The Therapeutic Effect of Mesenchymal Stem Cells in Spinal Cord Injury
DOI:
https://doi.org/10.31661/gmj.v11i.2541Keywords:
Bone Marrow, Mesenchymal Stem Cells, Spinal Cord Injuries, Umbilical Cord, Adipose TissueAbstract
Spinal cord injury (SCI) is an injury of the spine that could be life-threatening and lead to partial or complete loss of autonomic, sensory, and motor function below the injured area. Surgery decompression and steroid injection are the current treatments for SCI, but neither is particularly effective, and there is a growing demand for a more potent treatment. Mesenchymal stem cells (MSCs) are novel therapeutic agents that were used in different inflammatory diseases. These cells have immunomodulatory and regenerative properties which make them a promising candidate for neurological disorders such as SCI. MSCs are easily expandable in vitro and have the capacity for multilineage differentiation. These cells, which can be derived from adipose tissue, bone marrow (BM), Wharton jelly, or umbilical cord, have immunomodulatory and paracrine capabilities. They can release a variety of cytokines and other substances that suppress the growth of B cells, T cells, and natural killer cells (NKCs) as well as alter the activity of dendritic cells (DCs). In this study, we reviewed clinical studies that showed the effects of MSCs from different sources in the SCI.
References
Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, et al. Amyotrophic lateral sclerosis. Nat Rev Dis Primers. 2017;3(1):1-19.
https://doi.org/10.1038/nrdp.2017.85
https://doi.org/10.1038/nrdp.2017.71
PMid:28980624
Yazdani R, Hayati S, Yousefi Kafshgari M, Ghasemi A, Tabibzadeh Dezfuli SA. Epidemiology and Radiologic Findings of Patients with Traumatic Spine Injures in Iran: Methodological and Epidemiological Study. Chem Methodol. 2020;5(1):35-40.
Jain NB, Ayers GD, Peterson EN, Harris MB, Morse L, O'Connor KC, et al. Traumatic spinal cord injury in the United States, 1993-2012. JAMA. 2015;313(22):2236-43.
https://doi.org/10.1001/jama.2015.6250
PMid:26057284 PMCid:PMC4712685
Goel A. Stem cell therapy in spinal cord injury: Hollow promise or promising science? JCVJS. 2016;7(2):121.
https://doi.org/10.4103/0974-8237.181880
PMid:27217662 PMCid:PMC4872563
Tan J-W, Wang K-Y, Liao G-J, Chen F-M, Mu M-Z. Neuroprotective effect of methylprednisolone combined with placenta-derived mesenchymal stem cell in rabbit model of spinal cord injury. Int J Clin Exp Pathol. 2015;8(8):8976.
Zweckberger K, Ahuja CS, Liu Y, Wang J, Fehlings MG. Self-assembling peptides optimize the post-traumatic milieu and synergistically enhance the effects of neural stem cell therapy after cervical spinal cord injury. Acta Biomater. 2016;42:77-89.
https://doi.org/10.1016/j.actbio.2016.06.016
PMid:27296842
Yılmaz T, Kaptanoğlu E. Current and future medical therapeutic strategies for the functional repair of spinal cord injury. World J Orthop. 2015;6(1):42.
https://doi.org/10.5312/wjo.v6.i1.42
PMid:25621210 PMCid:PMC4303789
Wilson JR, Forgione N, Fehlings MG. Emerging therapies for acute traumatic spinal cord injury. CMAJ. 2013;185(6):485-92.
https://doi.org/10.1503/cmaj.121206
PMid:23228995 PMCid:PMC3612151
Wilson JR, Tetreault LA, Kwon BK, Arnold PM, Mroz TE, Shaffrey C, et al. Timing of decompression in patients with acute spinal cord injury: a systematic review. Global Spine J 2017;7(3_suppl):95S-115S.
https://doi.org/10.1177/2192568217701716
PMid:29164038 PMCid:PMC5684838
Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci Res. 2005;25(19):4694-705.
https://doi.org/10.1523/JNEUROSCI.0311-05.2005
PMid:15888645 PMCid:PMC6724772
Jin MC, Medress ZA, Azad TD, Doulames VM, Veeravagu A. Stem cell therapies for acute spinal cord injury in humans: a review. Neurosurg Focus. 2019;46(3):E10.
https://doi.org/10.3171/2018.12.FOCUS18602
PMid:30835679
Ghahramani Y. When stem cells meet nanoparticles for biomedical treatments: A mini-review. AANBT. 2021:72-8.
