Dental Pulp Stem Cells Transplantation Improves Passive Avoidance Memory and Neuroinflammation in Trimethyltin-Induced Alzheimer's Disease Rat Model

Authors

  • Samira Malekzadeh Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran; Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
  • Mohammad Amin Edalatmanesh Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
  • Davood Mehrabani Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
  • Mehrdad Shariati Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Iran

DOI:

https://doi.org/10.31661/gmj.v10i.2254

Keywords:

Stem Cells, Memory, Alzheimer's Disease, Cognitive Dysfunction, Trimethyltin

Abstract

Background: According to the increasing incidence of Alzheimer's disease (AD), this study aimed to investigate the effect of dental pulp stem cells (DPSCs) transplantation on passive avoidance memory and neuroinflammation in trimethyltin (TMT)-induced AD rat model. Materials and Methods: In this experimental study, 18 male Wistar rats were randomly divided into three groups: the control rats, TMT+phosphate-buffered saline (PBS) group that received 8 mg/kg TMT plus 0.5 ml PBS, and TMT+DPSCs (TMT+1×106 cells/ml DPSC in 0.5 ml PBS). Then, after one month, a passive avoidance test was performed. Also, nuclear factor kappa-β (NF-Kβ) serum level and the percentage of damaged neurons in the hippocampus were determined. Results: DPSCs transplantation showed significantly increased step-through latency to the dark compartment compared to control and TMT+PBS groups 24 hours aftershock. Also, time spent in the dark compartment of the TMT+DPSCs group significantly decreased compared to control and TMT+PBS groups in 24 and 48 hours after shock (P<0.05). Furthermore, DPSCs transplantation significantly decreased the NF-Kβ serum level and percentage of damaged pyramidal neurons of CA1 compared to the TMT+PBS group (P<0.05). Conclusion: DPSCs transplantation improved memory and learning, regulated NF-Kβ serum level, and decreased damaged neurons of CA1 hippocampus in the TMT-induced AD rat model.

