Dysregulation of miR-577, miR-505-3p, miR-3682-3p, and miR-4661 in Breast Cancer Patients Based on Estrogen Receptor Status

Authors

  • Arman Moradi Tasnim Biotechnology Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
  • Saeid Rahmani Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
  • Narges Jafarbeik Iravani Department of Genetics, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
  • Rezvan Esmaeili Department of Genetics, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
  • Seyed Javad Mowla Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
  • Keivan Majidzadeh-A Tasnim Biotechnology Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran/ Department of Genetics, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran

DOI:

https://doi.org/10.31661/gmj.v12i.2540

Keywords:

Breast Cancer, MicroRNAs, Real-Time Polymerase Chain Reaction, Biomarkers, Estrogen Receptor

Abstract

Background: Breast cancer is one of the most common malignancies and the second leading cause of cancer-related death in women. Approximately 75% of all breast cancers are estrogen receptor-positive (ER+ ) and highly responsive to endocrine therapy. MicroRNAs (miRNAs) are short non-coding RNA with a pivotal role in mammal cells by regulating gene expression. Hence, this study aimed to evaluate the miRNAs expression in various breast cancer subtypes. Materials and Methods: In this study, after total RNA extraction and cDNA synthesis, expressions of miR-577, miR-505-3p, miR-3682-3p, and miR-4661-5p were investigated in 36 breast cancer samples of ER+ and ER- types and compared with 18 normal adjacent tissues by real-time polymerase chain reaction. Also, diagnostic values of miRNAs were determined based on receiver operating characteristic (ROC) by calculating the area under the curve (AUC). Results: Downregulation of miR-577 and miR-505-3p were detected in breast cancer samples, significantly in the ER+ subtype compared to ER- subtype (P<0.001). Also, we showed upregulation of miR-3682-3p and miR-4661-5p in breast cancer tissues compared to normal tissues. Compared to the ER+ subtype, the miR-3682-3p expression significantly decreased in the ER- subtype (P<0.001). However, there was no significant difference between ER+ and ER- subtypes in the term of miR-4661-5p (P˃0.05). The ROC analysis demonstrated that miR-577 and miR-505-3p have acceptable diagnostic values, and miR-3682-3p has a relatively proper diagnostic value in diagnosing breast cancer. Conclusion: Our results revealed that miR-577 and miR-505- 3p could be used as biomarkers for the diagnosis of breast cancer, especially in ER+ subtype.

