Curcumin: A Literature Review of Its Effects on Bone Health and Osteoporosis
DOI:
https://doi.org/10.31661/gmj.v10i.2129Keywords:
Curcumin; Bone; OsteoporosisAbstract
Natural compounds can be used as a complementary or alternative medicine for many diseases, such as osteoporosis. Curcumin, a polyphenolic compound and the major active component of turmeric, is reported to play important roles in bone health and osteoporosis. By affecting proliferation, differentiation, lifespan, and activity of osteoblasts and osteoclasts, curcumin can directly modulate bone tissue hemostasis. Due to its insignificant side effects and several therapeutic properties, such as antioxidant, anticancer, antibacterial, antifungal, anti-inflammatory, and antirheumatic, it could be a potential therapeutic agent to prevent and treat osteoporosis. This review aimed to summarize the most important findings of in vitro, animal, and human studies in an effort to clarify the possible effects of curcumin on osteoporosis and to explain the exact molecular mechanism by which curcumin exerts its action. [GMJ.2021;10:e2129]
References
Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. The molecular targets and therapeutic uses of curcumin in health and disease. Springer; 2007. p. 1-75. https://doi.org/10.1007/978-0-387-46401-5_1PMid:17569205 Peddada KV, Peddada KV, Shukla SK, Mishra A, Verma V. Role of curcumin in common musculoskeletal disorders: a review of current laboratory, translational, and clinical data. Orthop Surg. 2015;7(3):222-31. https://doi.org/10.1111/os.12183PMid:26311096 PMCid:PMC6583735 Noorafshan A, Ashkani-Esfahani S. A review of therapeutic effects of curcumin. Curr Pharm Des. 2013;19(11):2032-46. https://doi.org/10.2174/1381612811319110006PMid:23116311 Kurup VP, Barrios CS. Immunomodulatory effects of curcumin in allergy. Mol Nutr Food Res. 2008;52(9):1031-9. https://doi.org/10.1002/mnfr.200700293PMid:18398870 Hewlings SJ, Kalman DS. Curcumin: a review of its' effects on human health. Foods. 2017;6(10):92. https://doi.org/10.3390/foods6100092PMid:29065496 PMCid:PMC5664031 Li Y, Zhang J, Ma D, Zhang L, Si M, Yin H et al. Curcumin inhibits proliferation and invasion of osteosarcoma cells through inactivation of Notch-1 signaling. The FEBS journal. 2012;279(12):2247-59. https://doi.org/10.1111/j.1742-4658.2012.08607.xPMid:22521131 Strimpakos AS, Sharma RA. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid. Redox Signal. 2008;10(3):511-46. https://doi.org/10.1089/ars.2007.1769PMid:18370854 Mirzaei H, Naseri G, Rezaee R, Mohammadi M, Banikazemi Z, Mirzaei HR et al. Curcumin: A new candidate for melanoma therapy? Int J Cancer. 2016;139(8):1683-95. https://doi.org/10.1002/ijc.30224PMid:27280688 Momtazi AA, Derosa G, Maffioli P, Banach M, Sahebkar A. Role of microRNAs in the therapeutic effects of curcumin in non-cancer diseases. Mol Diagn Ther. 2016;20(4):335-45. https://doi.org/10.1007/s40291-016-0202-7PMid:27241179 Sahebkar A. Autophagic activation: a key piece of the puzzle for the curcumin-associated cognitive enhancement? J Psychopharm. 2016;30(1):93-4. https://doi.org/10.1177/0269881115620568PMid:26702989 Sahebkar A. Curcuminoids for the management of hypertriglyceridaemia. Nat. Rev. Cardiol.. 