Mesenchymal Stem Cells as A New Approach for the Treatment of Multiple Sclerosis: A Literature Review

Authors

  • Morteza Jafarinia Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
  • Amirabbas Rostami Department of Internal Medicine, Faculty of General Medicine, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
  • Yusef Abbasi Department of Anatomy, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
  • Asma Asadian Clinical Research Development Unit, 9 Dey Educational Hospital, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
  • Hossein Enani Faculty of Medicine, Islamic Azad University, Marand Branch, Marand, Iran
  • Sheida Jamalnia Department of Nursing and Midwifery, Kazeroun Branch, Islamic Azad University, Kazeroun, Iran

DOI:

https://doi.org/10.31661/gmj.v11i.2529

Keywords:

Multiple Sclerosis, Mesenchymal Stem Cells, Human Leukocyte Antigen

Abstract

Multiple sclerosis (MS) is a high-prevalence autoimmune and neurodegenerative disease that affects young adults. An ideal treatment for MS should have two characteristics. First, its immunosuppression and immunomodulation effects reduce the abnormal immune response, and second, it improves repair by enhancing intrinsic repair processes or even cell replacement. Most available therapies have the first characteristic. Recent studies have proposed mesenchymal stem cells (MSCs) as a new therapeutic candidate for MS. Different clinical trials and animal models of MS have shown the therapeutic effect of MSCs. In the current study, we reviewed the therapeutic effects of MSCs in the animal model and patients with MS.

