Review On the Effects of Curcumin on Tumors of the Reproductive System
DOI:
https://doi.org/10.31661/gmj.v10i.2178Keywords:
Curcumin, Reproduction, Cancer, Tumor, Prostate, Ovary, BreastAbstract
Curcumin, a polyphenolic derivative of Curcuma longa rhizome, has numerous beneficial effects, including antibacterial, anti-inflammatory, antiviral, antioxidant, antifungal, anti-ischemic, anti-cancer, hypoglycemic, nephroprotective, antirheumatic, hepato-protective, and antimutagenic. Curcumin has indicated the capability to exert anti-cancer activity by multifunctional mechanisms, such as induction of apoptosis, inhibition of cancer cell proliferation, cell cycle regulation, chemotherapeutic intestinal absorption, and modification of several cancer cell types signaling pathways. Several studies have shown that curcumin may have protective effects against tumors of the reproductive system. Reproductive system cancers may cause many undesirable physical and, especially, mental disorders. Infertility and its mental consequences, sexual problems, chemotherapy and surgery-related adverse effects, substantial economic burden, and death are the most common complications regarding the cancers of the reproductive system. By modulating several reproductive cancer hallmarks such as signaling pathways, multiple drug resistance, cancer cell growth and proliferation, tumor angiogenesis, and transcription factors, curcumin could be used as a safe, non-toxic, cheap, and easily accessible drug for treating different types of reproductive cancers. [GMJ.2021;10:e2178]
References
Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol. 2005;100(1-2):72-9. https://doi.org/10.1016/j.jep.2005.05.011PMid:16009521 Akram M, Shahab-Uddin AA, Usmanghani K, Hannan A, Mohiuddin E, Asif M. Curcuma longa and curcumin: a review article. Rom J Biol Plant Biol. 2010;55(2):65-70. Mohebbati R, Anaeigoudari A, Khazdair M. The effects of Curcuma longa and curcumin on reproductive systems. Endocr Regul. 2017;51(4):220-8. https://doi.org/10.1515/enr-2017-0024PMid:29232190 Strimpakos AS, Sharma RA. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxidants & redox signaling. 2008;10(3):511-46. https://doi.org/10.1089/ars.2007.1769PMid:18370854 Sahebkar A. Curcuminoids for the management of hypertriglyceridaemia. Nature Reviews Cardiology. 2014;11(2):123. https://doi.org/10.1038/nrcardio.2013.140-c1PMid:24395048 Mirzaei H, Naseri G, Rezaee R, Mohammadi M, Banikazemi Z, Mirzaei HR, et al. Curcumin: A new candidate for melanoma therapy? Int J Cancer. 2016;139(8):1683-95. https://doi.org/10.1002/ijc.30224PMid:27280688 Rahmani S, Asgary S, Askari G, Keshvari M, Hatamipour M, Feizi A, et al. Treatment of nonâ€alcoholic fatty liver disease with curcumin: A randomized placeboâ€controlled trial. Phytother Res. 2016;30(9):1540-8. https://doi.org/10.1002/ptr.5659PMid:27270872 Esmaily H, Sahebkar A, Iranshahi M, Ganjali S, Mohammadi A, Ferns G et al. An investigation of the effects of curcumin on anxiety and depression in obese individuals: A randomized controlled trial. Chin J Integr Med. 2015;21(5):332-8. https://doi.org/10.1007/s11655-015-2160-zPMid:25776839 Sahebkar A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil Steril. 