2014;11(2):123-. https://doi.org/10.1038/nrcardio.2013.140-c1PMid:24395048 Sahebkar A. Why it is necessary to translate curcumin into clinical practice for the prevention and treatment of metabolic syndrome? Biofactors. 2013;39(2):197-208. https://doi.org/10.1002/biof.1062PMid:23239418 Karimian MS, Pirro M, Majeed M, Sahebkar A. Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev. 2017;33:55-63. https://doi.org/10.1016/j.cytogfr.2016.10.001PMid:27743775 Derosa G, Maffioli P, Simental-Mendia LE, Bo S, Sahebkar A. Effect of curcumin on circulating interleukin-6 concentrations: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2016;111:394-404. https://doi.org/10.1016/j.phrs.2016.07.004PMid:27392742 Sahebkar A, Cicero AF, Simental-MendÃa LE, Aggarwal BB, Gupta SC. Curcumin downregulates human tumor necrosis factor-α levels: A systematic review and meta-analysis ofrandomized controlled trials. Pharmacol Res. 2016;107:234-42. https://doi.org/10.1016/j.phrs.2016.03.026PMid:27025786 Sahebkar A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil Steril. 2010;94(5):e75-e6. https://doi.org/10.1016/j.fertnstert.2010.07.1071PMid:20797714 Abbas Momtazi A, Sahebkar A. Difluorinated curcumin: a promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile. Curr Pharm Des. 2016;22(28):4386-97. https://doi.org/10.2174/1381612822666160527113501PMid:27229723 Momtazi AA, Shahabipour F, Khatibi S, Johnston TP, Pirro M, Sahebkar A. Curcumin as a MicroRNA regulator in cancer: a review. Rev. Physiol. Biochem. Pharmacol. REV, Vol. 171. Springer; 2016. p. 1-38. https://doi.org/10.1007/112_2016_3PMid:27457236 Amel Zabihi N, Pirro M, P Johnston T, Sahebkar A. Is there a role for curcumin supplementation in the treatment of non-alcoholic fatty liver disease? The data suggest yes. Curr Pharm Des. 2017;23(7):969-82. https://doi.org/10.2174/1381612822666161010115235PMid:27748192 Rahmani S, Asgary S, Askari G, Keshvari M, Hatamipour M, Feizi A et al. Treatment of non-alcoholic fatty liver disease with curcumin: A randomized placebo-controlled trial. Phytother Res. 2016;30(9):1540-8. https://doi.org/10.1002/ptr.5659PMid:27270872 Esmaily H, Sahebkar A, Iranshahi M, Ganjali S, Mohammadi A, Ferns G et al. An investigation of the effects of curcumin on anxiety and depression in obese individuals: A randomized controlled trial. Chin J Integr Med. 2015;21(5):332-8. https://doi.org/10.1007/s11655-015-2160-zPMid:25776839 Jaruga E, Salvioli S, Dobrucki J, Chrul S, Bandorowicz-PikuÅ‚a J, Sikora E et al. Apoptosis-like, reversible changes in plasma membrane asymmetry and permeability, and transient modifications in mitochondrial membrane potential induced by curcumin in rat thymocytes. FEBS Lett. 1998;433(3):287-93. https://doi.org/10.1016/S0014-5793(98)00919-3 Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807-18. https://doi.org/10.1021/mp700113rPMid:17999464 Mirzaei H, Shakeri A, Rashidi B, Jalili A, Banikazemi Z, Sahebkar A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomed Pharmacother. 2017;85:102-12. https://doi.org/10.1016/j.biopha.2016.11.098PMid:27930973 Wahlström B, Blennow G. A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol (Copenh). 