Early Postoperative Cardiac Complications Following Heart Transplantation
Post-Heart Transplantation Complications
DOI:
https://doi.org/10.31661/gmj.v12i.2701Keywords:
Postoperative Complication, Heart Transplantation, Heart FailureAbstract
Cardiovascular disorders remain the leading cause of death around the world. Heart transplan-tation is considered the only therapeutic choice defined as the gold standard strategy to manage end-stage heart failure. Nevertheless, the remaining postoperative complications compromise both the survival rate and quality of life in heart transplantation recipients. The present study aimed to review the current findings concerning the main early complications after heart trans-plantation, reliable predictors, diagnostic approaches, novel surgical techniques, and manage-ment strategies. The results demonstrated that significant advances in immunosuppressive phar-maceuticals, determining appropriate policies for donor acceptance, pre- and post-operative treatment/care, selection of the most compatible donor with the recipient, and the suggestion of novel diagnostic and surgical techniques over the past decade had dropped the mortality and morbidity rates early after transplantation. However, marrhythmia, atrial flutter, atrial fibrilla-tion, deep sternal wound infection along with other sites infections, low cardiac output syn-drome, acute graft dysfunction, pericardial effusion, constrictive pericarditis, and acute cellular rejection could be considered as the major early complications following heart transplanta-tions that pivotally require further investigations.
References
Amini M, Zayeri F, Salehi M. Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: results from global burden of disease study 2017. BMC Public Health. 2021;21(1):1-12.
https://doi.org/10.1186/s12889-021-10429-0
Yurievich AA, Viktorovna SO, Sergeevich R, Ivanovich KD, Vladimirovich RO, Mikhaylovich NA et al. Clinical Management of Cardiovascular Care on the Basis of Big Data: Electronic Medical Records. J Med Chem Sci. 2021;4(4):395-403.
Khalil Arjmandi R, Asharein MR. Case Study of Femoral and Radial Angiography in Cardiovascular Patients. Chem. Methodol.5(1):1-10.
Şahin B, İlgün G. Risk factors of deaths related to cardiovascular diseases in World Health Organization (WHO) member countries. Health Soc Care Community. 2022;30(1):73-80.
https://doi.org/10.1111/hsc.13156
Bahaoddini A, Alsadat Miryousefiata F. Therapeutic Effects of Hydro-alcoholic Extract of Papaver Rhoeas on Cardiovascular side effect of MIA Induced Osteoarthritis in male Rat. Prog chem biochem res. 2020;3(4):340-9.
Hudiyawati D, Ainunnisa K, Riskamala G. Self-care and its related factors among patients with congestive heart failure in Surakarta, Indonesia. J Med Chem Sci. 2021;4(4):364-73.
Timmis A, Vardas P, Townsend N, Torbica A, Katus H, De Smedt D et al. European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J. 2022;43(8):716-99.
https://doi.org/10.1093/eurheartj/ehab892
Safapoor S, Yazdani H, Shahabi P. A Review on Synthesis and Applications of Statin Family Drugs as a New Generations of Anti-Blood Medicines. J chem rev. 2(1):1-27.
https://doi.org/10.33945/SAMI/JCR.2020.1.1
Mannoh I, Hussien M, Commodore-Mensah Y, Michos ED. Impact of social determinants of health on cardiovascular disease prevention. Curr Opin Cardiol. 2021;36(5):572-9.
https://doi.org/10.1097/HCO.0000000000000893
Ndejjo R, Musinguzi G, Nuwaha F, Bastiaens H, Wanyenze RK. Understanding factors influencing uptake of healthy lifestyle practices among adults following a community cardiovascular disease prevention programme in Mukono and Buikwe districts in Uganda: A qualitative study. PLoS One. 2022;17(2):e0263867.
https://doi.org/10.1371/journal.pone.0263867
Bays HE, Taub PR, Epstein E, Michos ED, Ferraro RA, Bailey AL et al. Ten things to know about ten cardiovascular disease risk factors. AJPC. 2021;5:100149.