Ghahramani Y, Javanmardi N. Graphene Oxide Quantum Dots and their applications via stem cells: A mini-review. AANBT. 2021;2(3):54-6.
Baez-Jurado E, Hidalgo-Lanussa O, Barrera-Bailón B, Sahebkar A, Ashraf GM, Echeverria V, et al. Secretome of mesenchymal stem cells and its potential protective effects on brain pathologies. Mol Neurobiol. 2019;56(10):6902-27.
https://doi.org/10.1007/s12035-019-1570-x
PMid:30941733
Jafarinia M, Alsahebfosoul F, Salehi H, Eskandari N, Ganjalikhani-Hakemi M. Mesenchymal stem cell-derived extracellular vesicles: a novel cell-free therapy. Immunol Invest. 2020;49(7):758-80.
https://doi.org/10.1080/08820139.2020.1712416
PMid:32009478
Shadmanesh A, Nazari H, Shirazi A, Ahmadi E, Shams-Esfandabadi N. An inexpensive and simple method for isolation mesenchymal stem cell of human amnion membrane. Int J Adv Biol. 2021;9(1):119-27.
Lu S, Lu C, Han Q, Li J, Du Z, Liao L, et al. Adipose-derived mesenchymal stem cells protect PC12 cells from glutamate excitotoxicity-induced apoptosis by upregulation of XIAP through PI3-K/Akt activation. Toxicology. 2011;279(1-3):189-95.
https://doi.org/10.1016/j.tox.2010.10.011
PMid:21040751
Voulgari-Kokota A, Fairless R, Karamita M, Kyrargyri V, Tseveleki V, Evangelidou M, et al. Mesenchymal stem cells protect CNS neurons against glutamate excitotoxicity by inhibiting glutamate receptor expression and function. Exp Neurol. 2012;236(1):161-70.
https://doi.org/10.1016/j.expneurol.2012.04.011
PMid:22561409
Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol. 2006;198(1):54-64.
https://doi.org/10.1016/j.expneurol.2005.10.029
PMid:16336965
Hawryluk GW, Mothe A, Wang J, Wang S, Tator C, Fehlings MG. An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev. 2012;21(12):2222-38.
https://doi.org/10.1089/scd.2011.0596
PMid:22085254 PMCid:PMC3411361
Lanza C, Morando S, Voci A, Canesi L, Principato MC, Serpero LD, et al. Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo. J Neurochem. 2009;110(5):1674-84.
https://doi.org/10.1111/j.1471-4159.2009.06268.x
PMid:19619133
Zhou C, Zhang C, Chi S, Xu Y, Teng J, Wang H, et al. Effects of human marrow stromal cells on activation of microglial cells and production of inflammatory factors induced by lipopolysaccharide. Brain Res. 2009;1269:23-30.
https://doi.org/10.1016/j.brainres.2009.02.049
PMid:19269277
Nakajima H, Uchida K, Guerrero AR, Watanabe S, Sugita D, Takeura N, et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma. 2012;29(8):1614-25.
https://doi.org/10.1089/neu.2011.2109
PMid:22233298 PMCid:PMC3353766
Quertainmont R, Cantinieaux D, Botman O, Sid S, Schoenen J, Franzen R. Mesenchymal stem cell graft improves recovery after spinal cord injury in adult rats through neurotrophic and pro-angiogenic actions. PLoS One. 2012;7(6):e39500.
https://doi.org/10.1371/journal.pone.0039500
PMid:22745769 PMCid:PMC3380009
Lu L-L, Liu Y-J, Yang S-G, Zhao Q-J, Wang X, Gong W, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica. 2006;91(8):1017-26.
