Curcumin Along With Fe3O4 Nanoparticles Improved Sperm Parameters In Rats With Testicular Ischemia
DOI:
https://doi.org/10.31661/gmj.v10i.2034Keywords:
Male Infertility, Fe3O4 Nanoparticles, Curcumin, Oxidative Stress, Sperm ParametersAbstract
Background: Ischemic/reperfusion (I/R) in testicular tissue is one reason for the worldwide increase in male infertility. In the present study, we assessed the effects of curcumin and Fe3O4 nanoparticles (NPs) on sperm parameters in rats with I/R damage. Materials and Methods: Forty-eight adult male rats were divided into two groups (n=24 per group): control and torsion/detorsion. The control and torsion/detorsion groups were divided into four subgroups include sham, Fe3O4 NPs, curcumin, and Fe3O4 NPs+curcumin. After the rats were sacrificed, semen was collected from their epididymal tissues to assess sperm viability, motility, concentration, and morphology. Results: Curcumin significantly improved viability, motility, and normal sperm morphology in rats with I/R damage compared to the control group; however, it did not have a significant effect on sperm concentration (P<0.001). Fe3O4 NPs alone decreased all sperm parameters in the control and I/R rats (P<0.001). However, concomitant administration of Fe3O4 nanoparticles with curcumin significantly improved sperm parameters in rats with I/R damage (P<0.001). Conclusion: The increase in all semen parameters in the experimental groups with concomitant use of Fe3O4 NPs plus curcumin indicated that green synthesis of NPs could be recommended for future clinical studies.
References
Rowe PJ, Comhaire FH, Hargreave TB, Mahmoud AM. WHO manual for the standardized investigation and diagnosis of the infertile male: Camb Uni Press; 2000. Ringdahl EN, Teague L. Testicular torsion. Am Fam Physic. 2006;74(10):1739-43. Sharp VJ, Kieran K, Arlen AM. Testicular torsion: diagnosis, evaluation, and management. Am Fam Physic. 2013;88(12):835-40. Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. Causes and consequences of oxidative stress in spermatozoa. Reproduction, Fertil and Dev. 2016;28(2):1-10. https://doi.org/10.1071/RD15325PMid:27062870 Agarwal A, Virk G, Ong C, Du Plessis SS. Effect of oxidative stress on male reproduction. WJMH. 2014;32(1):1-17. https://doi.org/10.5534/wjmh.2014.32.1.1PMid:24872947 PMCid:PMC4026229 Ko EY, Sabanegh Jr ES, Agarwal A. Male infertility testing: reactive oxygen species and antioxidant capacity. Fertil and Steril. 2014;102(6):1518-27. https://doi.org/10.1016/j.fertnstert.2014.10.020PMid:25458618 Kuo J-J, Chang H-H, Tsai T-H, Lee T-Y. Positive effect of curcumin on inflammation and mitochondrial dysfunction in obese mice with liver steatosis. Int J Mol Med. 2012;30(3):673-9. https://doi.org/10.3892/ijmm.2012.1049PMid:22751848 Kant V, Gopal A, Pathak NN, Kumar P, Tandan SK, Kumar D. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int Immunopharm. 2014;20(2):322-30. https://doi.org/10.1016/j.intimp.2014.03.009PMid:24675438 Apisariyakul A, Vanittanakom N, Buddhasukh D. Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae). J Ethnopharm. 1995;49(3):163-10. https://doi.org/10.1016/0378-8741(95)01320-2 Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Alt Med Rev. 2009;14(2). Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 2001;21(21):8370-7. https://doi.org/10.1523/JNEUROSCI.21-21-08370.2001PMid:11606625 PMCid:PMC6762797 Kanitkar M, Gokhale K, Galande S, Bhonde R. Novel role of curcumin in the prevention of cytokineâ€induced islet death in vitro and diabetogenesis in vivo. British J Pharm. 2008;155(5):702-13. https://doi.org/10.1038/bjp.2008.311PMid:18695642 PMCid:PMC2584917 Ma C, Ma Z, Fu Q, Ma S. Curcumin attenuates allergic airway inflammation by regulation of CD4+ CD25+ regulatory T cells (Tregs)/Th17 balance in ovalbumin-sensitized mice. Fitoterapia. 2013;87:57-64. https://doi.org/10.1016/j.fitote.2013.02.014PMid:23500387 Mei X, Xu D, Xu S, Zheng Y, Xu S. Novel role of Zn (II)-curcumin in enhancing cell proliferation and adjusting proinflammatory cytokine-mediated oxidative damage of ethanol-induced acute gastric ulcers. Chemico-biol Interact. 2012;197(1):31-9. https://doi.org/10.1016/j.cbi.2012.03.006PMid:22465177 Markides H, Rotherham M, El Haj A. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J Nanomaterials. 2012;2012. https://doi.org/10.1155/2012/614094 Nalwa HS. A special issue on reviews in nanomedicine, drug delivery and vaccine development. J Biomed Nanotech. 2014;10(9):1635-40. https://doi.org/10.1166/jbn.2014.2033PMid:25992435 Sharifdini H, Parivar K, Hayati Rodbari N. Study of the effect of iron oxide nanoparticles on mouse testis development during the embryonic period in NMRI strain. Nova Biol Reperta. 2017;4(3):215-25. Yamashita K, Yoshioka Y. Safety assessment of nanomaterials in reproductive developmental field. Yakugaku Zasshi: J of the Pharm Soc Japan. 2012;132(3):331-5. https://doi.org/10.1248/yakushi.132.331PMid:22382838 Sonaje K, Italia J, Sharma G, Bhardwaj V, Tikoo K, Kumar MR. Development of biodegradable nanoparticles for oral delivery of ellagic acid and evaluation of their antioxidant efficacy against cyclosporine A-induced nephrotoxicity in rats. Pharm Res. 2007;24(5):899-908. https://doi.org/10.1007/s11095-006-9207-yPMid:17377747 WHO. Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; Cambridge University Press: New York, NY, USA, 2010 Carden DL,Granger DN. Pathophysiology of ischemia-reperfusion injury. J Pathol. 2000; 190(3):255-66. https://doi.org/10.1002/(SICI)1096-9896(200002)190:3 Mallick IH, Yang W, Winslet MC, Seifalian AM. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis and Sci. 2004;49(9):1359-77. https://doi.org/10.1023/B:DDAS.0000042232.98927.91PMid:15481305 Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol. 2000;190(3):255-66. https://doi.org/10.1002/(SICI)1096-9896(200002)190:3 Power RE, Scanlon R, Kay EW, Creagh TA, Bouchierâ€Hayes DJ. Longâ€term protective effects of hypothermia on reperfusion injury postâ€testicular torsion. Scand J Urol and Nephrol. 2003;37(6):456-60. https://doi.org/10.1080/00365590310014508PMid:14675916 Paller MS, Hoidal J, Ferris TF. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest. 1984;74(4):1156-64. https://doi.org/10.1172/JCI111524PMid:6434591 PMCid:PMC425281 Fellström B, Aküyrek L, Backman U, Larsson E, Melin J, editors. Postischemic reperfusion injury and allograft arteriosclerosis. Transplan Proceed; 1998. https://doi.org/10.1016/S0041-1345(98)01412-2 Oldenburg O, Qin Q, Krieg T, Yang X-M, Philipp S, Critz SD, et al. Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Ame J Physiol-Heart and Circul Physiol. 