https://doi.org/10.1016/j.ajpc.2021.100149
Pederiva C, Capra ME, Biasucci G, Banderali G, Fabrizi E, Gazzotti M et al. Lipoprotein (a) and family history for cardiovascular disease in paediatric patients: A new frontier in cardiovascular risk stratification. Data from the LIPIGEN paediatric group Atherosclerosis. 2022;349:233-9.
https://doi.org/10.1016/j.atherosclerosis.2022.04.021
Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail. 2020;22(8):1342-56.
https://doi.org/10.1002/ejhf.1858
Braunwald E. The war against heart failure: the Lancet lecture. The Lancet. 2015;385(9970):812-24.
https://doi.org/10.1016/S0140-6736(14)61889-4
Truby LK, Rogers JG. Advanced heart failure: epidemiology, diagnosis, and therapeutic approaches. Heart Fail. 2020;8(7):523-36.
https://doi.org/10.1016/j.jchf.2020.01.014
Yancy CW, Januzzi JL, Allen LA, Butler J, Davis LL, Fonarow GC et al. 2017 ACC expert consensus decision pathway for optimization of heart failure treatment: answers to 10 pivotal issues about heart failure with reduced ejection fraction: a report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways. J Am Coll Cardiol. 2018;71(2):201-30.
https://doi.org/10.1016/j.jacc.2017.11.025
Breathett K, Yee E, Pool N, Hebdon M, Crist JD, Yee RH et al. Association of gender and race with allocation of advanced heart failure therapies. JAMA network open. 2020;3(7):e2011044-e.
https://doi.org/10.1001/jamanetworkopen.2020.11044
Losman JG, Barnard CN, Bartley TD. Hemodynamic evaluation of left ventricular bypass with a homologous cardiac graft. J Thorac Cardiovasc. 1977;74(5):695-708.
https://doi.org/10.1016/S0022-5223(19)41205-1
Mangini S, Alves BR, Silvestre OM, Pires PV, Pires LJT, Curiati MNC et al. Heart transplantation. Einstein (Sao Paulo). 2015;13:310-8.
https://doi.org/10.1590/S1679-45082015RW3154
Colombo D, Ammirati E. Cyclosporine in transplantation-a history of converging timelines. J Biol Regul Homeost Agents. 2011;25(4):493-504.
Smith KB, Potters TO, Zenarosa GL. Pretransplant survival of patients with end-stage heart failure under competing risks. PLoS One. 2022;17(8):e0273100.
https://doi.org/10.1371/journal.pone.0273100
Hernandez GA, Lemor A, Clark D, Blumer V, Burstein D, Byrne R et al. Heart transplantation and in-hospital outcomes in adult congenital heart disease patients with Fontan: A decade nationwide analysis from 2004 to 2014. J Card Surg. 2020;35(3):603-8.
https://doi.org/10.1111/jocs.14430
Sobrino-Márquez J, Grande-Trillo A, Cantero-Pérez E, Rangel-Sousa D, Lage-Galle E, Adsuar-Gómez A,. Prognostic value of blood panel parameters in patients with dilated cardiomyopathy and advanced heart failure Transplant. Proc. 2018: Elsevier.
https://doi.org/10.1016/j.transproceed.2017.11.060
Aiad N, Elnabawai YA, Li B, Narula N, Gidea C, Katz SD et al. Missed opportunities in identifying cardiomyopathy aetiology prior to advanced heart failure therapy. Heart Lung Circ. 2022;31(6):815-21.
https://doi.org/10.1016/j.hlc.2021.12.014
Urschel S, Ballweg JA, Cantor RS, Koehl DA, Reinhardt Z, Zuckerman WA et al. Clinical outcomes of children receiving ABO-incompatible versus ABO-compatible heart transplantation: a multicentre cohort study. Lancet Child Adolesc. 2021;5(5):341-9.
https://doi.org/10.1016/S2352-4642(21)00023-7
Kim I-C, Youn J-C, Kobashigawa JA. The past, present and future of heart transplantation. Korean Circ J. 2018;48(7):565-90.
https://doi.org/10.4070/kcj.2018.0189
Rahm AK, Helmschrott M, Darche FF, Thomas D, Bruckner T, Ehlermann P et al. Newly acquired complete right bundle branch block early after heart transplantation is associated with lower survival. ESC Heart Failure. 2021;8(5):3737-47.
