Plasma Amino Acid Profiles and Clinical Outcome in Patients with Traumatic Brain Injury: A Study Protocol
Plasma Amino Acids and TBI Patients
DOI:
https://doi.org/10.31661/gmj.v13i.2944Keywords:
Traumatic Brain Injury; Mortality; Amino Acid; Clinical ProtocolsAbstract
Background: The most common cause of cognitive and behavioral impairments, disability, and mortality around the world is traumatic brain injury (TBI). The imbalance between cerebral metabolism and inflammation leads to protein breakdown and induces altered concentrations of serum amino acids, which can serve as a diagnostic and prognostic sign in patients with TBI. This study aimed to examine the alterations in plasma amino acid concentrations and their relation to clinical outcomes in patients with TBIs. Materials and Methods: At completion, this study will assess 107 patients suffering from TBI aged 18 to 65. Plasma amino acid concentrations, anthropometric indices, and clinical outcome parameters including Acute Physiology and Chronic Health Evaluation (APACHE) II, Sequential Organ Failure Assessment (SOFA), Nutrition Risk in the Critically ill (Nutric) score, Glasgow coma scale (GCS), Intensive Care Unit (ICU) discharge time, mechanical ventilator duration, and mortality rate will be assessed at the beginning of the study, day 7, and day 14. Conclusion: This longitudinal study will provide evidence for further clinical trials and observational studies on amino acid supplementation and TBI. The results of this study could inform future treatment strategies for TBI patients.
References
.Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung Y-C, Punchak M, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;130(4):1080-97.
https://doi.org/10.3171/2017.10.JNS17352
PMid:29701556
James SL, Theadom A, Ellenbogen RG, Bannick MS, Montjoy-Venning W, Lucchesi LR, et al. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(1):56-87.
https://doi.org/10.1016/S1474-4422(18)30415-0
PMid:30497965
Andriessen TM, Jacobs B, Vos PE. Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J Cell Mol Med. 2010;14(10):2381-92.
https://doi.org/10.1111/j.1582-4934.2010.01164.x
PMid:20738443 PMCid:PMC3823156
Genton L, Pichard C. Protein catabolism and requirements in severe illness. Int J Vitam Nutr Res. 2011;81(2):143.
https://doi.org/10.1024/0300-9831/a000058
PMid:22139565
Stocchetti N, Maas AI. Traumatic intracranial hypertension. N Engl J Med. 2014;370(22):2121-30.
https://doi.org/10.1056/NEJMra1208708
PMid:24869722
Hajiaghamemar M, Seidi M, Oeur RA, Margulies SS. Toward development of clinically translatable diagnostic and prognostic metrics of traumatic brain injury using animal models: A review and a look forward. Exp Neurol. 2019;318:101-23.
https://doi.org/10.1016/j.expneurol.2019.04.019
PMid:31055005 PMCid:PMC6612432
Koura S, Doppenberg E, Marmarou A, Choi S, Young H, Bullock R. Relationship between excitatory amino acid release and outcome after severe human head injury. Acta Neurochir Suppl. 1998: 244-6.
https://doi.org/10.1007/978-3-7091-6475-4_70
PMid:9779196
Hajiaghamemar M, Kilbaugh T, Arbogast KB, Master CL, Margulies SS. Using serum amino acids to predict traumatic brain injury: a systematic approach to utilize multiple biomarkers. Int J Mol Sci. 2020;21(5):1786.
https://doi.org/10.3390/ijms21051786
PMid:32150890 PMCid:PMC7084695
Caplan B, Bogner J, Brenner L, Malec J, Sharma B, Lawrence DW, et al. Branched chain amino acids (BCAAs) and traumatic brain injury: a systematic review. Journal of head trauma rehabilitation. 2018;33(1):33-45.
https://doi.org/10.1097/HTR.0000000000000280
PMid:28060208
Vermeulen MA, Van Stijn MF, Visser M, Lemmens SM, Houdijk AP, Van Leeuwen PA, et al. Taurine concentrations decrease in critically ill patients with shock given enteral nutrition. J Parenter Enteral Nutr. 2016;40(2):264-72.
https://doi.org/10.1177/0148607114567199
PMid:25587009
Weijs PJ, Cynober L, DeLegge M, Kreymann G, Wernerman J, Wolfe RR. Proteins and amino acids are fundamental to optimal nutrition support in critically ill patients. Crit Care. 2014;18:1-13.
https://doi.org/10.1186/s13054-014-0591-0
PMid:25565377 PMCid:PMC4520087
Oudemans-van Straaten H, Bosman R, Treskes M, Van der Spoel H, Zandstra D. Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med. 2001;27(1):84-90.
https://doi.org/10.1007/s001340000703
PMid:11280678
QuickStats C. Injury and traumatic brain injury-related death rates by age-United States, 2006. MMWR. 2010;59:303.