2004;286(1):H468-H76. https://doi.org/10.1152/ajpheart.00360.2003PMid:12958031 Seth P, Kumari R, Madhavan S, Singh AK, Mani H, Banaudha KK, et al. Prevention of renal ischemia-reperfusion-induced injury in rats by picroliv. Biochem pharmacol. 2000;59(10):1315-22. https://doi.org/10.1016/S0006-2952(00)00268-9 Unal D, Yeni E, Erel O, Bitiren M, Vural H. Antioxidative effects of exogenous nitric oxide versus antioxidant vitamins on renal ischemia reperfusion injury. Urolog Res. 2002;30(3):190-4. https://doi.org/10.1007/s00240-002-0254-5PMid:12111183 Ishihara M, Itoh M, Miyamoto K, Suna S, Takeuchi Y, Takenaka I, et al. Spermatogenic disturbance induced by diâ€(2â€ethylhexyl) phthalate is significantly prevented by treatment with antioxidant vitamins in the rat. Int J Androl. 2000;23(2):85-94. https://doi.org/10.1046/j.1365-2605.2000.00212.xPMid:10762434 Bayrak O, Uz E, Bayrak R, Turgut F, Atmaca AF, Sahin S, et al. Curcumin protects against ischemia/reperfusion injury in rat kidneys. World J Urol. 2008;26(3):285-91. https://doi.org/10.1007/s00345-008-0253-4PMid:18373094 Mahood IK, Hallmark N, McKinnell C, Walker M, Fisher JS, Sharpe RM. Abnormal Leydig cell aggregation in the fetal testis of rats exposed to di (n-butyl) phthalate and its possible role in testicular dysgenesis. Endocrinology. 2005;146(2):613-23. https://doi.org/10.1210/en.2004-0671PMid:15539561 Hsieh JC, Sun M, editors. Evidence on the Carcinogenicity of Butyl Benzyl Phthalate (BBP). Meeting of the Carcinogen Ident Commit; 2013: Citeseer. Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environm Health Perspect. 2005;113(8):1056-61. https://doi.org/10.1289/ehp.8100PMid:16079079 PMCid:PMC1280349 Sun W, Lu Y, Mao J, Chang N, Yang J, Liu Y. Multidimensional sensor for pattern recognition of proteins based on DNA-gold nanoparticles conjugates. Analytic Chem. 2015;87(6):3354-9. https://doi.org/10.1021/ac504587hPMid:25673351 Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16(6-7):437-45. https://doi.org/10.1080/08958370490439597PMid:15204759 Apopa PL, Qian Y, Shao R, Guo NL, Schwegler-Berry D, Pacurari M, et al. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Particle & FibreToxicol. 2009;6(1):1-14. https://doi.org/10.1186/1743-8977-6-1PMid:19134195 PMCid:PMC2632982 Gromadzka-Ostrowska J, Dziendzikowska K, Lankoff A, DobrzyÅ„ska M, Instanes C, Brunborg G, et al. Silver nanoparticles effects on epididymal sperm in rats. Toxicol let. 2012;214(3):251-8. https://doi.org/10.1016/j.toxlet.2012.08.028PMid:22982066 Lafuente D, Garcia T, Blanco J, Sánchez D, Sirvent J, Domingo J, et al. Effects of oral exposure to silver nanoparticles on the sperm of rats. Reprod Toxico. 2016;60:133-9. https://doi.org/10.1016/j.reprotox.2016.02.007PMid:26900051 Adebayo O, Akinloye O, Adaramoye O. Cerium oxide nanoparticle elicits oxidative stress, endocrine imbalance and lowers sperm characteristics in testes of balb/c mice. Andrologia. 2018;50(3):e12920. https://doi.org/10.1111/and.12920PMid:29164652 Bai Y, Zhang Y, Zhang J, Mu Q, Zhang W, Butch ER, et al. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat Nanotechno. 2010;5(9):683. https://doi.org/10.1038/nnano.2010.153PMid:20693989 PMCid:PMC2934866 Duan J, Yu Y, Yu Y, Li Y, Wang J, Geng W, et al. Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway. Int J Nanomed. 2014;9:5131-41. https://doi.org/10.2147/IJN.S71074PMid:25395850 PMCid:PMC4227623