against oral squamous cell carcinoma in vitro. Sci Rep. 2017;17(1):13131. https://doi.org/10.1038/s41598-017-13357-5PMid:29030590 PMCid:PMC5640598 Chobotova K, Vernallis A, Majid FA. Bromelain's activity and potential as an anti-cancer agent: Current evidence and perspectives. Cancer Lett. 2010;290(2):148-56. https://doi.org/10.1016/j.canlet.2009.08.001PMid:19700238 Bhatnagar P, Pant AB, Shukla Y, Chaudhari B, Kumar P, Gupta KC. Bromelain nanoparticles protect against 7,12-dimethylbenz[a]anthracene induced skin carcinogenesis in mouse model. Eur J Pharm Biopharm. 2015;91:35-46. https://doi.org/10.1016/j.ejpb.2015.01.015PMid:25619920 Secor ER Jr, Szczepanek SM, Castater CA, Adami AJ, Matson AP, Rafti ET, et al. Bromelain inhibits allergic sensitization and murine asthma via modulation of dendritic cells. Evid Based Complement Alternat Med. 2013;2013:702196. https://doi.org/10.1155/2013/702196PMid:24381635 PMCid:PMC3870104 Fitzhugh DJ, Shan S, Dewhirst MW, Hale LP. Bromelain treatment decreases neutrophil migration to sites of inflammation. Clin Immunol. 2008;128(1):66-74. https://doi.org/10.1016/j.clim.2008.02.015PMid:18482869 PMCid:PMC2516972 Ghensi P, Cucchi A, Bonaccorso A, Ferroni L, Gardin C, Mortellaro C, et al. In vitro effect of bromelain on the regenerative properties of mesenchymal stem cells. J Craniofac Surg. 2019;30(4):1064-7. https://doi.org/10.1097/SCS.0000000000004862PMid:30358745 Chang TC, Wei PL, Makondi PT, Chen WT, Huang CY, Chang YJ. Bromelain inhibits the ability of colorectal cancer cells to proliferate via activation of ROS production and autophagy. PLoS One. 2019;14(1):e0210274. https://doi.org/10.1371/journal.pone.0210274PMid:30657763 PMCid:PMC6338369 Baez R, Lopes MT, Salas CE, Hernandez M. In vivo antitumoral activity of stem pineapple (Ananas comosus) bromelain. Planta Med. 2007;73(13):1377-83. https://doi.org/10.1055/s-2007-990221PMid:17893836 Dhandayuthapani S, Perez HD, Paroulek A, Chinnakkannu P, Kandalam U, Jaffe M, et al. Bromelain-induced apoptosis in GI-101A breast cancer cells. J Med Food. 2012;15(4):344-9. https://doi.org/10.1089/jmf.2011.0145PMid:22191568 Gläser D, Hilberg T. The influence of bromelain on platelet count and platelet activity in vitro. Platelets. 2006;17(1):37-41. https://doi.org/10.1080/09537100500197489PMid:16308185 Amini A, Ehteda A, Masoumi Moghaddam S, Akhter J, Pillai K, Morris DL. Cytotoxic effects of bromelain in human gastrointestinal carcinoma cell lines (MKN45, KATO-III, HT29-5F12, and HT29-5M21). Onco Targets Ther. 2013;6:403-9. https://doi.org/10.2147/OTT.S43072PMid:23620673 PMCid:PMC3633552 Pillai K, Ehteda A, Akhter J, Chua TC, Morris DL. Anticancer effect of bromelain with and without cisplatin or 5-FU on malignant peritoneal mesothelioma cells. Anticancer Drugs. 2014;25(2):150-60. https://doi.org/10.1097/CAD.0000000000000039PMid:24366282 Nasiri R, Almaki JH, Idris A, Nasiri M, Irfan M, Majid FA. Targeted delivery of bromelain using dual mode nanoparticles: Synthesis, physicochemical characterization, in vitro and in vivo evaluation. RSC Adv. 2017;7:40074‑94. https://doi.org/10.1039/C7RA06389J Bendale Y, Bendale V, Paul S. Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis. Integr Med Res. 2017;6(2):141-8. https://doi.org/10.1016/j.imr.2017.01.006PMid:28664137 PMCid:PMC5478255 Bhui K, Prasad S, George J, Shukla Y. Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumor-initiation triggering mitochondrial death pathway. Cancer Lett. 2009;282(2):167-76. https://doi.org/10.1016/j.canlet.2009.03.003PMid:19339108 Amini A, Masoumi-Moghaddam S, Ehteda A, Morris DL. Bromelain and N-acetylcysteine inhibit proliferation and survival of gastrointestinal cancer cells in vitro: significance of combination therapy. J Exp Clin Cancer Res. 2014;33(1):92. https://doi.org/10.1186/PREACCEPT-1557435139144520 Chaudhary B, Bist R. Protective manifestation of bacoside A and bromelain in terms of cholinesterases, gamma-amino butyric acid, serotonin level and stress proteins in the brain of dichlorvos-intoxicated mice. Cell Stress Chaperones. 2017;22(3):371-6. https://doi.org/10.1007/s12192-017-0773-1PMid:28321764 PMCid:PMC5425367