Decrement of Transcriptome Level in Epithelial Tight Junction Claudin and Occludin as an Epithelial-Mesenchymal Transition Signature for Colorectal Cancer Biomarker

Authors

  • Reza Shirkoohi Cancer Biology Research Center, Cancer Research Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
  • Maryam Ghoojaei Department of Biology, University of Central Florida, Florida, United States
  • Mojtaba Saffari Department of Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
  • Amirnader Emamirazavi Iran National Tumor Bank, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
  • Mehrdad Hashemi Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran

DOI:

https://doi.org/10.31661/gmj.v11i.2350

Keywords:

Colorectal Cancer, Metastasis, Gene Expression, Claudins, Occludin

Abstract

Background: Colorectal cancer is a common and fatal disease worldwide with increasing diagnosed cases yearly. Moreover, about 90% of deaths associated with cancers occur due to metastasis, which overcomes tight junction proteins such as claudin and occludin. The present study aimed to evaluate the significance of claudin and occludin expression change in human colorectal cancer. Materials and Methods: In this case-control study, 38 colorectal cancer patients were compared with normal samples regarding the expression levels of claudin and occludin genes by polymerase chain reaction. Results: The expression levels of claudin and occludin significantly decreased in tumor samples compared to normal samples. Conclusion: The change in the expression level of the claudin and occludin genes could be considered an influential factor in turning normal healthy tissues into cancerous cells.