References

Alyami NM. MicroRNAs Role in Breast Cancer: Theranostic Application in Saudi Arabia. Front Oncol. 2021;11:717759. https://doi.org/10.3389/fonc.2021.717759PMid:34760689 PMCid:PMC8573223 Shiovitz S, Korde LA. Genetics of breast cancer: A topic in evolution. Ann Oncol. 2015;26(7):1291-9. https://doi.org/10.1093/annonc/mdv022PMid:25605744 PMCid:PMC4478970 Moo TA, Sanford R, Dang C, Morrow M. Overview of Breast Cancer Therapy. PET Clin. 2018;13(3):339-54. https://doi.org/10.1016/j.cpet.2018.02.006PMid:30100074 PMCid:PMC6092031 Hua H, Zhang H, Kong Q, Jiang Y. Mechanisms for estrogen receptor expression in human cancer. Exp Hematol Oncol. 2018;7:24. https://doi.org/10.1186/s40164-018-0116-7PMid:30250760 PMCid:PMC6148803 Cizeron-Clairac G, Lallemand F, Vacher S, Lidereau R, Bieche I, Callens C. MiR-190b, the highest up-regulated miRNA in ERα-positive compared to ERα-negative breast tumors, a new biomarker in breast cancers? BMC Cancer. 2015;15(1):499. https://doi.org/10.1186/s12885-015-1505-5PMid:26141719 PMCid:PMC4491222 Macfarlane LA, Murphy PR. MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics. 2010;11(7):537-61. https://doi.org/10.2174/138920210793175895PMid:21532838 PMCid:PMC3048316 Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta. 2010;1803(11):1231-43. https://doi.org/10.1016/j.bbamcr.2010.06.013PMid:20619301 Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol. 2012;6(6):590-610. https://doi.org/10.1016/j.molonc.2012.09.006PMid:23102669 PMCid:PMC5528350 Khordadmehr M, Shahbazi R, Ezzati H, Jigari-Asl F, Sadreddini S, Baradaran B. Key microRNAs in the biology of breast cancer; emerging evidence in the last decade. J Cell Physiol. 2019;234(6):8316-26. https://doi.org/10.1002/jcp.27716PMid:30422324 Dalmay T, Edwards DR. MicroRNAs and the hallmarks of cancer. Oncogene. 2006;25(46):6170-5. https://doi.org/10.1038/sj.onc.1209911PMid:17028596 Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2006;94(6):776-80. https://doi.org/10.1038/sj.bjc.6603023PMid:16495913 PMCid:PMC2361377 Van Der Auwera I, Limame R, Van Dam P, Vermeulen PB, Dirix LY, Van Laere SJ. Integrated miRNA and mRNA expression profiling of the inflammatory breast cancer subtype. Br J Cancer. 2010;103:532-41. https://doi.org/10.1038/sj.bjc.6605787PMid:20664596 PMCid:PMC2939785 Lan H, Lu H, Wang X, Jin H. MicroRNAs as potential biomarkers in cancer: opportunities and challenges. Biomed Res Int. 2015;2015:125094. https://doi.org/10.1155/2015/125094PMid:25874201 PMCid:PMC4385606 Jang JY, Kim YS, Kang KN, Kim KH, Park YJ, Kim CW. Multiple microRNAs as biomarkers for early breast cancer diagnosis. Mol Clin Oncol. 2021;14(2):31. https://doi.org/10.3892/mco.2020.2193PMid:33414912 PMCid:PMC7783718 Loh HY, Norman BP, Lai KS, Rahman NMANA, Alitheen NBM, Osman MA. The Regulatory Role of MicroRNAs in Breast Cancer. Int J Mol Sci. 2019;20(19):4940. https://doi.org/10.3390/ijms20194940PMid:31590453 PMCid:PMC6801796 Denkiewicz M, Saha I, Rakshit S, Sarkar JP, Plewczynski D. Identification of Breast Cancer Subtype Specific MicroRNAs Using Survival Analysis to Find Their Role in Transcriptomic Regulation. Front Genet. 2019;10:1047. https://doi.org/10.3389/fgene.2019.01047PMid:31798622 PMCid:PMC6837165 Men L, Nie D, Nie H. MicroRNA-577 inhibits cell proliferation and invasion in non-small cell lung cancer by directly targeting homeobox A1. Mol Med Rep. 2019;19(3):1875-82. https://doi.org/10.3892/mmr.2019.9804PMid:30628697 Luo Y, Wu J, Wu Q, Li X, Wu J, Zhang J, et al. miR-577 Regulates TGF-β Induced Cancer Progression through a SDPR-Modulated Positive-Feedback Loop with ERK-NF-κB in Gastric Cancer. Mol Ther. 2019;27(6):1166-82. https://doi.org/10.1016/j.ymthe.2019.02.002PMid:30879950 PMCid:PMC6554531 Jiang H, Ju H, Zhang L, Lu H, Jie K. microRNA-577 suppresses tumor growth and enhances chemosensitivity in colorectal cancer. J Biochem Mol Toxicol. 