https://doi.org/10.1002/ehf2.13494
Joglar JA, Wan EY, Chung MK, Gutierrez A, Slaughter MS, Bateson BP et al. Management of arrhythmias after heart transplant: current state and considerations for future research. Circ Arrhythm Electrophysiol. 2021;14(3):e007954.
https://doi.org/10.1161/CIRCEP.120.007954
Rivinius R, Helmschrott M, Rahm A-K, Darche FF, Thomas D, Bruckner T et al. Risk factors and survival of patients with permanent pacemaker implantation after heart transplantation. J Thorac Dis. 2019;11(12):5440.
https://doi.org/10.21037/jtd.2019.11.45
Magnano AR, Garan H. Catheter ablation of supraventricular tachycardia in the transplanted heart: a case series and literature review. Pacing Clin Electrophysiol. 2003;26(9):1878-86.
https://doi.org/10.1046/j.1460-9592.2003.00284.x
Drogalis-Kim DE, Gallotti RG, Blais BA, Perens G, Moore JP. Clinical and electrophysiological properties of atrial tachycardia after pediatric heart transplantation. Pacing Clin Electrophysiol. 2018;41(9):1093-100.
https://doi.org/10.1111/pace.13415
Nof E, Stevenson WG, Epstein LM, Tedrow UB, Koplan BA. Catheter ablation of atrial arrhythmias after cardiac transplantation: Findings at EP study utility of 3-D mapping and outcomes. J Cardiovasc Electrophysiol. 2013;24(5):498-502.
https://doi.org/10.1111/jce.12078
Cantillon DJ. Atrial tachyarrhythmias after cardiac transplantation. Card Electrophysiol Clin. 2012;4(3):455-60.
https://doi.org/10.1016/j.ccep.2012.05.006
Elsik M, Teh A, Ling L-H, Virdee M, Parameshwar J, Fynn SP et al. Supraventricular arrhythmias late after orthotopic cardiac transplantation: electrocardiographic and electrophysiological characterization and radiofrequency ablation. Europace. 2012;14(10):1498-505.
https://doi.org/10.1093/europace/eus092
Noworolski R, Przybylowski P, Majewski J, Sadowski J, Lelakowski J,. Early and late indications for implantation of cardiac pacemakers in patients after heart transplantation: a single-center experience. Transplant. Proc.; 2011: Elsevier.
https://doi.org/10.1016/j.transproceed.2011.08.039
Rubin GA, Wan EY. Leadless Pacemakers after Cardiac Transplantation. ASAIO J. 2020;66(3):e57.
https://doi.org/10.1097/MAT.0000000000001114
Anselmino M, Matta M, Saglietto A, Gallo C, Gaita F, Marchetto G et al. Long-term atrial arrhythmias incidence after heart transplantation. Int J Cardiol. 2020;311:58-63.
https://doi.org/10.1016/j.ijcard.2020.04.019
Taylor ME, McDiarmid AK, Matthews IG, Kakarla J, McComb JM, Parry G et al. A retrospective evaluation of catheter ablation in atrial flutter post cardiac transplantation. Clin Transplant. 2021;35(10):e14429.
https://doi.org/10.1111/ctr.14429
Rodriguez-Entem F, Exposito V, Gonzalez-Enriquez S, Garcia-Camarero T, Olalla J,. Atrial flutter after heart transplantation: mechanism and catheter ablation. Transplant. Proc.; 2010: Elsevier.
https://doi.org/10.1016/j.transproceed.2010.04.067
Sohns C, Marrouche NF, Costard-Jäckle A, Sossalla S, Bergau L, Schramm R et al. Catheter ablation for atrial fibrillation in patients with end-stage heart failure and eligibility for heart transplantation. ESC Heart Failure. 2021;8(2):1666-74.
https://doi.org/10.1002/ehf2.13150
Ermis C, Zadeii G, Zhu AX, Fabian W, Collins J, Lurie KG et al. Improved Survival of Cardiac Transplantation Candidates with Implantable Cardioverter Defibrillator Therapy: Role of Beta-Blocker or Amiodarone Treatment. J Cardiovasc Electrophysiol. 2003;14(6):578-83.
