Investigation of Kelussia odoratissima and Angelica sinensis similarities in zebrafish-based in-vivo bioactivity assays and their chemical composition

Authors

  • Mohammad Rezaei Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
  • Parisa Fooladi Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran/ Department of Developmental Biology, University of Science and Culture, Tehran, Iran
  • Mohamad Norani Department of Horticultural Science, Tarbiat Modares University, Tehran, Iran
  • Alexander Crawford Department of Horticultural Science, Tarbiat Modares University, Tehran, Iran/ Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
  • Shahram Eisa-Beygi Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
  • Yaser Tahamtani Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran/ Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
  • Mahdi Ayyari Department of Horticultural Science, Tarbiat Modares University, Tehran, Iran

DOI:

https://doi.org/10.31661/gmj.v12i.2793

Keywords:

Angiogenesis Inhibitors, Pancreatic Beta Cell, Zebrafish, Essential Oil

Abstract

Background: Kelussia odoratissima (KO) and Angelica sinensis (AS) have been used in their indigenous traditional medicine, for various diseases. This study was conducted to evaluate the volatile oil composition of KO leaves (KVL) and AS root (AVR) and biological activity of essential oils (EOs) and hydroalcoholic extracts of both plants using two different transgenic zebrafish (Danio rerio) models.
Materials and Methods: Both EOs were isolated by hydrodistillation and analysed by GC and GC/MS. For viability tests, larvae were treated with different concentrations of extracts to determine an appropriate starting concentration. Hydroalcoholic extracts and EOs have been tested in a dose-dependent manner for their biological activity using tissue-specific transgenic zebrafish Tg(fli-1: EGFP) and Tg (ins: GFP-NTR) embryos and larvae. One-way ANOVA was used to compare the mean of pBC area and intersegmental vessels (ISVs) outgrowth between the treatment groups.
Results: Eleven compounds were in common to both oils, comprising 51.3% of KVL and 61.7% of AVR, of which 39.3% in KVL and 37.6% in AVR were phthalide structures. Results revealed that both EOs blocked ISVs formation in the Tg (fli-1: EGFP) embryos increased to 10% of the control value, while both hydroalcoholic extracts did not show any anti-angiogenesis effects in these embryos. In addition, AVR has been shown to significantly induce PBC regeneration following ablation in the Tg (ins: GFP-NTR), but its regenerative activity was lower than that of 5′-N-ethylcarboxamidoadenosine (NECA) as a positive control. Taken together, the anti-angiogenesis activity of both EOs could be attributed to the phthalide structures while for the PBC regenerative activity, other compounds including β-Thujaplicinol, exclusively existing in AVR, might be effective.
Conclusion: Although the genera, organs, and origin of these plants are different, their similar chemical composition and biological activities make them valuable resources for further investigation in basic medical and pharmaceutical science.

 

 