2017;31(6):e21888. https://doi.org/10.1002/jbt.21888PMid:28150434 Wang LY, Li B, Jiang HH, Zhuang LW, Liu Y. Inhibition effect of miR-577 on hepatocellular carcinoma cell growth via targeting β-catenin. Asian Pac J Trop Med. 2015;8(11):923-9. https://doi.org/10.1016/j.apjtm.2015.10.001PMid:26614992 Zhang XT, Dong SH, Zhang JY, Shan B. MicroRNA-577 promotes the sensitivity of chronic myeloid leukemia cells to imatinib by targeting NUP160. Eur Rev Med Pharmacol Sci. 2019;23(16):7008-15. Tang H, Lv W, Sun W, Bi Q, Hao Y. MiR-505 inhibits cell growth and EMT by targeting MAP3K3 through the AKT-NFκB pathway in NSCLC cells. Int J Mol Med. 2019;43(3):1203-16. https://doi.org/10.3892/ijmm.2018.4041 Kapora E, Feng S, Liu W, Sakhautdinova I, Gao B, Tan W. MicroRNA-505-5p functions as a tumor suppressor by targeting cyclin-dependent kinase 5 in cervical cancer. Biosci Rep. 2019;39(7):20191221. https://doi.org/10.1042/BSR20191221PMid:31266812 PMCid:PMC6658724 Tang Y, Wu B, Huang S, Peng X, Li X, Huang X, et al. Downregulation of miR-505-3p predicts poor bone metastasis-free survival in prostate cancer. Oncol Rep. 2019;41(1):57-66. https://doi.org/10.3892/or.2018.6826 Tian L, Wang Z, Hao J, Zhang X. miRâ€505 acts as a tumor suppressor in gastric cancer progression through targeting HMGB1. J Cell Biochem. 2019;120(5):8044-52. https://doi.org/10.1002/jcb.28082PMid:30525214 Ren L, Yao Y, Wang Y, Wang S. MiR-505 suppressed the growth of hepatocellular carcinoma cells via targeting IGF-1R. Biosci Rep. 2019;39(7):20182442. https://doi.org/10.1042/BSR20182442PMid:31160483 PMCid:PMC6603277 Rong Z, Rong Y, Li Y, Zhang L, Peng J, Zou B, et al. Development of a Novel Six-miRNA-Based Model to Predict Overall Survival Among Colon Adenocarcinoma Patients. Front Oncol. 2020;10:26. https://doi.org/10.3389/fonc.2020.00026PMid:32154160 PMCid:PMC7047168 Yao B, Niu Y, Li Y, Chen T, Wei X, Liu Q. High-matrix-stiffness induces promotion of hepatocellular carcinoma proliferation and suppression of apoptosis via miR-3682-3p-PHLDA1-FAS pathway. J Cancer. 2020;11(21):6188-203. https://doi.org/10.7150/jca.45998PMid:33033502 PMCid:PMC7532500 Li S, Hang L, Ma Y, Wu C. Distinctive microRNA expression in early stage nasopharyngeal carcinoma patients. J Cell Mol Med. 2016;20(12):2259-68. https://doi.org/10.1111/jcmm.12906PMid:27489139 PMCid:PMC5134390 Rong H, Liu D. Identification of differentially expressed miRNAs associated with thermal injury in epidermal stem cells based on RNA sequencing. Exp Ther Med. 2020;19(3):2218-28. https://doi.org/10.3892/etm.2020.8448PMid:32104287 PMCid:PMC7027234 Cho HJ, Baek GO, Seo CW, Ahn HR, Sung S, Son JA, et al. Exosomal microRNAâ€4661â€5p-based serum panel as a potential diagnostic biomarker for earlyâ€stage hepatocellular carcinoma. Cancer Med. 2020;9(15):5459-72. https://doi.org/10.1002/cam4.3230PMid:32537885 PMCid:PMC7402848 Li X, An Z, Li P, Liu H. A prognostic model for lung adenocarcinoma patient survival with a focus on four miRNAs. Oncol Lett. 2017;14(3):299-5. https://doi.org/10.3892/ol.2017.6481PMid:28927049 PMCid:PMC5588086

Downloads

Published

2023-02-17

Issue

Section

Original Article