https://doi.org/10.1046/j.1540-8167.2003.02590.x
Sakamoto S-I, Ishii Y, Otsuka T, Mitsuno M, Shimokawa T, Isomura T et al. Multicenter randomized study evaluating the outcome of ganglionated plexi ablation in maze procedure. Gen Thorac Cardiovasc Surg. 2022:1-8.
https://doi.org/10.1007/s11748-022-01820-8
Suwalski G, Suwalski P. Successful surgical ablation of atrial fibrillation does not disturb long-term sinus rhythm variability. Interact Cardiovasc Thorac Surg. 2018;27(4):520-4.
https://doi.org/10.1093/icvts/ivy117
Cohn WE, Gregoric ID, Radovancevic B, Wolf RK, Frazier O. Atrial fibrillation after cardiac transplantation: experience in 498 consecutive cases. Ann Cardiothorac Surg. 2008;85(1):56-8.
https://doi.org/10.1016/j.athoracsur.2007.07.037
Barnea Y, Lerner A, Aizic A, Navon-Venezia S, Rachi E, Dunne MW et al. Efficacy of dalbavancin in the treatment of MRSA rat sternal osteomyelitis with mediastinitis. J Antimicrob Chemother. 2016;71(2):460-3.
https://doi.org/10.1093/jac/dkv357
Singh K, Anderson E, Harper JG,. Overview and management of sternal wound infection. Seminars in plastic surgery. 2011;25(11):25-33.
https://doi.org/10.1055/s-0031-1275168
Fleck T, Moidl R, Grimm M, Wolner E, Zuckermann A. Vacuum assisted closure therapy for the treatment of sternal wound infections after heart transplantation: preliminary results. Zentralbl Chir. 2007;132(2):138-41.
https://doi.org/10.1055/s-2007-960650
Carrier M, Perrault LP, Pellerin M, Marchand R, Auger P, Pelletier GB et al. Sternal wound infection after heart transplantation: incidence and results with aggressive surgical treatment. Ann Cardiothorac Surg. 2001;72(3):719-23.
https://doi.org/10.1016/S0003-4975(01)02824-7
Kohli M, Yuan L, Escobar M, David T, Gillis G, Garcia M et al. A risk index for sternal surgical wound infection after cardiovascular surgery. Infect Control Hosp Epidemiol. 2003;24(1):17-25.
https://doi.org/10.1086/502110
Akar AR, Sarıcaoğlu MC, Çakıcı M, Inan MB. Candida mediastinitis: alarming clinical entity from a case-matched comparative study. Oxford University Press. 2022;61(3): 531-2.
https://doi.org/10.1093/ejcts/ezac001
Hamaguchi R, Shekar PS, Johnson JA, Orgill DP. Current management of sternal wounds. Plast Reconstr Surg. 2021;148(6):1012e-25e.
https://doi.org/10.1097/PRS.0000000000008510
Filsoufi F, Rahmanian PB, Castillo JG, Pinney S, Broumand SR, Adams DH. Incidence, treatment strategies and outcome of deep sternal wound infection after orthotopic heart transplantation. The J Heart Lung Transplant. 2007;26(11):1084-90.
https://doi.org/10.1016/j.healun.2007.07.036
Wallen TJ, Habertheuer A, Gottret JP, Kramer M, Abbas Z, Siki M et al. Sternal wound complications in patients undergoing orthotopic heart transplantation. J Card Surg. 2019;34(4):186-9.
https://doi.org/10.1111/jocs.14003
O'Keeffe N, Concannon E, Stanley A, Dockery P, McInerney N, Kelly JL. Cadaveric evaluation of sternal reconstruction using the pectoralis muscle flap. ANZ J Surg. 2019;89(7-8):945-9.
https://doi.org/10.1111/ans.15268
Fleck T, Moidl R, Grimm M, Wolner E, Zuckermann A. VAC-Therapie zur Behandlung von sternalen Wundinfektionen nach Herztransplantation: Erste Ergebnisse. Zentralbl Chir. 2007;132(02):138-41.