Farzadfar F, Naghavi M, Sepanlou SG, Moghaddam SS, Dangel WJ, Weaver ND, et al. Health system performance in Iran: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet. 2022;399(10335):1625-45.
https://doi.org/10.1016/S0140-6736(21)02751-3
PMid:35397236
Rosenzweig ES, McDonald JW. Rodent models for treatment of spinal cord injury: research trends and progress toward useful repair. Curr Opin Neurol. 2004;17(2):121-31.
https://doi.org/10.1097/00019052-200404000-00007
PMid:15021237
Wang J, Pearse DD. Therapeutic hypothermia in spinal cord injury: the status of its use and open questions. Int J Mol Sci. 2015;16(8):16848-79.
https://doi.org/10.3390/ijms160816848
PMid:26213924 PMCid:PMC4581174
Ramer L, Ramer M, Steeves J. Setting the stage for functional repair of spinal cord injuries: a cast of thousands. Spinal Cord. 2005;43(3):134-61.
https://doi.org/10.1038/sj.sc.3101715
PMid:15672094
Bradbury EJ, Burnside ER. Moving beyond the glial scar for spinal cord repair. Nat Commun. 2019;10(1):1-15.
https://doi.org/10.1038/s41467-019-11707-7
PMid:31462640 PMCid:PMC6713740
Forostyak S, Homola A, Turnovcova K, Svitil P, Jendelova P, Sykova E. Intrathecal delivery of mesenchymal stromal cells protects the structure of altered perineuronal nets in SOD1 rats and amends the course of ALS. Stem Cells. 2014;32(12):3163-72.
https://doi.org/10.1002/stem.1812
PMid:25113670 PMCid:PMC4321196
Azimzadeh M, Mahmoodi M, Kazemi M, Hakemi MG, Jafarinia M, Eslami A, et al. The immunoregulatory and neuroprotective effects of human adipose derived stem cells overexpressing IL-11 and IL-13 in the experimental autoimmune encephalomyelitis mice. Int Immunopharmacol. 2020;87:106808.
https://doi.org/10.1016/j.intimp.2020.106808
PMid:32693359
Sarvar DP, Shamsasenjan K, Akbarzadehlaleh P. Mesenchymal stem cell-derived exosomes: new opportunity in cell-free therapy. Adv Pharm Bull. 2016;6(3):293.
https://doi.org/10.15171/apb.2016.041
PMid:27766213 PMCid:PMC5071792
Ragab Mohammed H, Mohamed Abd Elhady R, Mostafa Hassan H, Soliman Abd El Aliem R. Effect of Applying Structured Teaching Programme on Knowledge and Attitude Regarding Umbilical Cord Blood Collection and Its Barriers among Maternity Nurses. J Med Chem Sci. 2022;5(1):89-102.
Jafarinia M, Alsahebfosoul F, Salehi H, Eskandari N, Azimzadeh M, Mahmoodi M, et al. Therapeutic effects of extracellular vesicles from human adiposeâ€derived mesenchymal stem cells on chronic experimental autoimmune encephalomyelitis. J Cell Physiol. 2020;235(11):8779-90.
https://doi.org/10.1002/jcp.29721
PMid:32329062
Cohen JA, Imrey PB, Planchon SM, Bermel RA, Fisher E, Fox RJ, et al. Pilot trial of intravenous autologous culture-expanded mesenchymal stem cell transplantation in multiple sclerosis. Mult Scler J. 2018;24(4):501-11.
https://doi.org/10.1177/1352458517703802
PMid:28381130 PMCid:PMC5623598
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7.
https://doi.org/10.1080/14653240600855905
PMid:16923606
Dezfuly AR, Safaee A, Amirpour N, Kazemi M, Ramezani A, Jafarinia M, et al. Therapeutic effects of human adipose mesenchymal stem cells and their paracrine agents on sodium iodate induced retinal degeneration in rats. Life Sci. 2022;300:120570.
https://doi.org/10.1016/j.lfs.2022.120570
PMid:35469914
Sahraian MA, Mohyeddin Bonab M, Baghbanian SM, Owji M, Naser Moghadasi A. Therapeutic use of intrathecal mesenchymal stem cells in patients with multiple sclerosis: a pilot study with booster injection. Immunol Invest. 2019;48(2):160-8.
https://doi.org/10.1080/08820139.2018.1504301
PMid:30156938
Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs. 2001;169(1):12-20.
https://doi.org/10.1159/000047856
PMid:11340257
Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood. 2003;101(8):2999-3001.
https://doi.org/10.1182/blood-2002-06-1830
PMid:12480709
Nitzsche F, Müller C, Lukomska B, Jolkkonen J, Deten A, Boltze J. Concise review: MSC adhesion cascade-insights into homing and transendothelial migration. Stem Cells. 2017;35(6):1446-60.