2010;94(5):e75-e6. https://doi.org/10.1016/j.fertnstert.2010.07.1071PMid:20797714 Ciftci O, Tanyildizi S, Godekmerdan A. Protective effect of curcumin on immune system and body weight gain on rats intoxicated with 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD). Immunopharmacol Immunotoxicol. 2010;32(1):99-104. https://doi.org/10.3109/08923970903164318PMid:19821784 Valsalam S, Agastian P, Esmail GA, Ghilan A-KM, Al-Dhabi NA, Arasu MV. Biosynthesis of silver and gold nanoparticles using Musa acuminata colla flower and its pharmaceutical activity against bacteria and anticancer efficacy. J Photochem Photobiol B: Biol. 2019;201:111670. https://doi.org/10.1016/j.jphotobiol.2019.111670PMid:31706087 Valsalam S, Agastian P, Arasu MV, Al-Dhabi NA, Ghilan A-KM, Kaviyarasu K, et al. Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties. J Photochem Photobiol B: Biol. 2019;191:65-74. https://doi.org/10.1016/j.jphotobiol.2018.12.010PMid:30594044 Aggarwal BB, Surh Y-J, Shishodia S. The molecular targets and therapeutic uses of curcumin in health and disease. Springer Science & Business Media; 2007. https://doi.org/10.1007/978-0-387-46401-5PMid:17569205 Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807-18. https://doi.org/10.1021/mp700113rPMid:17999464 Mirzaei H, Shakeri A, Rashidi B, Jalili A, Banikazemi Z, Sahebkar A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomed Pharmacother. 2017;85:102-12. https://doi.org/10.1016/j.biopha.2016.11.098PMid:27930973 Wahlström B, Blennow G. A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol (Copenh). 1978;43(2):86-92. https://doi.org/10.1111/j.1600-0773.1978.tb02240.xPMid:696348 Bhavanishankar T, Shantha N, Ramesh H, Indira Murthy A, Sreenivasa Murthy V. Toxicity studies on turmeric (Curcuma longa): acute toxicity studies in rats, guineapigs and monkeys. Indian J Exp Biol. 1980;18(1):73-5. Soni K, Kutian R. EFFECf OF ORAL CURCUMIN ADMINISTRAnON ON SERUM PEROXIDES AND CHOLESTEROL LEVELS IN HUMAN VOLUNTEERS. Indian J Physiol Phannacoll992. 1992;36(4):273-5. Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR, et al. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res. 2004;10(20):6847-54. https://doi.org/10.1158/1078-0432.CCR-04-0744PMid:15501961 Program NT. NTP toxicology and carcinogenesis studies of turmeric oleoresin (CAS No. 8024-37-1)(major component 79%-85% curcumin, CAS No. 458-37-7) in F344/N rats and B6C3F1 mice (feed studies). Natl Toxicol Program Tech Rep Ser. 1993;427:1-275. Farombi EO, Abarikwu SO, Adedara IA, Oyeyemi MO. Curcumin and kolaviron ameliorate diâ€nâ€butylphthalateâ€induced testicular damage in rats. Basic Clin. Pharmacol. Toxicol.. 2007;100(1):43-8. https://doi.org/10.1111/j.1742-7843.2007.00005.xPMid:17214610 Cort A, Timur M, Ozdemir E, Kucuksayan E, Ozben T. Synergistic anticancer activity of curcumin and bleomycin: an in vitro study using human malignant testicular germ cells. Mol Med Report. 2012;5(6):1481-6. https://doi.org/10.3892/mmr.2012.991PMid:22825355 Sahoo DK, Roy A, Chainy GB. Protective effects of vitamin E and curcumin on L-thyroxine-induced rat testicular oxidative stress. Chem. Biol. Interact.. 2008;176(2-3):121-8. https://doi.org/10.1016/j.cbi.2008.07.009PMid:18723006 Aktas C, Kanter M, Erboga M, Ozturk S. Anti-apoptotic effects of curcumin on cadmium-induced apoptosis in rat testes. Toxicol Ind Health. 