https://doi.org/10.1055/s-2007-960650
Eifert S, Kronschnabl S, Kaczmarek I, Reichart B, Vicol C. Omental flap for recurrent deep sternal wound infection and mediastinitis after cardiac surgery. Thorac Cardiovasc Surg. 2007;55(06):371-4.
https://doi.org/10.1055/s-2007-965305
Boulemden A, Speggiorin S, Pelella G, Lotto AA. Use of an extracellular matrix patch for sternal wound dehiscence after cardiac surgery in a neonate. Tex Heart Inst J. 2018;45(3):176-8.
https://doi.org/10.14503/THIJ-17-6239
Yu J, Wu R, Xiong B, Huang Z, Li H,. Metagenomic Next-Generation Sequencing in the Diagnosis of Deep Sternal Wound Infection After Cardiac Transplantation: A Case Report and Literature Review. Heart Surg Forum. 2021;24(6):1015-1017.
https://doi.org/10.1532/hsf.4169
Lin C-H, Lin C-H, Tsai F-C, Lin P-J. Unilateral Pedicled Pectoralis Major Harvested by Endoscopic-Assisted Method Achieves Adequate Management of Sternal Infection and Mediastinitis. J Reconstr Microsurg. 2019;35(09):705-12.
https://doi.org/10.1055/s-0039-1695089
Cove ME, Spelman DW, MacLaren G. Infectious complications of cardiac surgery: a clinical review. J Cardiothorac Vasc Anesth. 2012;26(6):1094-100.
https://doi.org/10.1053/j.jvca.2012.04.021
Gómez-López R, Barge-Caballero E, Fernández-Ugidos P, Paniagua-Martin MJ, Barge-Caballero G, Couto-Mallón D et al. In-Hospital Post-Operative Infection after Heart Transplantation: Epidemiology, Clinical Management, and Outcome. Surg Infect (Larchmt). 2020;21(2):179-91.
https://doi.org/10.1089/sur.2019.073
Shultes KC, Shuster JE, Micek S, Vader JM, Balsara K, Itoh A et al. Outcomes and predictors of early infection after heart transplantation. Surg Infect (Larchmt). 2018;19(5):516-22.
https://doi.org/10.1089/sur.2017.295
Bhatt PJ, Ali M, Rana M, Patel G, Sullivan T, Murphy J et al. Infections due to multidrug-resistant organisms following heart transplantation: Epidemiology, microbiology, and outcomes. Transpl Infect Dis. 2020;22(1):e13215.
https://doi.org/10.1111/tid.13215
Rostad CA, Wehrheim K, Kirklin JK, Naftel D, Pruitt E, Hoffman TM et al. Bacterial infections after pediatric heart transplantation: epidemiology, risk factors and outcomes. J Heart Lung Transplant. 2017;36(9):996-1003.
https://doi.org/10.1016/j.healun.2017.05.009
Duero Posada JG, Moayedi Y, Alhussein M, Bunce PE, Yau TM, Ross HJ. Early pneumopericardium after heart transplantation. Transpl Infect Dis. 2018;20(1):e12800.
https://doi.org/10.1111/tid.12800
Angleitner P, Arnoldner MA, Zuckermann AO, Aliabadi-Zuckermann AZ. Severe gastroparesis after orthotopic heart transplantation. Eur J Cardiothorac Surg. 2021;59(3):717-9.
https://doi.org/10.1093/ejcts/ezaa309
Roest S, Brugts JJ, van Kampen JJ, Jan H, Constantinescu AA, Caliskan K et al. COVID-19-related myocarditis post-heart transplantation. Int J Infect Dis. 2021;107:34-6.
https://doi.org/10.1016/j.ijid.2021.04.013
Boutolleau D, Coutance G, Désiré E, Bouglé A, Bréchot N, Leprince P et al. Association between cytomegalovirus infection and allograft rejection in a large contemporary cohort of heart transplant recipients. Transpl Infect Dis. 2021;23(4):e13569.
https://doi.org/10.1111/tid.13569
Yetmar ZA, Lahr B, Brumble L, Gea Banacloche J, Steidley DE, Kushwaha S et al. Epidemiology, risk factors, and association of antifungal prophylaxis on early invasive fungal infection in heart transplant recipients. Transpl Infect Dis. 2021;23(5):e13714.