Turner P. Providing optimal nutritional support on the intensive care unit: key challenges and practical solutions. Proc Nutr Soc. 2010;69(4):574-81.
https://doi.org/10.1017/S002966511000385X
PMid:20860859
Kaibori M, Matsui K, Ishizaki M, Iida H, Yoshii K, Asano H, et al. Effects of implementing an "enhanced recovery after surgery" program on patients undergoing resection of hepatocellular carcinoma. Surg Today. 2017;47(1):42-51.
https://doi.org/10.1007/s00595-016-1344-2
PMid:27165267
Villet S, Chiolero RL, Bollmann MD, Revelly J-P, Cayeux M-C, Delarue J, et al. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr. 2005;24(4):502-9.
https://doi.org/10.1016/j.clnu.2005.03.006
PMid:15899538
Rodriguez-Rodriguez A, Jose Egea-Guerrero J, Murillo-Cabezas F, Carrillo-Vico A. Oxidative stress in traumatic brain injury. Curr Med Chem. 2014;21(10):1201-11.
https://doi.org/10.2174/0929867321666131217153310
PMid:24350853
Newell DW, Barth A, Ricciardi TN, Malouf AT. Glycine causes increased excitability and neurotoxicity by activation of NMDA receptors in the hippocampus. Exp Neurol. 1997;145(1):235-44.
https://doi.org/10.1006/exnr.1997.6463
PMid:9184125
Yi J-H, Hazell AS. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int. 2006;48(5):394-403.
https://doi.org/10.1016/j.neuint.2005.12.001
PMid:16473439
Koza L, Linseman DA. Glutathione precursors shield the brain from trauma. Neural Regen Res. 2019;14(10):1701.
https://doi.org/10.4103/1673-5374.257520
PMid:31169179 PMCid:PMC6585556
Amorini AM, Lazzarino G, Di Pietro V, Signoretti S, Lazzarino G, Belli A, et al. Severity of experimental traumatic brain injury modulates changes in concentrations of cerebral free amino acids. J Cell Mol Med. 2017;21(3):530-42.
https://doi.org/10.1111/jcmm.12998
PMid:27696676 PMCid:PMC5323875
Zhao D, Chen J, Zhang Y, Liao H-B, Zhang Z-F, Zhuang Y, et al. Glycine confers neuroprotection through PTEN/AKT signal pathway in experimental intracerebral hemorrhage. Biochem Biophys Res Commun. 2018;501(1):85-91.
https://doi.org/10.1016/j.bbrc.2018.04.171
PMid:29698679
Otori T, Friedland JC, Sinson G, McIntosh TK, Raghupathi R, Welsh FA. Traumatic brain injury elevates glycogen and induces tolerance to ischemia in rat brain. J Neurotrauma. 2004;21(6):707-18.
https://doi.org/10.1089/0897715041269623
PMid:15253799
Louin G, Neveux N, Cynober L, Plotkine M, Marchand-Leroux C, Jafarian-Tehrani M. Plasma concentrations of arginine and related amino acids following traumatic brain injury: Proline as a promising biomarker of brain damage severity. Nitric Oxide. 2007;17(2):91-7.
https://doi.org/10.1016/j.niox.2007.05.006
PMid:17613263
Andrade VS, Rojas DB, de Andrade RB, Kim TDH, Vizuete AF, Zanatta Â, et al. A possible anti-inflammatory effect of proline in the brain cortex and cerebellum of rats. Mol Neurobiol. 2018;55(5):4068-77.
https://doi.org/10.1007/s12035-017-0626-z
Yabuki Y, Shioda N, Yamamoto Y, Shigano M, Kumagai K, Morita M, et al. Oral L-citrulline administration improves memory deficits following transient brain ischemia through cerebrovascular protection. Brain Res. 2013;1520:157-67.
https://doi.org/10.1016/j.brainres.2013.05.011
PMid:23685189
Longstreth Jr W, Katz R, Olson J, Bernick C, Carr JJ, Malinow MR, et al. Plasma total homocysteine levels and cranial magnetic resonance imaging findings in elderly persons: the Cardiovascular Health Study. Arch Neurol. 2004;61(1):67-72.
https://doi.org/10.1001/archneur.61.1.67
PMid:14732622
Sachdev P. Homocysteine, cerebrovascular disease and brain atrophy. J Neurol Sci. 2004;226(1-2):25-9.
https://doi.org/10.1016/j.jns.2004.09.006
PMid:15537514
Sachdev P, Parslow R, Salonikas C, Lux O, Wen W, Kumar R, et al. Homocysteine and the brain in midadult life: evidence for an increased risk of leukoaraiosis in men. Arch Neurol. 2004;61(9):1369-76.
https://doi.org/10.1001/archneur.61.9.1369
PMid:15364682
Signorini DF, Andrews PJ, Jones PA, Wardlaw JM, Miller JD. Predicting survival using simple clinical variables: a case study in traumatic brain injury. J Neurol Neurosurg Psychiatry. 1999;66(1):20-5.
https://doi.org/10.1136/jnnp.66.1.20
PMid:9886445 PMCid:PMC1736162
Rahmani A, Hatefi M, Dastjerdi MM, Zare M, Imani A, Shirazi D. Correlation between Serum Homocysteine Levels and Outcome of Patients with Severe Traumatic Brain Injury. World Neurosurg. 2016;87:507-15.
https://doi.org/10.1016/j.wneu.2015.09.016
PMid:26386458
Vuille-Dit-Bille RN, Ha-Huy R, Stover JF. Changes in plasma phenylalanine, isoleucine, leucine, and valine are associated with significant changes in intracranial pressure and jugular venous oxygen saturation in patients with severe traumatic brain injury. Amino Acids. 2012;43(3):1287-96.
https://doi.org/10.1007/s00726-011-1202-x
PMid:22189890
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Galen Medical Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.