References

Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74-108. https://doi.org/10.3322/canjclin.55.2.74PMid:15761078 Stewart BW, Wild CP. Lyon: International Agency for Research on Cancer. World Cancer Report; 2014. Vega P, Valentín F, Cubiella J. Colorectal cancer diagnosis: Pitfalls and opportunities. World J Gastrointest Oncol. 2015;7(12):422. https://doi.org/10.4251/wjgo.v7.i12.422PMid:26690833 PMCid:PMC4678389 https://www.cancer.gov/types/colorectal/patient/rectal-treatment-pdq Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161-74. https://doi.org/10.1038/nrc745PMid:11990853 Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27-30. https://doi.org/10.1038/nm0195-27PMid:7584949 Radisky DC. Epithelial-mesenchymal transition. J Cell Sci. 2005;118(19): https://doi.org/10.1242/jcs.02552PMid:16179603 -6. Craene BD, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13(2):97-110. https://doi.org/10.1038/nrc3447PMid:23344542 Chakrabarti R, Hwang J, Andres Blanco M, Wei Y, LukaÄiÅ¡in M, Romano RA, et al. Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat Cell Biol. 2012;14(11):1212-22. https://doi.org/10.1038/ncb2607PMid:23086238 PMCid:PMC3500637 Denker BM, Nigam SK. Molecular structure and assembly of the tight junction. Am J Physiol Renal Physiol. 1998;274(1):F1-9. https://doi.org/10.1152/ajprenal.1998.274.1.F1PMid:9458817 Hou J, Konrad M. Claudins and Renal Magnesium Handling. Curr Top Membr. 2010;65:151-76. https://doi.org/10.1016/S1063-5823(10)65007-7 Furuse M. Introduction: claudins, tight junctions, and the paracellular barrier. In Current Topics in Membranes. Boston: Elsevier; 2010. p. 1-19. https://doi.org/10.1016/S1063-5823(10)65001-6 Zhu L, Han J, Li L, Wang Y, Li Y, Zhang S. Claudin family participates in the pathogenesis of inflammatory bowel diseases and colitis-associated colorectal cancer. Front Immunol. 2019;10:1441. https://doi.org/10.3389/fimmu.2019.01441PMid:31316506 PMCid:PMC6610251 Wang X, Tully O, Ngo B, Zitin M, Mullin JM. Epithelial tight junctional changes in colorectal cancer tissues. Sci World J. 2011;11:826-41. https://doi.org/10.1100/tsw.2011.86PMid:21479352 PMCid:PMC5720014 Martin TA, Mansel RE, Jiang WG. Loss of occludin leads to the progression of human breast cancer. Int J Mol Med. 2010;26(5):723-34. https://doi.org/10.3892/ijmm_00000519PMid:20878095 Orbán E, Szabó E, Lotz G, Kupcsulik P, Páska C, Schaff Z, et al. Different expression of occludin and ZO-1 in primary and metastatic liver tumors. Pathol Oncol Res. 2008;14(3):299-306. https://doi.org/10.1007/s12253-008-9031-2PMid:18386163 Huo Q, Kinugasa T, Wang L, Huang J, Zhao J, Shibaguchi H, Kuroki M, Tanaka T, Yamashita Y, Nabeshima K, Iwasaki H. Claudin-1 protein is a major factor involved in the tumorigenesis of colorectal cancer. Anticancer Res. 2009;29(3):851-7. De Oliveira SS, De Oliveira IM, De Souza W, Morgado-Díaz JA. Claudins upregulation in human colorectal cancer. FEBS Lett. 2005;579(27):6179-85. https://doi.org/10.1016/j.febslet.2005.09.091PMid:16253248 Mandle HB, Jahan FA, Bostick RM, Baron JA, Barry EL, Yacoub R, et al. Effects of supplemental calcium and vitamin D on tightâ€junction proteins and mucinâ€12 expression in the normal rectal mucosa of colorectal adenoma patients. Mol Carcinog. 2019;58(7):1279-90. https://doi.org/10.1002/mc.23010PMid:30938860 PMCid:PMC6548635 Adiseshaiah PP, Patel NL, Ileva LV, Kalen JD, Haines DC, McNeil SE. Longitudinal imaging of cancer cell metastases in two preclinical models: A correlation of noninvasive imaging to histopathology. Int J Mol Imaging. 2014;2014:102702. https://doi.org/10.1155/2014/102702PMid:24724022 PMCid:PMC3958723 Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115. https://doi.org/10.1093/nar/gks596PMid:22730293 PMCid:PMC3424584 Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques. 2005;39(1):75-85. https://doi.org/10.2144/05391RV01PMid:16060372 Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30(9):e36. https://doi.org/10.1093/nar/30.9.e36PMid:11972351 PMCid:PMC113859 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402-8. https://doi.org/10.1006/meth.2001.1262PMid:11846609 Studio R. RStudio: Integrated development environment for R Version 0.98. 501. Newnes Boston, MA: 2012. Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol. 2003;81(1):1-44. https://doi.org/10.1016/S0079-6107(02)00037-8PMid:12475568 Ganjzadeh F, Shirkoohi R. Association between occludin gene expression and clinical morphological characteristics in breast cancer. Tehran Univ Med J. 2015;73(1):18-23. Park MW, Kim CH, Cheong JH, Bak KH, Kim JM, Oh SJ. Occludin expression in brain tumors and its relevance to peritumoral edema and survival. Cancer Res Treat. 2006;38(3):139-43. https://doi.org/10.4143/crt.2006.38.3.139PMid:19771274 PMCid:PMC2741679 Salehi P, Tafvizi F, Hesari KK. Low Expression of Occludin in the Melanoma Patient. Iran J Pathol. 2019;14(4):272. https://doi.org/10.30699/IJP.2019.85213.1801PMid:31754355 PMCid:PMC6824771 Phattarataratip E, Sappayatosok K. Expression of claudin-5, claudin-7 and occludin in oral squamous cell carcinoma and their clinico-pathological significance. J Clin Exp Dent. 2016;8(3):e299. https://doi.org/10.4317/jced.52801PMid:27398181 PMCid:PMC4930640 Hoellen F, Waldmann A, Banz Jansen C, Holtrich U, Karn T, Oberländer M, et al. Claudin 1 expression in cervical cancer. Mol Clin Oncol. 2017;7(5):880-4. https://doi.org/10.3892/mco.2017.1391PMid:29181184 PMCid:PMC5700277 Ye X, Zhao L, Kang J. Expression and significance of PTEN and Claudin 3 in prostate cancer. Oncol lett. 2019;17(6):5628-34. https://doi.org/10.3892/ol.2019.10212PMid:31186785 PMCid:PMC6507465 Ahmad A, Befekadu R, Askari S, Strömberg VH. Decreased Expression of Claudin 1, 3, 4, 5 and 7: A New Prognostic Marker in Colon Carcinoma. J Gastrointest Cancer Stromal Tumors. 2016;1:105. Niknami Z, Eslamifar A, Emamirazavi A, Ebrahimi A, Shirkoohi R. The association of vimentin and fibronectin gene expression with epithelial-mesenchymal transition and tumor malignancy in colorectal carcinoma. EXCLI J. 2017;16:1009. Osanai M, Murata M, Nishikiori N, Chiba H, Kojima T, Sawada N. Epigenetic silencing of occludin promotes tumorigenic and metastatic properties of cancer cells via modulations of unique sets of apoptosis-associated genes. Cancer Res. 2006;66(18):9125-33. https://doi.org/10.1158/0008-5472.CAN-06-1864PMid:16982755 Holczbauer Ã, Gyöngyösi B, Lotz G, Szijártó A, Kupcsulik P, Schaff Z, et al. Distinct claudin expression profiles of hepatocellular carcinoma ad metastatic colorectal and pancreatic carcinomas. J Histochem Cytochem. 2013;61(4):294-305. https://doi.org/10.1369/0022155413479123PMid:23385421 PMCid:PMC3636686

Published

2022-12-31

Issue

Section

Original Article