References

Lane CA, Hardy J, Schott JM. Alzheimer's disease. Eur J Neurol. 2018;25(1):59-70. https://doi.org/10.1111/ene.13439PMid:28872215 Yao J, Irwin RW, Zhao L, Nilsen J, Hamilton RT, Brinton RD. Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A. 2009;106(34):14670-5. https://doi.org/10.1073/pnas.0903563106PMid:19667196 PMCid:PMC2732886 Kang JY, Park SK, Guo TJ, Ha JS, Lee DS, Kim JM, et al. Reversal of trimethyltin-induced learning and memory deficits by 3, 5-dicaffeoylquinic acid. Oxid Med Cell Longev. 2016;2016:6981595. https://doi.org/10.1155/2016/6981595PMid:28105250 PMCid:PMC5221408 Dyer RS, Walsh TJ, Wonderlin WF, Bercegeay M. The trimethyltin syndrome in rats. Neurobehav Toxicol Teratol. 1982;4(2):127-33. Malekzadeh S, Edalatmanesh MA, Mehrabani D, Shariati M. Drugs induced Alzheimer's disease in animal model. GMJ. 2017;6(3):185-96. https://doi.org/10.15562/gnc.60 Srinivasan M, Lahiri DK. Significance of NF-κB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer's disease and multiple sclerosis. Expert Opin Ther Targets. 2015;19(4):471-87. https://doi.org/10.1517/14728222.2014.989834PMid:25652642 PMCid:PMC5873291 Tilstra JS, Clauson CL, Niedernhofer LJ, Robbins PD. NF-κB in aging and disease. Aging Dis. 2011;2(6):449-65. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97(25):13625-30. https://doi.org/10.1073/pnas.240309797PMid:11087820 PMCid:PMC17626 Ueda T, Inden M, Ito T, Kurita H, Hozumi I. Characteristics and therapeutic potential of dental pulp stem cells on neurodegenerative diseases. Front Neurosci. 2020;14:407. https://doi.org/10.3389/fnins.2020.00407PMid:32457568 PMCid:PMC7222959 Ponnaiyan D, Jegadeesan V. Comparison of phenotype and differentiation marker gene expression profiles in human dental pulp and bone marrow mesenchymal stem cells. Eur J Dent. 2014;8(3):307-13. https://doi.org/10.4103/1305-7456.137631PMid:25202208 PMCid:PMC4144126 Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation. 2005;80(6):836-42. https://doi.org/10.1097/01.tp.0000173794.72151.88PMid:16210973 Nito C, Sowa K, Nakajima M, Sakamoto Y, Suda S, Nishiyama Y, et al. transplantation of human dental pulp stem cells ameliorates brain damage following acute cerebral ischemia. Biomed Pharmacother. 2018;108:1005-14. https://doi.org/10.1016/j.biopha.2018.09.084PMid:30372800 Liu XY, Yang LP, Zhao L. Stem cell therapy for Alzheimer's disease. World J Stem Cells. 2020;12(8):787-802. https://doi.org/10.4252/wjsc.v12.i8.787PMid:32952859 PMCid:PMC7477654 Tong LM, Fong H, Huang Y. Stem cell therapy for Alzheimer's disease and related disorders:current status and future perspectives. Exp Mol Med. 2015;47(3):e151. https://doi.org/10.1038/emm.2014.124PMid:25766620 PMCid:PMC4351411 McGinley LM, Kashlan ON, Bruno ES, Chen KS, Hayes JM, Kashlan SR, et al. Human neural stem cell transplantation improves cognition in a murine model of Alzheimer's disease. Sci Rep. 2018;8(1):14776. https://doi.org/10.1038/s41598-018-33017-6PMid:30283042 PMCid:PMC6170460 Kim JA, Ha S, Shin KY, Kim S, Lee KJ, Chong YH, et al. Neural stem cell transplantation at critical period improves learning and memory through restoring synaptic impairment in Alzheimer's disease mouse model. Cell Death Dis. 2015;6(6):e1789. https://doi.org/10.1038/cddis.2015.138PMid:26086962 PMCid:PMC4669825 Yun HM, Kim HS, Park KR, Shin JM, Kang AR, Il Lee K, et al. Placenta-derived mesenchymal stem cells improve memory dysfunction in an A β 1-42-infused mouse model of Alzheimer's disease. Cell Death Dis. 2013;4(12):e958. https://doi.org/10.1038/cddis.2013.490PMid:24336078 PMCid:PMC3877561 Yamasaki TR, Blurton-Jones M, Morrissette DA, Kitazawa M, Oddo S, LaFerla FM. Neural stem cells improve memory in an inducible mouse model of neuronal loss. J Neurosci. 