1978;43(2):86-92. https://doi.org/10.1111/j.1600-0773.1978.tb02240.xPMid:696348 Sharma RA, Steward WP, Gescher AJ. Pharmacokinetics and pharmacodynamics of curcumin. The molecular targets and therapeutic uses of curcumin in health and disease. Springer; 2007. p. 453-70. https://doi.org/10.1007/978-0-387-46401-5_20PMid:17569224 Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat. 2014;46(1):2. https://doi.org/10.4143/crt.2014.46.1.2PMid:24520218 PMCid:PMC3918523 Bhavanishankar T, Shantha N, Ramesh H, Indira Murthy A, Sreenivasa Murthy V. Toxicity studies on turmeric (Curcuma longa): acute toxicity studies in rats, guineapigs and monkeys. Indian J Exp Biol. 1980;18(1):73-5. Soni K, Kuttan R. Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Pharmacol. 1992;36:273. Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR et al. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res. 2004;10(20):6847-54. https://doi.org/10.1158/1078-0432.CCR-04-0744PMid:15501961 Program NT. NTP Toxicology and Carcinogenesis Studies of Turmeric Oleoresin (CAS No. 8024-37-1)(Major Component 79%-85% Curcumin, CAS No. 458-37-7) in F344/N Rats and B6C3F1 Mice (Feed Studies). Natl Toxicol Program Tech Rep Ser. 1993;427:1. Seeman E. Bone quality: the material and structural basis of bone strength. J Bone Miner Metab. 2008;26(1):1-8. https://doi.org/10.1007/s00774-007-0793-5PMid:18095057 Sietsema DL. Fighting the Epidemic: Bone Health and Osteoporosis. Nurs. Clin.. 2020;55(2):193-202. https://doi.org/10.1016/j.cnur.2020.02.002PMid:32389253 Muthusami S, Ramachandran I, Muthusamy B, Vasudevan G, Prabhu V, Subramaniam V et al. Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin Chim Acta. 2005;360(1-2):81-6. https://doi.org/10.1016/j.cccn.2005.04.014PMid:15970279 Marie PJ, Kassem M. Osteoblasts in osteoporosis: past, emerging, and future anabolic targets. Eur J Endocrinol. 2011;165(1):1. https://doi.org/10.1530/EJE-11-0132PMid:21543379 Chen F, Wang H, Xiang X, Yuan J, Chu W, Xue X et al. Curcumin increased the differentiation rate of neurons in neural stem cells via wnt signaling in vitro study. J Surg Res. 2014;192(2):298-304. https://doi.org/10.1016/j.jss.2014.06.026PMid:25033705 He M, Li Y, Zhang L, Li L, Shen Y, Lin L et al. Curcumin suppresses cell proliferation through inhibition of the Wnt/β-catenin signaling pathway in medulloblastoma. Oncol Rep. 2014;32(1):173-80. https://doi.org/10.3892/or.2014.3206PMid:24858998 Cui L, Jia X, Zhou Q, Zhai X, Zhou Y, Zhu H. Curcumin affects β-catenin pathway in hepatic stellate cell in vitro and in vivo. J Pharm Pharmacol. 2014;66(11):1615-22. https://doi.org/10.1111/jphp.12283PMid:24945564 Leow P-C, Tian Q, Ong Z-Y, Yang Z, Ee P-LR. Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/β-catenin antagonists against human osteosarcoma cells. Invest New Drugs. 2010;28(6):766-82. https://doi.org/10.1007/s10637-009-9311-zPMid:19730790 Krum SA, Chang J, Miranda-Carboni G, Wang C-Y. Novel functions for NFκB: inhibition of bone formation. Nat. Rev. Rheumatol.. 2010;6(10):607. https://doi.org/10.1038/nrrheum.2010.133PMid:20703218 PMCid:PMC3078572 Bharti AC, Takada Y, Aggarwal BB. Curcumin (diferuloylmethane) inhibits receptor activator of NF-κB ligand-induced NF-κB activation in osteoclast precursors and suppresses osteoclastogenesis. J. Immunol.. 2004;172(10):5940-7. https://doi.org/10.4049/jimmunol.172.10.5940PMid:15128775 Chan W-H, Wu H-Y, Chang WH. Dosage effects of curcumin on cell death types in a human osteoblast cell line. Food Chem Toxicol. 