2012;28(2):122-30. https://doi.org/10.1177/0748233711407242PMid:21632575 Killian PH, Kronski E, Michalik KM, Barbieri O, Astigiano S, Sommerhoff CP, et al. Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and-2. Carcinogenesis. 2012;33(12):2507-19. https://doi.org/10.1093/carcin/bgs312PMid:23042094 Singh S, Aggarwal BB. Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane). J Biol Chem. 1995;270(42):24995-5000. https://doi.org/10.1074/jbc.270.42.24995PMid:7559628 Jobin C, Bradham CA, Russo MP, Juma B, Narula AS, Brenner DA, et al. Curcumin blocks cytokine-mediated NF-κB activation and proinflammatory gene expression by inhibiting inhibitory factor I-κB kinase activity. J Immunol. 1999;163(6):3474-83. Bharti AC, Donato N, Singh S, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-κB and IκBα kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood. 2003;101(3):1053-62. https://doi.org/10.1182/blood-2002-05-1320PMid:12393461 Piccolella M, Crippa V, Messi E, Tetel MJ, Poletti A. Modulators of estrogen receptor inhibit proliferation and migration of prostate cancer cells. Pharmacol. Res.. 2014;79:13-20. https://doi.org/10.1016/j.phrs.2013.10.002PMid:24184124 Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev. 2004;25(2):276-308. https://doi.org/10.1210/er.2002-0032PMid:15082523 Richter E, Srivastava S, Dobi A. Androgen receptor and prostate cancer. Prostate Cancer Prostatic Dis. 2007;10(2):114-8. https://doi.org/10.1038/sj.pcan.4500936PMid:17297502 Aggarwal BB. Prostate cancer and curcumin: add spice to your life. Cancer Biol Ther. 2008;7(9):1436-40. https://doi.org/10.4161/cbt.7.9.6659PMid:18769126 Sharma R, Gescher A, Steward W. Curcumin: the story so far. Eur J Cancer. 2005;41(13):1955-68. https://doi.org/10.1016/j.ejca.2005.05.009PMid:16081279 Banerjee S, Singh SK, Chowdhury I, Lillard Jr JW, Singh R. Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer. Front Biosci. 2017;9:235. https://doi.org/10.2741/e798PMid:28199187 Li J, Xiang S, Zhang Q, Wu J, Tang Q, Zhou J, et al. Combination of curcumin and bicalutamide enhanced the growth inhibition of androgen-independent prostate cancer cells through SAPK/JNK and MEK/ERK1/2-mediated targeting NF-κB/p65 and MUC1-C. J Exp Clin Cancer Res. 2015;34(1):1-11. https://doi.org/10.1186/s13046-015-0168-zPMid:25971429 PMCid:PMC4446835 Sharma V, Kumar L, Mohanty SK, Maikhuri JP, Rajender S, Gupta G. Sensitization of androgen refractory prostate cancer cells to anti-androgens through re-expression of epigenetically repressed androgen receptor-synergistic action of quercetin and curcumin. Mol Cell Endocrinol. 2016;431:12-23. https://doi.org/10.1016/j.mce.2016.04.024PMid:27132804 Wang R, Sun Y, Li L, Niu Y, Lin W, Lin C, et al. Preclinical study using Malat1 small interfering RNA or androgen receptor splicing variant 7 degradation enhancer ASC-J9® to suppress enzalutamide-resistant prostate cancer progression. Eur Urol. 2017;72(5):835-44. https://doi.org/10.1016/j.eururo.2017.04.005PMid:28528814 PMCid:PMC5802348 Tsui KH, Feng TH, Lin CM, Chang PL, Juang HH. Curcumin blocks the activation of androgen and interlukinâ€6 on prostateâ€specific antigen expression in human prostatic carcinoma cells. J. Androl.. 