https://doi.org/10.1002/stem.2614
PMid:28316123
Smith AN, Willis E, Chan VT, Muffley LA, Isik FF, Gibran NS, et al. Mesenchymal stem cells induce dermal fibroblast responses to injury. Exp Cell Res. 2010;316(1):48-54.
https://doi.org/10.1016/j.yexcr.2009.08.001
PMid:19666021 PMCid:PMC2787776
Sarojini H, Estrada R, Lu H, Dekova S, Lee MJ, Gray RD, et al. PEDF from mouse mesenchymal stem cell secretome attracts fibroblasts. J Cell Biochem. 2008;104(5):1793-802.
https://doi.org/10.1002/jcb.21748
PMid:18348263
Brandau S, Jakob M, Hemeda H, Bruderek K, Janeschik S, Bootz F, et al. Tissueâ€resident mesenchymal stem cells attract peripheral blood neutrophils and enhance their inflammatory activity in response to microbial challenge. J Leukoc Biol. 2010;88(5):1005-15.
https://doi.org/10.1189/jlb.0410207
PMid:20682625
Brandau S, Jakob M, Bruderek K, Bootz F, Giebel B, Radtke S, et al. Mesenchymal stem cells augment the anti-bacterial activity of neutrophil granulocytes. PLoS One. 2014;9(9):e106903.
https://doi.org/10.1371/journal.pone.0106903
PMid:25238158 PMCid:PMC4169522
Laing AG, Fanelli G, Ramirez-Valdez A, Lechler RI, Lombardi G, Sharpe PT. Mesenchymal stem cells inhibit T-cell function through conserved induction of cellular stress. PLoS One. 2019;14(3):e0213170.
https://doi.org/10.1371/journal.pone.0213170
PMid:30870462 PMCid:PMC6417714
Cantinieaux D, Quertainmont R, Blacher S, Rossi L, Wanet T, Noël A, et al. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One. 2013;8(8):e69515.
https://doi.org/10.1371/journal.pone.0069515
PMid:24013448 PMCid:PMC3754952
Nakajima K, Obata H, Iriuchijima N, Saito S. An increase in spinal cord noradrenaline is a major contributor to the antihyperalgesic effect of antidepressants after peripheral nerve injury in the rat. Pain. 2012;153(5):990-7.
https://doi.org/10.1016/j.pain.2012.01.029
PMid:22424692
Song J-y, Kang HJ, Hong JS, Kim CJ, Shim J-Y, Lee CW, et al. Umbilical cord-derived mesenchymal stem cell extracts reduce colitis in mice by re-polarizing intestinal macrophages. Sci Rep. 2017;7(1):1-11.
https://doi.org/10.1038/s41598-017-09827-5
PMid:28842625 PMCid:PMC5573412
Vishnubalaji R, Al-Nbaheen M, Kadalmani B, Aldahmash A, Ramesh T. Comparative investigation of the differentiation capability of bone-marrow-and adipose-derived mesenchymal stem cells by qualitative and quantitative analysis. Cell Tissue Res. 2012;347(2):419-27.
https://doi.org/10.1007/s00441-011-1306-3
PMid:22287041
Petrenko Y, Vackova I, Kekulova K, Chudickova M, Koci Z, Turnovcova K, et al. A comparative analysis of multipotent mesenchymal stromal cells derived from different sources, with a focus on neuroregenerative potential. Sci Rep. 2020;10(1):1-15.
https://doi.org/10.1038/s41598-020-61167-z
PMid:32152403 PMCid:PMC7062771
Elman JS, Li M, Wang F, Gimble JM, Parekkadan B. A comparison of adipose and bone marrow-derived mesenchymal stromal cell secreted factors in the treatment of systemic inflammation. J Inflamm. 2014;11(1):1-8.
https://doi.org/10.1186/1476-9255-11-1
PMid:24397734 PMCid:PMC3895743
Ruzicka J, Machova-Urdzikova L, Gillick J, Amemori T, Romanyuk N, Karova K, et al. A comparative study of three different types of stem cells for treatment of rat spinal cord injury. Cell Transplant. 2017;26(4):585-603.
https://doi.org/10.3727/096368916X693671
PMid:27938489 PMCid:PMC5661215
Hsiao ST-F, Asgari A, Lokmic Z, Sinclair R, Dusting GJ, Lim SY, et al. Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev. 2012;21(12):2189-203.