References

Jafarinia M, Amoon M, Javid A, Vakili S, Sadeghi E, Azadi D, et al. Male microchimerism in peripheral blood from women with multiple sclerosis in Isfahan Province. Int J Immunogenet. 2020;47(2):175-9. https://doi.org/10.1111/iji.12465PMid:31833227 Jafarinia M, Ashja-Arvan M, Hosseininasab F, Vakili S, Sadeghi E, Etemadifar M, et al. Evaluation of plasma soluble CD137 level in relapsing-remitting multiple sclerosis patients in comparison with healthy controls in Isfahan Province, Iran. Neurology Asia. 2020;25(3):361-5. Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV, et al. Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurology. 2014;83(11):1022-4. https://doi.org/10.1212/WNL.0000000000000768PMid:25200713 PMCid:PMC4162299 Ascherio A. Environmental factors in multiple sclerosis. Expert Rev Neurother. 2013;13(sup2):3-9. https://doi.org/10.1586/14737175.2013.865866PMid:24289836 Jafarinia M, Sadeghi E, Alsahebfosoul F, Etemadifar M, Jahanbani-Ardakani H. Evaluation of plasma Osteopontin level in relapsing-remitting multiple sclerosis patients compared to healthy subjects in Isfahan Province. Int J Neurosci. 2020;130(5):493-8. https://doi.org/10.1080/00207454.2019.1694925PMid:31795798 Greenfield AL, Hauser SL. Bâ€cell Therapy for Multiple Sclerosis: Entering an era. Ann Neurol. 2018;83(1):13-26. https://doi.org/10.1002/ana.25119PMid:29244240 PMCid:PMC5876115 Leray E, Yaouanq J, Le Page E, Coustans M, Laplaud D, Oger J, et al. Evidence for a two-stage disability progression in multiple sclerosis. Brain. 2010;133(7):1900-13. https://doi.org/10.1093/brain/awq076PMid:20423930 PMCid:PMC2892936 Loma I, Heyman R. Multiple sclerosis: pathogenesis and treatment. Curr Neuropharmacol. 2011;9(3):409-16. https://doi.org/10.2174/157015911796557911PMid:22379455 PMCid:PMC3151595 Hauser SL, Cree BA. Treatment of multiple sclerosis: a review. Am J Med. 2020;133(12):1380-90. https://doi.org/10.1016/j.amjmed.2020.05.049PMid:32682869 PMCid:PMC7704606 Sormani MP, Muraro PA, Schiavetti I, Signori A, Laroni A, Saccardi R, et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a meta-analysis. Neurology. 2017;88(22):2115-22. https://doi.org/10.1212/WNL.0000000000003987PMid:28455383 Ramagopalan SV, Dobson R, Meier UC, Giovannoni G. Multiple sclerosis: risk factors, prodromes, and potential causal pathways. The Lancet Neurology. 2010;9(7):727-39. https://doi.org/10.1016/S1474-4422(10)70094-6PMid:20610348 Al-Obaidi ZMJ, Hussein YA, AL-Duhaidahawi D, Al-Aubaidy HA. Molecular docking studies and biological evaluation of luteolin on cerebral ischemic reperfusion injury. Egyptian Journal of Chemistry. 2022;65(6):1-2. Hollenbach JA, Oksenberg JR. The immunogenetics of multiple sclerosis: a comprehensive review. J Autoimmun. 2015;64:13-25. https://doi.org/10.1016/j.jaut.2015.06.010PMid:26142251 PMCid:PMC4687745 Kurtzke JF. Epidemiology in multiple sclerosis: a pilgrim's progress. Brain. 2013;136(9):2904-17. https://doi.org/10.1093/brain/awt220PMid:23983034 Pakpoor J, Disanto G, Gerber JE, Dobson R, Meier UC, Giovannoni G, et al. The risk of developing multiple sclerosis in individuals seronegative for Epstein-Barr virus: a meta-analysis. Mult Scle. 2013;19(2):162-6. https://doi.org/10.1177/1352458512449682PMid:22740437 Handel AE, Williamson AJ, Disanto G, Handunnetthi L, Giovannoni G, Ramagopalan SV. An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis. PLoS One. 2010;5(9):e12496. https://doi.org/10.1371/journal.pone.0012496PMid:20824132 PMCid:PMC2931696 Lang HL, Jacobsen H, Ikemizu S, Andersson C, Harlos K, Madsen L, et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol. 2002;3(10):940. https://doi.org/10.1038/ni835PMid:12244309 Tracy SI, Kakalacheva K, Lünemann JD, Luzuriaga K, Middeldorp J, Thorley-Lawson DA. Persistence of Epstein-Barr virus in self-reactive memory B cells. J Virol. 2012;86(22):12330-40. https://doi.org/10.1128/JVI.01699-12PMid:22951828 PMCid:PMC3486485 Koch-Henriksen N, Sørensen PS. The changing demographic pattern of multiple sclerosis epidemiology. The Lancet Neurology. 2010;9(5):520-32. https://doi.org/10.1016/S1474-4422(10)70064-8PMid:20398859 Palacios N, Alonso A, BrØnnum-Hansen H, Ascherio A. Smoking and increased risk of multiple sclerosis: parallel trends in the sex ratio reinforce the evidence. Ann Epidemiol. 2011;21(7):536-42. https://doi.org/10.1016/j.annepidem.2011.03.001PMid:21550815 PMCid:PMC3124940 Handel AE, Williamson AJ, Disanto G, Dobson R, Giovannoni G, Ramagopalan SV. Smoking and multiple sclerosis: an updated meta-analysis. PLoS One. 2011;6(1):e16149. https://doi.org/10.1371/journal.pone.0016149PMid:21249154 PMCid:PMC3020969 Napier MD, Poole C, Satten GA, Ashley-Koch A, Marrie RA, Williamson DM. Heavy metals, organic solvents, and multiple sclerosis: An exploratory look at gene-environment interactions. Arch Environ Occup Health. 