2008;29(6):661-8. https://doi.org/10.2164/jandrol.108.004911PMid:18676361 Choi HY, Lim J, Hong JH. Curcumin interrupts the interaction between the androgen receptor and Wnt/β-catenin signaling pathway in LNCaP prostate cancer cells. Prostate Cancer Prostatic Dis. 2010;13(4):343-9. https://doi.org/10.1038/pcan.2010.26PMid:20680030 Dorai T, Gehani N, Katz A. Therapeutic potential of curcumin in human prostate cancer-I. Curcumin induces apoptosis in both androgen-dependent and androgen-independent prostate cancer cells. Prostate Cancer Prostatic Dis. 2000;3(2):84-93. https://doi.org/10.1038/sj.pcan.4500399PMid:12497104 GarcÃa-Aranda M, Redondo M. Protein kinase targets in breast cancer. Int J Mol Sci. 2017;18(12):2543. https://doi.org/10.3390/ijms18122543PMid:29186886 PMCid:PMC5751146 Anderson WF, Chatterjee N, Ershler WB, Brawley OW. Estrogen receptor breast cancer phenotypes in the Surveillance, Epidemiology, and End Results database. Breast Cancer Res Treat. 2002;76(1):27-36. https://doi.org/10.1023/A:1020299707510PMid:12408373 Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. PNAS. 2001;98(19):10869-74. https://doi.org/10.1073/pnas.191367098PMid:11553815 PMCid:PMC58566 Aceto N, Sausgruber N, Brinkhaus H, Gaidatzis D, Martiny-Baron G, Mazzarol G, et al. Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop. Nat Med. 2012;18(4):529. https://doi.org/10.1038/nm.2645PMid:22388088 Jason CY, Formenti SC. Integration of radiation and immunotherapy in breast cancer-Treatment implications. The Breast. 2018;38:66-74. https://doi.org/10.1016/j.breast.2017.12.005PMid:29253718 Song X, Zhang M, Dai E, Luo Y. Molecular targets of curcumin in breast cancer. Mol. Med. Rep. 2019;19(1):23-9. https://doi.org/10.3892/mmr.2018.9665 Nejati-Koshki K, Akbarzadeh A, Pourhassan-Moghaddam M. Curcumin inhibits leptin gene expression and secretion in breast cancer cells by estrogen receptors. Cancer Cell Int. 2014;14(1):1-7. https://doi.org/10.1186/1475-2867-14-66PMid:25866478 PMCid:PMC4392783 Hallman K, Aleck K, Dwyer B, Lloyd V, Quigley M, Sitto N, et al. The effects of turmeric (curcumin) on tumor suppressor protein (p53) and estrogen receptor (ERα) in breast cancer cells. Breast Cancer (London). 2017;9:153. https://doi.org/10.2147/BCTT.S125783PMid:28331366 PMCid:PMC5354546 Lai H-W, Chien S-Y, Kuo S-J, Tseng L-M, Lin H-Y, Chi C-W, et al. The potential utility of curcumin in the treatment of HER-2-overexpressed breast cancer: an in vitro and in vivo comparison study with herceptin. Evid Based Complement Alternat Med. 2012;2012. https://doi.org/10.1155/2012/486568PMid:21876713 PMCid:PMC3162976 Verma SP, Salamone E, Goldin B. Curcumin and genistein, plant natural products, show synergistic inhibitory effects on the growth of human breast cancer MCF-7 cells induced by estrogenic pesticides. Biochem Biophys Res Commun. 1997;233(3):692-6. https://doi.org/10.1006/bbrc.1997.6527PMid:9168916 Karunagaran D, Rashmi R, Kumar T. Induction of apoptosis by curcumin and its implications for cancer therapy. Curr Cancer Drug Targets. 2005;5(2):117-29. https://doi.org/10.2174/1568009053202081PMid:15810876 Ravindran J, Prasad S, Aggarwal BB. Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? The AAPS journal. 