Mummy Induces Apoptosis Through Inhibiting of Epithelial-Mesenchymal Transition (EMT) in Human Breast Cancer Cells
DOI:
https://doi.org/10.31661/gmj.v9i.1812Keywords:
Mummy; EMT, TGFβ1; Apoptosis; Breast CancerAbstract
Background: Mummy (Iranian pure shilajit) is a remedy with possessing anti-inflammatory, antioxidant and anticancer activities. This study aimed to examine mummy effects on epithelial-mesenchymal transition (EMT) and invasiveness of MCF-7 and MDA-MB-231 breast cancer (BC) cell lines with underlying its mechanism. Materials and Methods: The dose-dependent inhibitory effect of the mummy on cell proliferation in vitro was determined using the MTT assay. Flow cytometry and 4’,6-diamidino-2-phenylindole dihydrochloride staining were respectively used for quantitative and qualitative analysis of cellular apoptosis, and gene expression analysis was conducted using real-time PCR. Results: MDA-MB-231 showed more sensitivity than the MCF-7 cell line to the anticancer activity of mummy, while mummy did not exhibit significant cell cytotoxicity against human normal cells (MCF-10A). The gene expression profile demonstrated a significant decrease in TGF-β1, TGF-βR1, TWIST1, NOTCH1, CTNNB1, SRC along with an increase in E-cadherin mRNA levels in mummy treated cells compared to the untreated control group (P≤0.05). Conclusion: Mummy triggers inhibition of EMT and metastasis in breast cancer cells mainly through the downregulation of TGFβ1 activity, and more studies required to find its specific anticancer activity with details. [GMJ.2020;9:e1812]
References
Araújo T, Aresta G, Castro E, Rouco J, Aguiar P, Eloy C et al. Classification of breast cancer histology images using convolutional neural networks. PloS one. 2017;12(6):e0177544. https://doi.org/10.1371/journal.pone.0177544PMid:28570557 PMCid:PMC5453426 Johns LE, Jones ME, Schoemaker MJ, McFadden E, Ashworth A, Swerdlow AJ. Domestic light at night and breast cancer risk: a prospective analysis of 105 000 UK women in the Generations Study. Brit J Cancer. 2018;118(4):600. https://doi.org/10.1038/bjc.2017.359PMid:29360812 PMCid:PMC5830585 Singh SK, Singh S, Lillard Jr JW, Singh R. Drug delivery approaches for breast cancer. Int J Nanomed. 2017;12:6205. https://doi.org/10.2147/IJN.S140325PMid:28883730 PMCid:PMC5576701 Shahabi A, Naghili B, Ansarin K, Zarghami N. The relationship between microRNAs and Rab family GTPases in human cancers. J Cellular Physiol. 2019. https://doi.org/10.1002/jcp.28038PMid:30609026 Xing M, Yan F, Yu S, Shen P. Efficacy and cardiotoxicity of liposomal doxorubicin-based chemotherapy in advanced breast cancer: a meta-analysis of ten randomized controlled trials. PLoS One. 2015;10(7):e0133569. https://doi.org/10.1371/journal.pone.0133569PMid:26204517 PMCid:PMC4512701 Ladas EJ, Marjerrison S, Arora B, Hesseling PB, Ortiz R, Antillon F et al. Traditional and complementary medicine in pediatric oncology and low-middle income countries: Recommendations from the International Society of Pediatric Oncology (SIOP), T&CM Collaborative. JNCI Monographs. 2017;2017(52). https://doi.org/10.1093/jncimonographs/lgx014PMid:29140495 Surapaneni DK, Adapa SRSS, Preeti K, Teja GR, Veeraragavan M, Krishnamurthy S. Shilajit attenuates behavioral symptoms of chronic fatigue syndrome by modulating the hypothalamic-pituitary-adrenal axis and mitochondrial bioenergetics in rats. J Ethnopharmacol. 2012;143(1):91-9. https://doi.org/10.1016/j.jep.2012.06.002PMid:22771318 Tajik J, Kheirandish R, Amanollahi R, Shahabi A. Gastroprotective effect of aqueous extracts of Lippia citriodora, ajowan (Trachyspermum copticum), and Dracocepalum polychaetum on induced gastric ulcer in rats. Compar Clin Pathol . 2015;24(6):1605-10. https://doi.org/10.1007/s00580-015-2123-y Wilson E, Rajamanickam GV, Dubey GP, Klose P, Musial F, Saha FJ et al. Review on shilajit used in traditional Indian medicine. J Ethnopharmacol. 