2016;71(1):26-34. https://doi.org/10.1080/19338244.2014.937381PMid:25137520 PMCid:PMC4334728 Hedström AK, Bäärnhielm M, Olsson T, Alfredsson L. Tobacco smoking, but not Swedish snuff use, increases the risk of multiple sclerosis. Neurology. 2009;73(9):696-701. https://doi.org/10.1212/WNL.0b013e3181b59c40PMid:19720976 Orton S-M, Herrera BM, Yee IM, Valdar W, Ramagopalan SV, Sadovnick AD, et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study. The Lancet Neurology. 2006;5(11):932-6. https://doi.org/10.1016/S1474-4422(06)70581-6PMid:17052660 Pearce J. Historical descriptions of multiple sclerosis. Eur Neurol. 2005;54(1):49-53. https://doi.org/10.1159/000087387https://doi.org/10.1159/000091429 Karussis D. The diagnosis of multiple sclerosis and the various related demyelinating syndromes: a critical review. J Autoimmun. 2014;48:134-42. https://doi.org/10.1016/j.jaut.2014.01.022PMid:24524923 Lassmann H. Pathology and disease mechanisms in different stages of multiple sclerosis. J Neurol Sci. 2013;333(1-2):1-4. https://doi.org/10.1016/j.jns.2013.05.010PMid:23735777 Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338(5):278-85. https://doi.org/10.1056/NEJM199801293380502PMid:9445407 Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009;132(5):1175-89. https://doi.org/10.1093/brain/awp070PMid:19339255 PMCid:PMC2677799 Tallantyre E, Bø L, Al-Rawashdeh O, Owens T, Polman C, Lowe J, et al. Greater loss of axons in primary progressive multiple sclerosis plaques compared to secondary progressive disease. Brain. 2009;132(5):1190-9. https://doi.org/10.1093/brain/awp106PMid:19420101 Mohamed Saleh Omar Korbag S, Mohamed Saleh Omar Korbag I. A new study biological role of HPV infection, oral contraceptive use, sex hormones and bisphenol A and increase rate cancer of cervical in Libya. Journal of Medicinal and Chemical Sciences. 2020;3(4):354-62. Dobson R, Giovannoni G. Multiple sclerosis-a review. Eur Neurol. 2019;26(1):27-40. https://doi.org/10.1111/ene.13819PMid:30300457 Wei X, Yang X, Han Z-p, Qu F-f, Shao L, Shi Y-f. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin. 2013;34(6):747-54. https://doi.org/10.1038/aps.2013.50PMid:23736003 PMCid:PMC4002895 Jafarinia M, Alsahebfosoul F, Salehi H, Eskandari N, Ganjalikhani-Hakemi M. Mesenchymal stem cell-derived extracellular vesicles: a novel cell-free therapy. Immunol Invest. 2020;49(7):758-80. https://doi.org/10.1080/08820139.2020.1712416PMid:32009478 Shadmanesh A, Nazari H, Shirazi A, Ahmadi E, Shams-Esfandabadi N. An inexpensive and simple method for isolation mesenchymal stem cell of human amnion membrane. International Journal of Advanced Biological and Biomedical Research. 2021;9(1):119-27. Berebichez-Fridman R, Montero-Olvera PR. Sources and clinical applications of mesenchymal stem cells: state-of-the-art review. Sultan Qaboos Univ Med J. 2018;18(3):e264. https://doi.org/10.18295/squmj.2018.18.03.002PMid:30607265 PMCid:PMC6307657 Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7. https://doi.org/10.1080/14653240600855905PMid:16923606 Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017;18(9):1852. https://doi.org/10.3390/ijms18091852PMid:28841158 PMCid:PMC5618501 Eleuteri S, Fierabracci A. Insights into the secretome of mesenchymal stem cells and its potential applications. Int J Mol Sci. 2019;20(18):4597. https://doi.org/10.3390/ijms20184597PMid:31533317 PMCid:PMC6770239 Harrell CR, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome. Cells. 2019;8(5):467. https://doi.org/10.3390/cells8050467PMid:31100966 PMCid:PMC6562906 Jafarinia M, Alsahebfosoul F, Salehi H, Eskandari N, Azimzadeh M, Mahmoodi M, et al. Therapeutic effects of extracellular vesicles from human adiposeâ€derived mesenchymal stem cells on chronic experimental autoimmune encephalomyelitis. J Cell Physiol. 2020;235(11):8779-90. https://doi.org/10.1002/jcp.29721PMid:32329062 Ghasemi N. Transdifferentiation of human adipose-derived mesenchymal stem cells into oligodendrocyte progenitor cells. Iran J Neurol. 2018;17(1):24. Jadasz JJ, Tepe L, Beyer F, Samper Agrelo I, Akkermann R, Spitzhorn LS, et al. Human mesenchymal factors induce rat hippocampalâ€and human neural stem cell dependent oligodendrogenesis. Glia. 2018;66(1):145-60. https://doi.org/10.1002/glia.23233PMid:28940767 Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharmacol Sci. 2020;41(9):653-64. https://doi.org/10.1016/j.tips.2020.06.009PMid:32709406 PMCid:PMC7751844 Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Proliferation. 2020;53(1):e12712. https://doi.org/10.1111/cpr.12712 Kassis I, Grigoriadis N, Gowda-Kurkalli B, Mizrachi-Kol R, Ben-Hur T, Slavin S, et al. Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch Neurol. 