https://doi.org/10.1111/tid.13714
de Santis A, Gilberto GM, Mangini S, Megale AB, Gaiotto FA, Terra RM et al. A medical epopee: recurrent fungal endocarditis, heart transplantation and chylopericardium. BMC Cardiovasc Disord. 2020;20(1):1-6.
https://doi.org/10.1186/s12872-020-01755-z
Multani A, Moayedi Y, Puing A, Henricksen E, Garvert DW, Gomez CA et al. Recent trends of infectious complications following heart transplantation. Transplantation. 2020;104(10):e284-e94.
https://doi.org/10.1097/TP.0000000000003307
Foroutan F, Malik A, Nelson LMS, Steve C-PF, Guyatt G, Gustafsson F et al. Association between routine measures of graft function and mortality in heart transplant recipients. Heart. 2022;108(4):307-11.
https://doi.org/10.1136/heartjnl-2020-318721
Lozano-Edo S, Sánchez-Lázaro I, Portolés M, Roselló-Lletí E, Tarazón E, Arnau-Vives MA et al. Plasma levels of SERCA2a as a noninvasive biomarker of primary graft dysfunction after heart transplantation. Transplantation. 2022;106(4):887-93.
https://doi.org/10.1097/TP.0000000000003798
Jahania MS, Mullett TW, Sanchez JA, Narayan P, Lasley RD, Mentzer Jr RM. Acute allograft failure in thoracic organ transplantation. J Card Surg. 2000;15(2):122-8.
Fujita T, Toda K, Yanase M, Seguchi O, Murata Y, Ishibashi-Ueda H et al. Risk factors for post-transplant low output syndrome. Eur J Cardiothorac Surg. 2012;42(3):551-6.
https://doi.org/10.1093/ejcts/ezs032
Fujino T, Kinugawa K, Nitta D, Imamura T, Maki H, Amiya E et al. Donor age is a predictor of early low output after heart transplantation. J Cardiol. 2016;67(5):477-82.
https://doi.org/10.1016/j.jjcc.2015.07.007
Lima B, Rajagopal K, Petersen RP, Shah AS, Soule B, Felker GM et al. Marginal cardiac allografts do not have increased primary graft dysfunction in alternate list transplantation. Circulation. 2006;114(1_supplement):I-27-I-32.
https://doi.org/10.1161/CIRCULATIONAHA.105.000737
Luckraz H, Goddard M, Charman SC, Wallwork J, Parameshwar J, Large SR. Early mortality after cardiac transplantation: should we do better? J Heart Lung Transplant. 2005;24(4):401-5.
https://doi.org/10.1016/j.healun.2004.02.013
Taylor DO, Edwards LB, Boucek MM, Trulock EP, Deng MC, Keck BM et al. Registry of the International Society for Heart and Lung Transplantation: twenty-second official adult heart transplant report-2005. J Heart Lung Transplant. 2005;24(8):945-55.
https://doi.org/10.1016/j.healun.2005.05.018
Wittwer T, Wahlers T. Marginal donor grafts in heart transplantation: lessons learned from 25 years of experience. Transplant International. 2008;21(2):113-25.
https://doi.org/10.1111/j.1432-2277.2007.00603.x
Blumer V, Marbach J, Veasey T, Kanwar M. Role of medical management of cardiogenic shock in the era of mechanical circulatory support. Curr Opin Cardiol. 2022;37(3):250-60.
https://doi.org/10.1097/HCO.0000000000000966
Romanowski B, Pharm D. Congenital heart defects, heart surgeries, low cardiac output syndrome. Cardiology and Nephrology. 2020:7-33.