https://doi.org/10.1089/scd.2011.0674
PMid:22188562 PMCid:PMC3411362
Bahrami AR, Ebrahimi M, Matin MM, Neshati Z, Almohaddesin MR, Aghdami N, et al. Comparative analysis of chemokine receptor's expression in mesenchymal stem cells derived from human bone marrow and adipose tissue. J Mol Neurosci. 2011;44(3):178-85.
https://doi.org/10.1007/s12031-010-9446-6
PMid:20938756
Zhou Z, Tian X, Mo B, Xu H, Zhang L, Huang L, et al. Adipose mesenchymal stem cell transplantation alleviates spinal cord injury-induced neuroinflammation partly by suppressing the Jagged1/Notch pathway. Stem Cell Res Ther. 2020;11(1):1-17.
https://doi.org/10.1186/s13287-020-01724-5
PMid:32493480 PMCid:PMC7268310
Huang JI, Kazmi N, Durbhakula MM, Hering TM, Yoo JU, Johnstone B. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J Orthop Res. 2005;23(6):1383-9.
https://doi.org/10.1016/j.orthres.2005.03.018
https://doi.org/10.1016/j.orthres.2005.03.008.1100230621
PMid:15936917
Hur JW, Cho T-H, Park D-H, Lee J-B, Park J-Y, Chung Y-G. Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: a human trial. J Spinal Cord Med. 2016;39(6):655-64.
https://doi.org/10.1179/2045772315Y.0000000048
PMid:26208177 PMCid:PMC5137573
Bydon M, Dietz AB, Goncalves S, Moinuddin FM, Alvi MA, Goyal A, et al. CELLTOP Clinical Trial: First Report From a Phase 1 Trial of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells in the Treatment of Paralysis Due to Traumatic Spinal Cord Injury. Mayo Clin Proc. 2020;95(2):406-14.
https://doi.org/10.1016/j.mayocp.2019.10.008
PMid:31785831
Leu S, Lin Y-C, Yuen C-M, Yen C-H, Kao Y-H, Sun C-K, et al. Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J Transl Med. 2010;8(1):1-16.
https://doi.org/10.1186/1479-5876-8-63
PMid:20584315 PMCid:PMC2913939
Syková E, Homola A, Mazanec R, Lachmann H, Konrádová ŠL, Kobylka P, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant. 2006;15(8-9):675-87.
https://doi.org/10.3727/000000006783464381
PMid:17269439
Syková E, Jendelová P, UrdzÃková L, Lesný P, HejÄl A. Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair. Cell Mol Neurobiol. 2006;26(7):1111-27.
https://doi.org/10.1007/s10571-006-9007-2
PMid:16633897
Osaka M, Honmou O, Murakami T, Nonaka T, Houkin K, Hamada H, et al. Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome. Brain Res. 2010;1343:226-35.
https://doi.org/10.1016/j.brainres.2010.05.011
PMid:20470759
ČÞková D, Rosocha J, Vanický I, Jergová S, ČÞek M. Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell Mol Neurobiol. 2006;26(7):1165-78.
https://doi.org/10.1007/s10571-006-9093-1
PMid:16897366
Nandoe RD, Hurtado A, Levi AD, Grotenhuis A, Oudega M. Bone marrow stromal cells for repair of the spinal cord: towards clinical application. Cell Transplant. 2006;15(7):563-77.
https://doi.org/10.3727/000000006783981602
PMid:17176609
Jendelová P, Herynek V, UrdzÃková L, Glogarová K, Kroupová J, Andersson B, et al. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res. 2004;76(2):232-43.
https://doi.org/10.1002/jnr.20041
PMid:15048921
Jendelová P, Herynek V, DeCroos J, Glogarová K, Andersson B, Hájek M, et al. Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn Reson Med. 2003;50(4):767-76.
https://doi.org/10.1002/mrm.10585
PMid:14523963
Sykovà E, Jendelová P. Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. Ann N Y Acad Sci. 2005;1049(1):146-60.
https://doi.org/10.1196/annals.1334.014
PMid:15965114
Sykova E, Jendelova P. In vivo tracking of stem cells in brain and spinal cord injury. Prog Brain Res. 2007;161:367-83.
https://doi.org/10.1016/S0079-6123(06)61026-1
PMid:17618991
Zhu H, Jiang X-X, Guo Z-K, Li H, Su Y-F, Yao H-Y, et al. Tumor necrosis factor-α alters the modulatory effects of mesenchymal stem cells on osteoclast formation and function. Stem Cells Dev. 2009;18(10):1473-84.