2009;11(3):495-510. https://doi.org/10.1208/s12248-009-9128-xPMid:19590964 PMCid:PMC2758121 Sikora E, Bielak-Å»mijewska A, Magalska A, Piwocka K, Mosieniak G, Kalinowska M, et al. Curcumin induces caspase-3-dependent apoptotic pathway but inhibits DNA fragmentation factor 40/caspase-activated DNase endonuclease in human Jurkat cells. Mol Cancer Ther. 2006;5(4):927-34. https://doi.org/10.1158/1535-7163.MCT-05-0360PMid:16648563 Shehzad A, Qureshi M, Anwar MN, Lee YS. Multifunctional curcumin mediate multitherapeutic effects. J Food Sci. 2017;82(9):2006-15. https://doi.org/10.1111/1750-3841.13793PMid:28771714 Arablou T, Kolahdouz-Mohammadi R. Curcumin and endometriosis: Review on potential roles and molecular mechanisms. Biomed Pharmacother. 2018;97:91-7. https://doi.org/10.1016/j.biopha.2017.10.119PMid:29080464 Sahin K, Orhan C, Tuzcu M, Sahin N, Tastan H, Özercan Ä°H, et al. Chemopreventive and antitumor efficacy of curcumin in a spontaneously developing hen ovarian cancer model. Cancer Prev Res 2018;11(1):59-67. https://doi.org/10.1158/1940-6207.CAPR-16-0289PMid:29089332 McClay EF, Albright KD, Jones JA, Eastman A, Christen R, Howell SB. Modulation of cisplatin resistance in human malignant melanoma cells. Cancer Res. 1992;52(24):6790-6. Mc Clay EF, Albright KD, Jones JA, Christen RD, Howell SB. Tamoxifen modulation of cisplatin sensitivity in human malignant melanoma cells. Cancer Res. 1993;53(7):1571-6. Bast RC, Hennessy B, Mills GB. The biology of ovarian cancer: new opportunities for translation. Nature Reviews Cancer. 2009;9(6):415-28. https://doi.org/10.1038/nrc2644PMid:19461667 PMCid:PMC2814299 Vaughan S, Coward JI, Bast RC, Berchuck A, Berek JS, Brenton JD, et al. Rethinking ovarian cancer: recommendations for improving outcomes. Nat. Rev. Cancer. 2011;11(10):719-25. https://doi.org/10.1038/nrc3144PMid:21941283 PMCid:PMC3380637 Stewart C, Ralyea C, Lockwood S, editors. Ovarian cancer: an integrated review. Seminars in oncology nursing; 2019: Elsevier. https://doi.org/10.1016/j.soncn.2019.02.001PMid:30867104 Shi M, Cai Q, Yao L, Mao Y, Ming Y, Ouyang G. Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biol Int. 2006;30(3):221-6. https://doi.org/10.1016/j.cellbi.2005.10.024PMid:16376585 Weir NM, Selvendiran K, Kutala VK, Tong L, Vishwanath S, Rajaram M et al. Curcumin induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by modulating Akt and p38 MAPK. Cancer Biol Ther. 2007;6(2):178-84. https://doi.org/10.4161/cbt.6.2.3577PMid:17218783 PMCid:PMC1852522 Yen H-Y, Tsao C-W, Lin Y-W, Kuo C-C, Tsao C-H, Liu C-Y. Regulation of carcinogenesis and modulation through Wnt/β-catenin signaling by curcumin in an ovarian cancer cell line. Sci Rep. 2019;9(1):1-14. https://doi.org/10.1038/s41598-019-53509-3PMid:31754130 PMCid:PMC6872918 Chock KL, Allison JM, Shimizu Y, ElShamy WM. BRCA1-IRIS overexpression promotes cisplatin resistance in ovarian cancer cells. Cancer Res. 2010;70(21):8782-91. https://doi.org/10.1158/0008-5472.CAN-10-1352PMid:20940403 K Tiwari A, Sodani K, Dai C-L, R Ashby C, Chen Z-S. Revisiting the ABCs of multidrug resistance in cancer chemotherapy. Curr Pharm Biotechnol. 2011;12(4):570-94. https://doi.org/10.2174/138920111795164048PMid:21118094 Lin YG, Kunnumakkara AB, Nair A, Merritt WM, Han LY, Armaiz-Pena GN, et al. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-κB pathway. Clin Cancer Res. 2007;13(11):3423-30. https://doi.org/10.1158/1078-0432.CCR-06-3072PMid:17545551 Ganta S, Amiji M. Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm. 2009;6(3):928-39. https://doi.org/10.1021/mp800240jPMid:19278222