Pollock KA, McMillan Z, Gert Diederick Pretorius V, Cronin B. Low cardiac output after orthotopic heart transplant secondary to large inferior vena cava thrombus after prothrombin complex: a case report. A&A Practice. 2017;8(3):43-6.
https://doi.org/10.1213/XAA.0000000000000418
Lim HS, Ranasinghe A, Chue C, Quinn D, Mukadam M, Mascaro J. Cardiac power output index and severe primary graft dysfunction after heart transplantation. J Cardiothorac Vasc Anesth. 2021;35(2):398-403.
https://doi.org/10.1053/j.jvca.2020.07.020
Jha AK, Hittalmani SK. Septic Shock in Low-Cardiac-Output Patients With Heart and Lung Transplantation: Diagnosis and Management Dilemma. J Cardiothorac Vasc Anesth. 2017;31(4):1389-96.
https://doi.org/10.1053/j.jvca.2016.11.003
Marasco SF, Vale M, Pellegrino V, Preovolos A, Leet A, Kras A et al. Extracorporeal membrane oxygenation in primary graft failure after heart transplantation. Ann Cardiothorac Surg. 2010;90(5):1541-6.
https://doi.org/10.1016/j.athoracsur.2010.05.066
Singh TP, Profita EL, Rycus P, Thiagarajan R, Gauvreau K. Risk factors for severe primary graft dysfunction in infants following heart transplant. Am Heart J. 2021;10(13):e021082.
https://doi.org/10.1161/JAHA.121.021082
McAree D, Yu S, Schumacher KR, Lowery R, McCormick AD, Thorsson T et al. Predictors and clinical significance of pericardial effusions after pediatric heart transplantation. Pediatr Transplant. 2022;26(1):e14153.
https://doi.org/10.1111/petr.14153
Menu E, Kabtani J, Roubin J, Ranque S, L'Ollivier C. Pericardial Effusion Due to Trichosporon japonicum: A Case Report and Review of the Literature. Pathogens. 2022;11(5):598.
https://doi.org/10.3390/pathogens11050598
Almenar L, Osa A, Martinez-Dolz L, Miró V, Quesada T, Cano O et al,. Echocardiographic evaluation of the evolutionary changes after heart transplantation. Transplant Proc. 2006;38(8):2575-2576.
https://doi.org/10.1016/j.transproceed.2006.08.033
Fröhlich GM, Keller P, Schmid F, Wolfrum M, Osranek M, Falk C et al. Haemodynamically irrelevant pericardial effusion is associated with increased mortality in patients with chronic heart failure. Eur Heart J. 2013;34(19):1414-23.
https://doi.org/10.1093/eurheartj/eht006
Stämpfli SF, Özkartal T, Hagenbuch N, Bernhart S, Flammer AJ, Vecchiati A et al. Pericardial effusion unrelated to surgery is a predictor of mortality in heart transplant patients. Cardiol J. 2018;25(6):714-21.
Essandoh M. Atypical Presentation of a Large Pericardial Effusion after Heart Transplantation in a Patient with Dilated Cardiomyopathy. J Cardiothorac Vasc Anesth. 2018;32(4):e84.
https://doi.org/10.1053/j.jvca.2018.01.008
Urbanowicz T, Staburzyńska-Migaj E, Pawłowska M, Żabicki B, Michalak M, Filipiak M et al. EuroSCORE is a predictor of postoperative pericardial effusion following heart transplantation. Ann Transplant. 2015;20:193-7.
https://doi.org/10.12659/AOT.892582
Diaz-Arocutipa C, Saucedo-Chinchay J, Imazio M, Argulian E. Natriuretic peptides to differentiate constrictive pericarditis and restrictive cardiomyopathy: A systematic review and meta-analysis. Clin Cardiol. 2022;45(3):251-7.
https://doi.org/10.1002/clc.23772
Sohal S, Mathai SV, Lipat K, Kaur A, Visveswaran G, Cohen M et al. Multimodality Imaging of Constrictive Pericarditis: Pathophysiology and New Concepts. Curr Cardiol Rep. 2022:1-15.
https://doi.org/10.1007/s11886-022-01758-6
Ismail TF. Acute pericarditis: update on diagnosis and management. Clin Med (Northfield Il). 2020;20(1):48.
https://doi.org/10.7861/clinmed.cme.20.1.4
Welch TD. Constrictive pericarditis: diagnosis, management and clinical outcomes. Heart. 2018;104(9):725-31.
https://doi.org/10.1136/heartjnl-2017-311683
Tchana-Sato V, Ancion A, Ansart F, Defraigne JO. Constrictive pericarditis after heart transplantation: a case report. Eur Heart J Case Rep. 2020;4:1-6.