2007;27(44):11925-33. https://doi.org/10.1523/JNEUROSCI.1627-07.2007PMid:17978032 PMCid:PMC6673368 Mita T, Furukawa-Hibi Y, Takeuchi H, Hattori H, Yamada K, Hibi H, Yamamoto A. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer's disease. Behav Brain Res. 2015;293:189-97. https://doi.org/10.1016/j.bbr.2015.07.043PMid:26210934 Roghani M, Baluchnejadmojarad T. Chronic Rumex Patientia Seed Feeding Improves Passive Avoidance Learning and Memory in Streptozotocin-Diabetic Rats. Basic and Clinical Neuroscience. 2010;1(4):53-6. Woodruff ML, Baisden RH. Trimethyltin neurotoxicity in the rat as an analogous model of Alzheimer's disease. In Toxin-induced models of neurological disorders. Boston, MA: Springer;1994. p. 319-35. https://doi.org/10.1007/978-1-4899-1447-7_12 Martin F, Corrigan FM, Donard OFX, Kelly J, Besson JAO, Horrobin DF. Organotin compounds in trimethyltin-treated rats and in human brain in Alzheimer's Disease. Hum Exp Toxicol. 1997;16(9):512-5. https://doi.org/10.1177/096032719701600906PMid:9306138 Zhang XM, Ouyang YJ, Yu BQ, Li W, Yu MY, Li JY, et al. Therapeutic potential of dental pulp stem cell transplantation in a rat model of Alzheimer's disease. Neural Regen Res. 2021;16(5):893-8. https://doi.org/10.4103/1673-5374.297088PMid:33229725 PMCid:PMC8178760 Geloso MC, Giannetti S, Cenciarelli C, Budoni M, Casalbore P, Maira G, et al. transplantation of foetal neural stem cells into the rat hippocampus during trimethyltin-induced neurodegeneration. Neurochem Res. 2007;32(12):2054-61. https://doi.org/10.1007/s11064-007-9353-6PMid:17457672 Wang DR, Wang YH, Pan J, Tian WD. Neurotrophic effects of dental pulp stem cells in repair of peripheral nerve after crush injury. World J Stem Cells. 2020;12(10):1196-213. https://doi.org/10.4252/wjsc.v12.i10.1196PMid:33178401 PMCid:PMC7596440 Qing Y, Liang Y, Du Q, Fan P, Xu H, Xu Y, et al. apoptosis induced by Trimethyltin chloride in human neuroblastoma cells SY5Y is regulated by a balance and cross-talk between NF-κB and MAPKs signaling pathways. Arch Toxicol. 2013;87(7):1273-85. https://doi.org/10.1007/s00204-013-1021-9PMid:23423712 Malekzadeh S, Edalatmanesh MA, Mehrabani D, Shariati M. Effect of the Xenograft Transplantation of Human Dental Pulp Stem Cells on Anxiety and Memory in Trimethyltin Induced-Alzheimer Disease Model. Qom Univ Med Sci J. 2019;13(7):10-21. https://doi.org/10.29252/qums.13.7.10 Jha NK, Jha SK, Kar R, Nand P, Swati K, Goswami VK. Nuclear factorâ€kappa β as a therapeutic target for Alzheimer's disease. J Neurochem. 2019;150(2):113-37. https://doi.org/10.1111/jnc.14687PMid:30802950 Shih RH, Wang CY, Yang CM. NF-kappaB signaling pathways in neurological inflammation:a mini review. Front Mol Neurosci. 2015;8:77. https://doi.org/10.3389/fnmol.2015.00077PMid:26733801 PMCid:PMC4683208 Jones SV, Kounatidis I. Nuclear factor-kappa B and Alzheimer disease, unifying genetic and environmental risk factors from cell to humans. Front Immunol. 2017;8:1805. https://doi.org/10.3389/fimmu.2017.01805PMid:29312321 PMCid:PMC5732234 Snow WM, Albensi BC. Neuronal gene targets of NF-κB and their dysregulation in Alzheimer's disease. Front Mol Neurosci. 2016;9:118. https://doi.org/10.3389/fnmol.2016.00118PMid:27881951 PMCid:PMC5101203 Pouya S, Heidari M, Baghaei K, Aghdaei HA, Moradi A, Namaki S, et al. study the effects of mesenchymal stem cell conditioned medium injection in mouse model of acute colitis. Int Immunopharmacol. 2018;54:86-94. https://doi.org/10.1016/j.intimp.2017.11.001PMid:29112894 Hossein-Khannazer N, Hashemi SM, Namaki S, Sattari M, Khojasteh A. The effects of dental pulp stem cell conditioned media on the proliferation of peripheral blood mononuclear cells. Immunoregulation. 