2008;65(6):753-61. https://doi.org/10.1001/archneur.65.6.753PMid:18541795 Li J, Chen Y, Chen Z, Huang Y, Yang D, Su Z, et al. Therapeutic effects of human adipose tissue-derived stem cell (hADSC) transplantation on experimental autoimmune encephalomyelitis (EAE) mice. Sci Rep. 2017;7:42695. https://doi.org/10.1038/srep42695PMid:28198408 PMCid:PMC5309875 Cohen JA, Imrey PB, Planchon SM, Bermel RA, Fisher E, Fox RJ, et al. Pilot trial of intravenous autologous culture-expanded mesenchymal stem cell transplantation in multiple sclerosis. Mult Scler. 2018;24(4):501-11. https://doi.org/10.1177/1352458517703802PMid:28381130 PMCid:PMC5623598 Anderson P, Gonzalez-Rey E, O'Valle F, Martin F, Oliver FJ, Delgado M. Allogeneic adipose-derived mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by regulating self-reactive T cell responses and dendritic cell function. Stem Cells Int. 2017;2017:2389753. https://doi.org/10.1155/2017/2389753PMid:28250776 PMCid:PMC5303870 Niapour N, Taghipour Z, Salehi H, Bagheri A, Rouhani A, Talebi M, et al. Isolation and identification of mesenchymal and neural crest characteristics of dental pulp derived stem cells. Koomesh. 2015;16(4):520-6. Koc O, Lazarus H. Mesenchymal stem cells: heading into the clinic. Bone Marrow Transplant. 2001;27(3):235. https://doi.org/10.1038/sj.bmt.1702791PMid:11277170 Sarvar DP, Shamsasenjan K, Akbarzadehlaleh P. Mesenchymal stem cell-derived exosomes: new opportunity in cell-free therapy. Adv Pharm Bull. 2016;6(3):293. https://doi.org/10.15171/apb.2016.041PMid:27766213 PMCid:PMC5071792 Horwitz EM, Andreef M, Frassoni F. Mesenchymal stromal cells. Curr Opin Hematol. 2006;13(6):419. https://doi.org/10.1097/01.moh.0000245697.54887.6fPMid:17053453 PMCid:PMC3365862 Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH. Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes. 2008;57(7):1759-67. https://doi.org/10.2337/db08-0180PMid:18586907 PMCid:PMC2453631 Gallina C, Turinetto V, Giachino C. A new paradigm in cardiac regeneration: the mesenchymal stem cell secretome. Stem Cells Int. 2015;2015:1-10. https://doi.org/10.1155/2015/765846PMid:26074978 PMCid:PMC4436518 Bonab MM, Mohajeri M, Sahraian MA, Yazdanifar M, Aghsaie A, Farazmand A, et al. Evaluation of cytokines in multiple sclerosis patients treated with mesenchymal stem cells. Arch Med Res. 2013;44(4):266-72. https://doi.org/10.1016/j.arcmed.2013.03.007PMid:23684533 Yamout B, Hourani R, Salti H, Barada W, El-Hajj T, Al-Kutoubi A, et al. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol. 2010;227(1-2):185-9. https://doi.org/10.1016/j.jneuroim.2010.07.013PMid:20728948 Sato T, Iso Y, Uyama T, Kawachi K, Wakabayashi K, Omori Y, et al. Coronary vein infusion of multipotent stromal cells from bone marrow preserves cardiac function in swine ischemic cardiomyopathy via enhanced neovascularization. Lab Invest. 2011;91(4):553. https://doi.org/10.1038/labinvest.2010.202PMid:21283079 Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood. 2005;106(5):1755-61. https://doi.org/10.1182/blood-2005-04-1496PMid:15905186 Constantin G, Marconi S, Rossi B, Angiari S, Calderan L, Anghileri E, et al. Adiposeâ€derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells. 2009;27(10):2624-35. https://doi.org/10.1002/stem.194PMid:19676124 Gerdoni E, Gallo B, Casazza S, Musio S, Bonanni I, Pedemonte E, et al. Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol. 2007;61(3):219-27. https://doi.org/10.1002/ana.21076PMid:17387730 Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. The Lancet Neurology. 2012;11(2):150-6. https://doi.org/10.1016/S1474-4422(11)70305-2PMid:22236384 Stepien A, Dabrowska NL, Maciagowska M, Macoch RP, Zolocinska A, Mazur S, et al. Clinical application of autologous adipose stem cells in patients with multiple sclerosis: preliminary results. Mediators Inflamm. 2016;2016:5302120. https://doi.org/10.1155/2016/5302120PMid:27761060 PMCid:PMC5059576 Mohyeddin Bonab M, Ali Sahraian M, Aghsaie A, Ahmadi Karvigh S, Massoud Hosseinian S, Nikbin B, et al. Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther. 2012;7(6):407-14. https://doi.org/10.2174/157488812804484648PMid:23061813 Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67(10):1187-94. https://doi.org/10.1001/archneurol.2010.248PMid:20937945 PMCid:PMC3036569 Liu J, Feng B, Xu Y, Zhu J, Feng X, Chen W, et al. Immunomodulatory effect of mesenchymal stem cells in chemical-induced liver injury: a high-dimensional analysis. Stem Cell Res Ther. 2019;10(1):1-13. https://doi.org/10.1186/s13287-019-1379-6PMid:31443686 PMCid:PMC6708172 Herrero C, Perez-Simon J. Immunomodulatory effect of mesenchymal stem cells. Braz J Med Biol Res. 2010;43(5):425-30. https://doi.org/10.1590/S0100-879X2010007500033PMid:20490429

Published

2022-12-17

Issue

Section

Review Article