https://doi.org/10.1093/ehjcr/ytaa240
Bansal R, Perez L, Razzouk A, Wang N, Bailey L. Pericardial constriction after cardiac transplantation. J Heart Lung Transplant. 2010;29(3):371-7.
https://doi.org/10.1016/j.healun.2009.07.015
Aliabadi-Zuckermann AZ, Gökler J, Kaider A, Riebandt J, Moayedifar R, Osorio E et al. Donor heart selection and outcomes: An analysis of over 2,000 cases. J Heart Lung Transplant. 2018;37(8):976-84.
https://doi.org/10.1016/j.healun.2018.04.014
Katz M, Freimark D, Raichlin E, Har-Zahav Y, Arad M, Kassif Y et al. Risk of early, intermediate, and late rejection following heart transplantation: Trends over the past 25 years and relation to changes in medical management Tertiary center experience: The Sheba Heart Transplantation Registry. Clin Transplant. 2017;31(10):e13063.
https://doi.org/10.1111/ctr.13063
Almenar L, Garcı́a-Palomar C, Martı́nez-Dolz L, Chamorro C, Moro J, Zorio E et al. Influence of induction therapy on rejection and survival in heart transplantation. Transplant Proc. 2005: Elsevier.
https://doi.org/10.1016/j.transproceed.2005.09.154
Khush KK, Cherikh WS, Chambers DC, Harhay MO, Hayes D, Hsich E et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: thirty-sixth adult heart transplantation report-2019; focus theme: donor and recipient size match. J Heart Lung Transplant. 2019;38(10):1056-66.
https://doi.org/10.1016/j.healun.2019.08.004
Pérez-Carrillo L, Sánchez-Lázaro I, Triviño JC, Feijóo-Bandín S, Lago F, González-Juanatey JR et al. Diagnostic value of serum miR-144-3p for the detection of acute cellular rejection in heart transplant patients. J Heart Lung Transplant. 2022;41(2):137-47.
https://doi.org/10.1016/j.healun.2021.10.004
Billingham M, CARY NB, Hammond M, Kemnitz J, Marboe C, McCallister H. A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection: heart rejection study group. Heart Transplant. 1990;9(6):587-93.
Alexander RT, Steenbergen C. Cause of death and sudden cardiac death after heart transplantation: an autopsy study. Am J Clin Pathol. 2003;119(5):740-8.
https://doi.org/10.1309/713JVR58EF916DN5
Lee JM, Choi KH, Choi J-O, Shin D, Park Y, Kim J et al. Coronary microcirculatory dysfunction and acute cellular rejection after heart transplantation. Circulation. 2021;144(18):1459-72.
https://doi.org/10.1161/CIRCULATIONAHA.121.056158
Ram E, Klempfner R, Peled A, Kassif Y, Sternik L, Lavee J et al. Weight gain post-heart transplantation is associated with an increased risk for allograft vasculopathy and rejection. Clin Transplant. 2021;35(3):e14187.
https://doi.org/10.1111/ctr.14187
Chin C, Naftel DC, Singh TP, Blume ED, Luikart H, Bernstein D et al. Risk factors for recurrent rejection in pediatric heart transplantation: a multicenter experience. J Heart Lung Transplant. 2004;23(2):178-85.
https://doi.org/10.1016/S1053-2498(03)00059-7
Husain N, Watanabe K, Berhane H, Gupta A, Markl M, Rigsby CK et al. Multi-parametric cardiovascular magnetic resonance with regadenoson stress perfusion is safe following pediatric heart transplantation and identifies history of rejection and cardiac allograft vasculopathy. J Cardiovasc Magn Reson. 2021;23(1):1-13.
https://doi.org/10.1186/s12968-021-00803-7
Pérez-Carrillo L, Giménez-Escamilla I, Sánchez-Lázaro I, Triviño JC, Feijóo-Bandín S, Lago F et al. Alpha-cardiac actin serum expression levels detect acute cellular rejection in heart transplant patients. Transplantation. 2022:10.1097.
Published
Issue
Section
License
Copyright (c) 2023 Galen Medical Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.