2011;136(1):1-9. https://doi.org/10.1016/j.jep.2011.04.033PMid:21530631 Pant K, Gupta P, Damania P, Yadav AK, Gupta A, Ashraf A et al. Mineral pitch induces apoptosis and inhibits proliferation via modulating reactive oxygen species in hepatic cancer cells. BMC Compl Alternative Med. 2016;16(1):148. https://doi.org/10.1186/s12906-016-1131-zPMid:27233240 PMCid:PMC4882837 Cagno V, Donalisio M, Civra A, Cagliero C, Rubiolo P, Lembo D. In vitro evaluation of the antiviral properties of Shilajit and investigation of its mechanisms of action. J Ethnopharmacol. 2015;166:129-34. https://doi.org/10.1016/j.jep.2015.03.019PMid:25792012 Davis FM, Azimi I, Faville RA, Peters AA, Jalink K, Putney Jr JW et al. Induction of epithelial-mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent. Oncogene. 2014;33(18):2307. https://doi.org/10.1038/onc.2013.187PMid:23686305 PMCid:PMC3917976 Lo HC, Zhang XH-F. EMT in Metastasis: Finding the Right Balance. Developmental Cell. 2018;45(6):663-5. https://doi.org/10.1016/j.devcel.2018.05.033PMid:29920271 Li Z, Dong M, Fan D, Hou P, Li H, Liu L et al. LncRNA ANCR down-regulation promotes TGF-β-induced EMT and metastasis in breast cancer. Oncotarget. 2017;8(40):67329. https://doi.org/10.18632/oncotarget.18622PMid:28978036 PMCid:PMC5620176 Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer science. 2007;98(10):1512-20. https://doi.org/10.1111/j.1349-7006.2007.00550.xPMid:17645776 Xu J, Lamouille S, Derynck R. TGF-β-induced epithelial to mesenchymal transition. Cell research. 2009;19(2):156. https://doi.org/10.1038/cr.2009.5PMid:19153598 PMCid:PMC4720263 Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nature Rev Cancer. 2018;18(2):128. https://doi.org/10.1038/nrc.2017.118PMid:29326430 Lecarpentier Y, Schussler O, Claes V, Vallée A. The Myofibroblast: TGFβ-1, a conductor which plays a key role in fibrosis by regulating the balance between PPARγ and the canonical WNT pathway. Nuclear Recep Res. 2017;4. https://doi.org/10.11131/2017/101299PMid:29016360 Feldkoren B, Hutchinson R, Rapaport Y, Mahajan A, Margulis V. Integrin signaling potentiates transforming growth factor-beta 1 (TGF-β1) dependent down-regulation of E-Cadherin expression-Important implications for epithelial to mesenchymal transition (EMT) in renal cell carcinoma. Exp Cell Res. 2017;355(2):57-66. https://doi.org/10.1016/j.yexcr.2017.03.051PMid:28363829 Zavadil J, Cermak L, Soto-Nieves N, Böttinger EP. Integration of TGF-β/Smad and Jagged1/Notch signaling in epithelial-to-mesenchymal transition. EMBO J. 2004;23(5):1155-65. https://doi.org/10.1038/sj.emboj.7600069PMid:14976548 PMCid:PMC380966 Ding S-M, Lu A-L, Zhang W, Zhou L, Xie H-Y, Zheng S-S, et al. The role of cancer-associated fibroblast MRC-5 in pancreatic cancer. J Cancer. 2018;9(3):614. https://doi.org/10.7150/jca.19614PMid:29483967 PMCid:PMC5820929 Vermes I, Haanen C, Steffens-Nakken H, Reutellingsperger C. A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein-labeled annexin V. J Immunol Methods. 1995;184(1):39-51. https://doi.org/10.1016/0022-1759(95)00072-I Hadjittofi C, Coran AG, Mogilner JG, Pollak Y, Matter I, Sukhotnik I. Dietary supplementation with vitamin D stimulates intestinal epithelial cell turnover after massive small bowel resection in rats. Ped Surg Int. 2013;29(1):41-50. https://doi.org/10.1007/s00383-012-3205-4PMid:23114406 Atale N, Gupta S, Yadav U, Rani V. Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques. J Microscopy. 2014;255(1):7-19. https://doi.org/10.1111/jmi.12133PMid:24831993 Qi F, Zhao L, Zhou A, Zhang B, Li A, Wang Z et al. The advantages of using traditional Chinese medicine as adjunctive therapy in the whole course of cancer treatment instead of only terminal stage of cancer. Biosci Trends. 