References

León A, Del-Ãngel M, Ãvila JL, Delgado G. Phthalides: distribution in nature, chemical reactivity, synthesis, and biological activity. Progress in the chemistry of organic natural products. 2017:127-246. https://doi.org/10.1007/978-3-319-45618-8_2PMid:28160212 Ahmadipour B, Hassanpour H, Asadi E, Khajali F, Rafiei F, Khajali F. Kelussia odoratissima Mozzaf - A promising medicinal herb to prevent pulmonary hypertension in broiler chickens reared at high altitude. J Ethnopharmacol. 2015;159:49-54. https://doi.org/10.1016/j.jep.2014.10.043PMid:25446599 Omidbaigi R, Sefidkon F, Saeedi K. Essential Oil Content and Composition of Kelussia odoratissima Mozaff as an Iranian Endemic Plant. J Essent Oil-Bear Plants. 2008;11(6):594-7. https://doi.org/10.1080/0972060X.2008.10643672 Wei W-L, Zeng R, Gu C-M, Qu Y, Huang L-F. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J Ethnopharmacol. 2016;190:116-41. https://doi.org/10.1016/j.jep.2016.05.023PMid:27211015 Gao Q, Li J, Cheung JKH, Duan J, Ding A, Cheung AWH et al. Verification of the formulation and efficacy of Danggui Buxue Tang (a decoction of Radix Astragali and Radix Angelicae Sinensis): an exemplifying systematic approach to revealing the complexity of Chinese herbal medicine formulae. Chin Med. 2007;2(1):12. https://doi.org/10.1186/1749-8546-2-12PMid:18045504 PMCid:PMC2140262 Su S, Cui W, Zhou W, Duan J-a, Shang E, Tang Y. Chemical fingerprinting and quantitative constituent analysis of Siwu decoction categorized formulae by UPLC-QTOF/MS/MS and HPLC-DAD. Chin Med. 2013;8(1):5. https://doi.org/10.1186/1749-8546-8-5PMid:23453004 PMCid:PMC3602048 Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet. 2007;8(5):353. https://doi.org/10.1038/nrg2091PMid:17440532 Seto S-W, Kiat H, Lee SM, Bensoussan A, Sun Y-T, Hoi MP et al. Zebrafish models of cardiovascular diseases and their applications in herbal medicine research. Eur J Pharmacol. 2015;768:77-86. https://doi.org/10.1016/j.ejphar.2015.10.031PMid:26494630 Salmi TM, Tan VW, Cox AG. Dissecting metabolism using zebrafish models of disease. Biochem Soc Trans. 2019;47(1):305-15. https://doi.org/10.1042/BST20180335PMid:30700500 Noorimotlagh Z, Babaie M, Safdarian M, Ghadiri T, Rahimi-Movaghar V. Mechanisms of spinal cord injury regeneration in zebrafish: a systematic review. Iran J Basic Med Sci. 2017;20(12):1287-96. Teame T, Zhang Z, Ran C, Zhang H, Yang Y, Ding Q et al. The use of zebrafish (Danio rerio) as biomedical models. Anim Front. 2019;9(3):68-77. https://doi.org/10.1093/af/vfz020PMid:32002264 PMCid:PMC6951987 Lessman CA. The developing zebrafish (Danio rerio): A vertebrate model for high-throughput screening of chemical libraries. Birth Defects Res C Embryo Today. 2011;93(3):268-80. https://doi.org/10.1002/bdrc.20212PMid:21932435 Love DR, Pichler FB, Dodd A, Copp BR, Greenwood DR. Technology for high-throughput screens: the present and future using zebrafish. Curr Opin Biotechnol. 2004;15(6):564-71. https://doi.org/10.1016/j.copbio.2004.09.004PMid:15560983 Newman M, Ebrahimie E, Lardelli M. Using the zebrafish model for Alzheimer's disease research. Front Genet. 2014;5:189. https://doi.org/10.3389/fgene.2014.00189PMid:25071820 PMCid:PMC4075077 Saleem S, Kannan RR. Zebrafish: an emerging real-time model system to study Alzheimer's disease and neurospecific drug discovery. Cell Death Discov. 