https://doi.org/10.1089/scd.2009.0021
PMid:19374589
Silvestro S, Bramanti P, Trubiani O, Mazzon E. Stem cells therapy for spinal cord injury: an overview of clinical trials. Int J Mol Sci. 2020;21(2):659.
https://doi.org/10.3390/ijms21020659
PMid:31963888 PMCid:PMC7013533
Cuende N, Ãlvarez-Márquez AJ, DÃaz-Aunión C, Castro P, Huet J, Pérez-Villares JM. Promoting the ethical use of safe and effective cell-based products: the Andalusian plan on regenerative medicine. Cytotherapy. 2020;22(12):712-7.
https://doi.org/10.1016/j.jcyt.2020.07.007
PMid:32878735 PMCid:PMC7456586
Forostyak S, Sykova E. Neuroprotective potential of cell-based therapies in ALS: from bench to bedside. Front Neurosci. 2017;11:591.
https://doi.org/10.3389/fnins.2017.00591
PMid:29114200 PMCid:PMC5660803
Balasubramanian S, Thej C, Venugopal P, Priya N, Zakaria Z, SundarRaj S, et al. Higher propensity of Wharton's jelly derived mesenchymal stromal cells towards neuronal lineage in comparison to those derived from adipose and bone marrow. Cell Biol Int. 2013;37(5):507-15.
https://doi.org/10.1002/cbin.10056
PMid:23418097
Zhou C, Yang B, Tian Y, Jiao H, Zheng W, Wang J, et al. Immunomodulatory effect of human umbilical cord Wharton's jelly-derived mesenchymal stem cells on lymphocytes. Cell Immunol. 2011;272(1):33-8.
https://doi.org/10.1016/j.cellimm.2011.09.010
PMid:22004796 PMCid:PMC3235326
Kim D-W, Staples M, Shinozuka K, Pantcheva P, Kang S-D, Borlongan CV. Wharton's jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci. 2013;14(6):11692-712.
https://doi.org/10.3390/ijms140611692
PMid:23727936 PMCid:PMC3709752
Krupa P, Vackova I, Ruzicka J, Zaviskova K, Dubisova J, Koci Z, et al. The effect of human mesenchymal stem cells derived from Wharton's jelly in spinal cord injury treatment is dose-dependent and can be facilitated by repeated application. Int J Mol Sci. 2018;19(5):1503.
https://doi.org/10.3390/ijms19051503
PMid:29772841 PMCid:PMC5983761
Oh SK, Choi KH, Yoo JY, Kim DY, Kim SJ, Jeon SR. A phase III clinical trial showing limited efficacy of autologous mesenchymal stem cell therapy for spinal cord injury. Neurosurgery. 2016;78(3):436-47.
https://doi.org/10.1227/NEU.0000000000001056
PMid:26891377
Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, et al. Mesenchymal stem cells for spinal cord injury: current options, limitations, and future of cell therapy. Int J Mol Sci. 2019;20(11):2698.
https://doi.org/10.3390/ijms20112698
PMid:31159345 PMCid:PMC6600381
Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, Hill CE, Sparling JS, Plemel JR, et al. A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma. 2011;28(8):1611-82.
https://doi.org/10.1089/neu.2009.1177
PMid:20146557 PMCid:PMC3143488
Xiao Z, Tang F, Zhao Y, Han G, Yin N, Li X, et al. Significant improvement of acute complete spinal cord injury patients diagnosed by a combined criteria implanted with NeuroRegen scaffolds and mesenchymal stem cells. Cell Transplant. 2018;27(6):907-15.
https://doi.org/10.1177/0963689718766279
PMid:29871514 PMCid:PMC6050906
Vismara I, Papa S, Rossi F, Forloni G, Veglianese P. Current options for cell therapy in spinal cord injury. Trends Mol Med. 2017;23(9):831-49.
https://doi.org/10.1016/j.molmed.2017.07.005
PMid:28811172
Wang L-J, Zhang R-P, Li J-D. Transplantation of neurotrophin-3-expressing bone mesenchymal stem cells improves recovery in a rat model of spinal cord injury. Acta Neurochir (Wien). 2014;156(7):1409-18.
https://doi.org/10.1007/s00701-014-2089-6
PMid:24744011
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Galen Medical Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.