2015;9(1):16-34. https://doi.org/10.5582/bst.2015.01019PMid:25787906 Dai W, Gao Q, Qiu J, Yuan J, Wu G, Shen G. Quercetin induces apoptosis and enhances 5-FU therapeutic efficacy in hepatocellular carcinoma. Tumor Biol. 2016;37(5):6307-13. https://doi.org/10.1007/s13277-015-4501-0PMid:26628295 Pant K, Yadav AK, Gupta P, Rathore AS, Nayak B, Venugopal SK. Humic acid inhibits HBV-induced autophagosome formation and induces apoptosis in HBV-transfected Hep G2 cells. Sci Rep. 2016;6:34496. https://doi.org/10.1038/srep34496PMid:27708347 PMCid:PMC5052648 Phaechamud T, Charoenteeraboon J, Wetwitayaklung P, Limmatvapirat C, Srichan T. Some Biological Activities and Safety of Mineral Pitch. Sci Eng Health Studies. 2008;2(2):7-17. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267(5203):1456-62. https://doi.org/10.1126/science.7878464PMid:7878464 Limame R, de Beeck KO, Van Laere S, Croes L, De Wilde A, Dirix L et al. Expression profiling of migrated and invaded breast cancer cells predicts early metastatic relapse and reveals Krüppel-like factor 9 as a potential suppressor of invasive growth in breast cancer. Oncoscience. 2014;1(1):69. https://doi.org/10.18632/oncoscience.10PMid:25593984 PMCid:PMC4295756 Pant K, Singh B, Thakur N. Shilajit: a humic matter panacea for cancer. 2012. Tian M, Schiemann WP. TGF-β stimulation of EMT programs elicits non-genomic ER-α activity and anti-estrogen resistance in breast cancer cells. J Cancer Metastasis Treat. 2017;3:150. https://doi.org/10.20517/2394-4722.2017.38PMid:28955730 PMCid:PMC5612668 Christeli E, Zoumpourlis V, Kiaris H, Ergazaki M, Vassilaros S, Spandidos D. TGF-beta 1 overexpression in breast cancer. Oncol Rep. 1996;3(6):1115-8. https://doi.org/10.3892/or.3.6.1115PMid:21594520 Zarzynska JM. Two faces of TGF-beta1 in breast cancer. Mediators Inflammation. 2014;2014. https://doi.org/10.1155/2014/141747PMid:24891760 PMCid:PMC4033515 Castillejo A, Rothman N, Murta-Nascimento C, Malats N, GarcÃa-Closas M, Gómez-MartÃnez A et al. TGFB1 and TGFBR1 polymorphic variants in relationship to bladder cancer risk and prognosis. Int J Cancer. 2009;124(3):608-13. https://doi.org/10.1002/ijc.24013PMid:19004027 PMCid:PMC6896897 Xu Y, Qin L, Sun T, Wu H, He T, Yang Z et al. Twist1 promotes breast cancer invasion and metastasis by silencing Foxa1 expression. Oncogene. 2017;36(8):1157. https://doi.org/10.1038/onc.2016.286PMid:27524420 PMCid:PMC5311074 Je E-C, Lca BS, Ga GA. The role of transcription factor TWIST in cancer cells. J Genet Syndr Gene Ther. 2013;4(124):1-7. Heldin C-H, Vanlandewijck M, Moustakas A. Regulation of EMT by TGFβ in cancer. FEBS lett. 2012;586(14):1959-70. https://doi.org/10.1016/j.febslet.2012.02.037PMid:22710176 Yang C-m, Ji S, Li Y, Fu L-Y, Jiang T, Meng F-d. β-Catenin promotes cell proliferation, migration, and invasion but induces apoptosis in renal cell carcinoma. OncoTarg Therapy. 2017;10:711. https://doi.org/10.2147/OTT.S117933PMid:28260916 PMCid:PMC5328321 Zhao Z, Rahman MA, Chen ZG, Shin DM. Multiple biological functions of Twist1 in various cancers. Oncotarget. 2017;8(12):20380. https://doi.org/10.18632/oncotarget.14608PMid:28099910 PMCid:PMC5386770 Zhao L, Li X, Song N, Li A, Hou K, Qu X et al. Src promotes EGF-induced epithelial-to-mesenchymal transition and migration in gastric cancer cells by upregulating ZEB1 and ZEB2 through AKT. Cell Biol Int. 2018;42(3):294-302. https://doi.org/10.1002/cbin.10894PMid:29052277 Zhang H, Davies KJ, Forman HJ. TGFβ1 rapidly activates Src through a non-canonical redox signaling mechanism. Arch Biochem Biophy. 2015;568:1-7. https://doi.org/10.1016/j.abb.2015.01.001PMid:25585026 PMCid:PMC4339486 Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 2005;65(18):8530-7. https://doi.org/10.1158/0008-5472.CAN-05-1069PMid:16166334 Baker A, Wyatt D, Bocchetta M, Li J, Filipovic A, Green A et al. Notch-1-PTEN-ERK1/2 signaling axis promotes HER2+ breast cancer cell proliferation and stem cell survival. Oncogene. 2018:1. https://doi.org/10.1038/s41388-018-0251-yPMid:29743588