2018;4(1):1-13. https://doi.org/10.1038/s41420-018-0109-7PMid:30302279 PMCid:PMC6170431 Zang L, Maddison LA, Chen W. Zebrafish as a model for obesity and diabetes. Front Cell Dev Biol. 2018;6:1. https://doi.org/10.3389/fcell.2018.00091PMid:30177968 PMCid:PMC6110173 Bassett DI, Currie PD. The zebrafish as a model for muscular dystrophy and congenital myopathy. Hum Mol Genet. 2003;12(suppl_2):R265-R70. https://doi.org/10.1093/hmg/ddg279PMid:14504264 Langenau DM. Cancer and Zebrafish: Mechanisms, Techniques, and Models. Adv Exp Med Biol. 2016;916:103-24. Bhattarai P, Turgutalp B, Kizil C. Zebrafish as an Experimental and Preclinical Model for Alzheimer's Disease. ACS Chem Neurosci. 2022;13(20):2939-41. https://doi.org/10.1021/acschemneuro.2c00583PMid:36194560 Sharma A, Saneja A. Zebrafish as a powerful alternative model organism for preclinical investigation of nanomedicines. Drug Discov Today. 2022;27(5):1517-1522.. https://doi.org/10.1016/j.drudis.2022.02.011PMid:35192925 Cassar S, Adatto I, Freeman JL, Gamse JT, Iturria I, Lawrence C et al. Use of zebrafish in drug discovery toxicology. Chem Res Toxicol. 2019;33(1):95-118. https://doi.org/10.1021/acs.chemrestox.9b00335PMid:31625720 PMCid:PMC7162671 Patton EE, Zon LI, Langenau DM. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov. 2021;20(8):611-28. https://doi.org/10.1038/s41573-021-00210-8PMid:34117457 PMCid:PMC9210578 Moss JB, Koustubhan P, Greenman M, Parsons MJ, Walter I, Moss LG. Regeneration of the pancreas in adult zebrafish. Diabetes. 2009;58(8):1844-51. https://doi.org/10.2337/db08-0628PMid:19491207 PMCid:PMC2712797 Matsuda H. Zebrafish as a model for studying functional pancreatic β cells development and regeneration. Dev Growth Differ. 2018;60(6):393-9. https://doi.org/10.1111/dgd.12565PMid:30133710 Lu J, Liu KC, Schulz N, Karampelias C, Charbord J, Hilding A et al. IGFBP1 increases β-cell regeneration by promoting α-to β-cell transdifferentiation. EMBO J. 2016;35(18):2026-44. https://doi.org/10.15252/embj.201592903PMid:27516442 PMCid:PMC5116948 Wyett G, Gibert Y, Ellis M, Castillo HA, Kaslin J, Aston-Mourney K. Metformin, beta-cell development, and novel processes following beta-cell ablation in zebrafish. Endocrine. 2018;59(2):419-25. https://doi.org/10.1007/s12020-017-1502-3PMid:29274062 Janjuha S, Singh SP, Tsakmaki A, Gharavy SNM, Murawala P, Konantz J et al. Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish. Elife. 2018;7:e32965. https://doi.org/10.7554/eLife.32965PMid:29624168 PMCid:PMC5943033 Curado S, Anderson RM, Jungblut B, Mumm J, Schroeter E, Stainier DY. Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn. 2007;236(4):1025-35. https://doi.org/10.1002/dvdy.21100PMid:17326133 Mathias JR, Zhang Z, Saxena MT, Mumm JS. Enhanced cell-specific ablation in zebrafish using a triple mutant of Escherichia coli nitroreductase. Zebrafish. 2014;11(2):85-97. https://doi.org/10.1089/zeb.2013.0937PMid:24428354 PMCid:PMC3992008 Pourghadamyari H, Rezaei M, Basiri M, Tahamtan Y, Asgari B, Hasani S-N et al. Generation of a Transgenic Zebrafish Model for Pancreatic Beta Cell Regeneration. Galen Med J. 2019;8:e1056. https://doi.org/10.31661/gmj.v8i0.1056PMid:34466457 PMCid:PMC8344119 Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 2002;248(2):307-18. https://doi.org/10.1006/dbio.2002.0711PMid:12167406 Nicenboim J, Malkinson G, Lupo T, Asaf L, Sela Y, Mayseless O et al. Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature. 2015;522(7554):56. https://doi.org/10.1038/nature14425PMid:25992545 Crawford AD, Liekens S, Kamuhabwa AR, Maes J, Munck S, Busson R et al. Zebrafish bioassay-guided natural product discovery: isolation of angiogenesis inhibitors from East African medicinal plants. PLoS One. 2011;6(2):e14694. https://doi.org/10.1371/journal.pone.0014694PMid:21379387 PMCid:PMC3040759 He Z-H, Ge W, Yue GG-L, Bik-San Lau C, He M-F, But PP-H. Anti-angiogenic effects of the fruit of Alpinia oxyphylla. J Ethnopharmacol. 2010;132(2):443-9. https://doi.org/10.1016/j.jep.2010.08.024PMid:20723592 Bakkiyanathan A, Nathan JR, Ravikumar S, Gopalakrishnan TS, Aruldas FMM, Malathi R. Anti-angiogenic effects of theophylline on developing zebrafish (Danio rerio) embryos. Biomed Prev Nutr. 2012;2(3):174-8. https://doi.org/10.1016/j.bionut.2012.03.001 Adams RP. Identification of essential oil components by gas chromatography quadrupole mass spectroscopy. 3rd ed Carol Stream. 2001;:. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253-310. https://doi.org/10.1002/aja.1002030302PMid:8589427 Fong TAT, Shawver LK, Sun L, Tang C, App H, Powell TJ et al. SU5416 Is a Potent and Selective Inhibitor of the Vascular Endothelial Growth Factor Receptor (Flk-1/KDR) That Inhibits Tyrosine Kinase Catalysis, Tumor Vascularization, and Growth of Multiple Tumor Types. Cancer Res. 1999;59(1):99-106. Andersson O, Adams BA, Yoo D, Ellis GC, Gut P, Anderson RM et al. Adenosine signaling promotes regeneration of pancreatic β cells in vivo. Cell Metab. 2012;15(6):885-94. https://doi.org/10.1016/j.cmet.2012.04.018PMid:22608007 PMCid:PMC3372708 Popović-Djordjević J, Cengiz M, Ozer MS, Sarikurkcu C. Calamintha incana: Essential oil composition and biological activity. Ind Crops Prod. 2019;128:162-6. https://doi.org/10.1016/j.indcrop.2018.11.003 Hu J, Wang W, Dai J, Zhu L. Chemical composition and biological activity against Tribolium castaneum (Coleoptera: Tenebrionidae) of Artemisia brachyloba essential oil. Ind Crops Prod. 2019;128:29-37. https://doi.org/10.1016/j.indcrop.2018.10.076 Ghiasy-Oskoee M, AghaAlikhani M, Sefidkon F, Mokhtassi-Bidgoli A, Ayyari M. Blessed thistle agronomic and phytochemical response to nitrogen and plant density. Ind Crops Prod. 2018;122:566-73. https://doi.org/10.1016/j.indcrop.2018.06.027 Raiesi S, Nadjafi F, Hadian J, Kanani MR, Ayyari M. Autecological and Phytochemical Studies of Kelussia odoratissima Mozaff An Endangered Ethnomedicinal Plant of Iran. J Biol Act Prod Nat. 2013;3(4):285-94. https://doi.org/10.1080/22311866.2013.782748 Lao SC, Li SP, Kan KKW, Li P, Wan JB, Wang YT et al. Identification and quantification of 13 components in Angelica sinensis (Danggui) by gas chromatography-mass spectrometry coupled with pressurized liquid extraction. Anal Chim Acta. 2004;526(2):131-7. https://doi.org/10.1016/j.aca.2004.09.050 Lü J-L, Duan J-A, Tang Y-P, Yang N-Y, Zhang L-B. Phthalide mono- and dimers from the radix of Angelica sinensis. Biochem Syst Ecol. 2009;37(4):405-11. https://doi.org/10.1016/j.bse.2009.04.007 Lin L-Z, He X-G, Lian L-Z, King W, Elliott J. Liquid chromatographic-electrospray mass spectrometric study of the phthalides of Angelica sinensis and chemical changes of Z-ligustilide. J Chromatogr A. 1998;810(1):71-9. https://doi.org/10.1016/S0021-9673(98)00201-5 Deng S, Chen S-N, Lu J, Wang ZJ, Nikolic D, Breemen RBv et al. GABAergic phthalide dimers from Angelica sinensis (Oliv). Diels. 