2020;2(2):69-74. https://doi.org/10.32598/IMMUNOREGULATION.1.4.187 Hunsaker MR, Rosenberg JS, Kesner RP. The role of the dentate gyrus, CA3a, b, and CA3c for detecting spatial and environmental novelty. Hippocampus. 2008;18(10):1064-73. https://doi.org/10.1002/hipo.20464PMid:18651615 Kotani S, Yamauchi T, Teramoto T, Ogura H. Pharmacological evidence of cholinergic involvement in adult hippocampal neurogenesis in rats. Neuroscience. 2006;142(2):505-14. https://doi.org/10.1016/j.neuroscience.2006.06.035PMid:16889901 Nikkhah A, Ghahremanitamadon F, Zargooshnia S, Shahidi S, Soleimani AS. Effect of amyloid β-peptide on passive avoidance learning in rats:a behavioral study. Biomed Res Int. 2014;2014:798535. https://doi.org/10.17795/ajnpp-18664 Yamaguchi Y, Kawashima S. Effects of amyloid-β-(25-35) on passive avoidance, radial-arm maze learning and choline acetyltransferase activity in the rat. Eur J Pharmacol. 2001;412(3):265-72. https://doi.org/10.1016/S0014-2999(01)00730-0PMid:11166290 Harkany T, O'mahony S, Kelly JP, Soos K, Törõ I, Penke B, et al. β-Amyloid (Phe (SO3H) 24) 25-35 in rat nucleus basalis induces behavioral dysfunctions, impairs learning and memory and disrupts cortical cholinergic innervation. Behav Brain Res. 1998;90(2):133-45. https://doi.org/10.1016/S0166-4328(97)00091-0PMid:9580273 Yang Y, Cudaback E, Jorstad NL, Hemingway JF, Hagan CE, Melief EJ, et al. APOE3, but not APOE4, bone marrow transplantation mitigates behavioral and pathological changes in a mouse model of Alzheimer disease. Am J Pathol. 2013;183(3):905-17. https://doi.org/10.1016/j.ajpath.2013.05.009PMid:23831297 PMCid:PMC3763765 Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proc Natl Acad Sci U S A. 2004;101(1):284-9. https://doi.org/10.1073/pnas.2635903100PMid:14688411 PMCid:PMC314177 Esmaeilzade B, Nobakht M, Joghataei MT, Roshandel NR, Rasouli H, Kuchaksaraei AS, et al. Delivery of epidermal neural crest stem cells (EPI-NCSC) to hippocamp in Alzheimer's disease rat model. Iran Biomed J. 2012;16(1):1. Babaei P, Tehrani BS. Effect of BDNF and adipose derived stem cells transplantation on cognitive deficit in Alzheimer model of rats. Journal of Behavioral and Brain Science. 2013;3(1):156. https://doi.org/10.4236/jbbs.2013.31015 Padurariu M, Ciobica A, Mavroudis I, Fotiou D, Baloyannis S. Hippocampal neuronal loss in the CA1 and CA3 areas of Alzheimer's disease patients. Psychiatr Danub. 2012;24(2):152-8. Liu AKL, Chau TW, Lim EJ, Ahmed I, Chang RCC, Kalaitzakis ME, et al. Hippocampal CA2 Lewy pathology is associated with cholinergic degeneration in Parkinson's disease with cognitive decline. Acta Neuropathol Commun. 2019;7(1):1-13. https://doi.org/10.1186/s40478-019-0717-3PMid:31023342 PMCid:PMC6485180 Zhang T, Ke W, Zhou X, Qian Y, Feng S, Wang R, et al. Human neural stem cells reinforce hippocampal synaptic network and rescue cognitive deficits in a mouse model of Alzheimer's disease. Stem cell reports. 2019;13(6):1022-37. https://doi.org/10.1016/j.stemcr.2019.10.012PMid:31761676 PMCid:PMC6915849 Eftekharzadeh M, Nobakht M, Alizadeh A, Soleimani M, Hajghasem M, Shargh, BK, et al. The effect of intrathecal delivery of bone marrow stromal cells on hippocampal neurons in rat model of Alzheimer's disease. Iran J Basic Med Sci. 2015;18(5):520-5. Zhu S, Min D, Zeng J, Ju Y, Liu Y, Chen X. Transplantation of Stem Cells from human exfoliated deciduous teeth decreases cognitive impairment from chronic cerebral ischemia by reducing neuronal apoptosis in rats. Stem Cells Int. 2020;2020:6393075. https://doi.org/10.1155/2020/6393075PMid:32215019 PMCid:PMC7079222

Published

2021-12-31

Issue

Section

Original Article