2006;44(8):1362-71. https://doi.org/10.1016/j.fct.2006.03.001PMid:16624471 Yamaguchi M, Hamamoto R, Uchiyama S, Ishiyama K. Effects of flavonoid on calcium content in femoral tissue culture and parathyroid hormone-stimulated osteoclastogenesis in bone marrow culture in vitro. Mol Cell Biochem. 2007;303(1-2):83-8. https://doi.org/10.1007/s11010-007-9458-xPMid:17541507 Bell NH. RANK ligand and the regulation of skeletal remodeling. J. Clin. Investig. 2003;111(8):1120-2. https://doi.org/10.1172/JCI18358PMid:12697730 PMCid:PMC152945 Hussan F, Ibraheem NG, Kamarudin TA, Shuid AN, Soelaiman IN, Othman F. Curcumin protects against ovariectomy-induced bone changes in rat model. Evid Based Complement Alternat Med. 2012;2012. https://doi.org/10.1155/2012/174916PMid:23049604 PMCid:PMC3463175 Ak T, Gülçin Ä°. Antioxidant and radical scavenging properties of curcumin. Chem-Biol Interact. 2008;174(1):27-37. https://doi.org/10.1016/j.cbi.2008.05.003PMid:18547552 Parhami F. Possible role of oxidized lipids in osteoporosis: could hyperlipidemia be a risk factor? Prostaglandins Leukot. Essent. Fatty Acids. 2003;68(6):373-8. https://doi.org/10.1016/S0952-3278(03)00061-9 Cho D-C, Kim K-T, Jeon Y, Sung J-K. A synergistic bone sparing effect of curcumin and alendronate in ovariectomized rat. Acta Neurochir (Wien). 2012;154(12):2215-23. https://doi.org/10.1007/s00701-012-1516-9PMid:23053289 Cho D-C, Jung H-S, Kim K-T, Jeon Y, Sung J-K, Hwang J-H. Therapeutic advantages of treatment of high-dose curcumin in the ovariectomized rat. J Korean Neurosurg Soc. 2013;54(6):461. https://doi.org/10.3340/jkns.2013.54.6.461PMid:24527187 PMCid:PMC3921272 Chen Z, Xue J, Shen T, Mu S, Fu Q. Curcumin alleviates glucocorticoid-induced osteoporosis through the regulation of the Wnt signaling pathway. Int J Mol Med. 2016;37(2):329-38. https://doi.org/10.3892/ijmm.2015.2432PMid:26677102 PMCid:PMC4716794 Li G, Bu J, Zhu Y, Xiao X, Liang Z, Zhang R. Curcumin improves bone microarchitecture in glucocorticoid-induced secondary osteoporosis mice through the activation of microRNA-365 via regulating MMP-9. Int J Clin Exp Pathol. 2015;8(12):15684. Liang Y, Zhu B, Li S, Zhai Y, Yang Y, Bai Z et al. Curcumin protects bone biomechanical properties and microarchitecture in type 2 diabetic rats with osteoporosis via the TGFβ/Smad2/3 pathway. Exp Ther Med. 2020;20(3):2200-8. https://doi.org/10.3892/etm.2020.8943PMid:32765696 PMCid:PMC7401480 Folwarczna J, Zych M, Trzeciak HI. Effects of curcumin on the skeletal system in rats. Pharmacol Rep. 2010;62(5):900-9. https://doi.org/10.1016/S1734-1140(10)70350-9 Bar-Sela G, Epelbaum R, Schaffer M. Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications. Curr Med Chem. 2010;17(3):190-7. https://doi.org/10.2174/092986710790149738PMid:20214562 Hsieh C. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21(2895):e2900. Khanizadeh F, Rahmani A, Asadollahi K, Ahmadi MRH. Combination therapy of curcumin and alendronate modulates bone turnover markers and enhances bone mineral density in postmenopausal women with osteoporosis. Arch Endocrinol Metab. 2018;62(4):438-45. https://doi.org/10.20945/2359-3997000000060PMid:30304108 Hatefi M, Ahmadi MRH, Rahmani A, Dastjerdi MM, Asadollahi K. Effects of curcumin on bone loss and biochemical markers of bone turnover in patients with spinal cord injury. World Neurosurg. 2018;114:e785-e91. https://doi.org/10.1016/j.wneu.2018.03.081PMid:29567290