2006;17(6):398-405. https://doi.org/10.1002/pca.937PMid:17144247 Raeisi S, Mirjalili MH, Nadjafi F, Hadian J. Variability in the essential oil content and composition in different plant organs of Kelussia odoratissima Mozaff (Apiaceae) growing wild in Iran. J Essent Oil Res. 2015;27(4):283-8. https://doi.org/10.1080/10412905.2015.1025917 Gut P, Baeza-Raja B, Andersson O, Hasenkamp L, Hsiao J, Hesselson D et al. Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism. Nat Chem Biol. 2013;9(2):97. https://doi.org/10.1038/nchembio.1136PMid:23201900 PMCid:PMC3552031 Lam HW, Lin HC, Lao SC, Gao JL, Hong SJ, Leong CW et al. The angiogenic effects of Angelica sinensis extract on HUVEC in vitro and zebrafish in vivo. J Cell Biochem. 2008;103(1):195-211. https://doi.org/10.1002/jcb.21403PMid:17497682 Chen M-C, Hsu W-L, Chang W-L, Chou T-C. Antiangiogenic activity of phthalides-enriched Angelica Sinensis extract by suppressing WSB-1/pVHL/HIF-1α/VEGF signaling in bladder cancer. Sci Rep. 2017;7(1):5376. https://doi.org/10.1038/s41598-017-05512-9PMid:28710377 PMCid:PMC5511260 Gholamhoseinian A, Fallah H, Sharifi-far F, Mirtajaddini M. The Inhibitory Effect of Some Iranian Plants Extracts on the Alpha Glucosidase. Iran J Basic Med Sci. 2008;11(1):1-9. Rahimzadeh M, Jahanshahi S, Moein S, Moein MR. Evaluation of alpha- amylase inhibition by Urtica dioica and Juglans regia extracts. Iran J Basic Med Sci. 2014;17(6):465-9. Orhan N, HoÅŸbaÅŸ S, Deliorman Orhan D, Aslan M, Ergun F. Enzyme inhibitory and radical scavenging effects of some antidiabetic plants of Turkey. Iran J Basic Med Sci. 2014;17(6):426-32. Hu Y, Cheng X, Cao F, Huang A, Tavis JE. β-Thujaplicinol inhibits hepatitis B virus replication by blocking the viral ribonuclease H activity. Antivir Res. 2013;99(3):221-9. https://doi.org/10.1016/j.antiviral.2013.06.007PMid:23796982 Himmel DM, Maegley KA, Pauly TA, Bauman JD, Das K, Dharia C et al. Structure of HIV-1 Reverse Transcriptase with the Inhibitor β-Thujaplicinol Bound at the RNase H Active Site. Structure. 2009;17(12):1625-35. https://doi.org/10.1016/j.str.2009.09.016PMid:20004166 PMCid:PMC3365588 Wang K, Cao P, Shui W, Yang Q, Tang Z, Zhang Y. Angelica sinensis polysaccharide regulates glucose and lipid metabolism disorder in prediabetic and streptozotocin-induced diabetic mice through the elevation of glycogen levels and reduction of inflammatory factors. Food Funct. 2015;6(3):902-9. https://doi.org/10.1039/C4FO00859FPMid:25630053 Wang K, Tang Z, Zheng Z, Cao P, Shui W, Li Q et al. Protective effects of Angelica sinensis polysaccharide against hyperglycemia and liver injury in multiple low-dose streptozotocin-induced type 2 diabetic BALB/c mice. Food Funct. 2016;7(12):4889-97. https://doi.org/10.1039/C6FO01196APMid:27813540

Downloads

Published

2023-07-30

How to Cite

Rezaei, M., Fooladi, P., Norani, M., Crawford, A., Eisa-Beygi, S., Tahamtani, Y. ., & Ayyari, M. (2023). Investigation of Kelussia odoratissima and Angelica sinensis similarities in zebrafish-based in-vivo bioactivity assays and their chemical composition: . Galen Medical Journal, 12, e2793. https://doi.org/10.31661/gmj.v12i.2793

Issue

Section

Original Article