How Might Consideration of Cell Polarity Affect Daily Therapeutic Practices? A Literature Review

Cell Polarity and Therapeutic Practice

Authors

  • Hamid Reza Ravanbod Podiatric Surgery, Australian Podiatry Association, Melbourne, Australia

DOI:

https://doi.org/10.31661/gmj.v12i.2970

Keywords:

Bioelectricity, Cell Polarity, Bioelectric, Action Potential

Abstract

Background: In addition to biochemical gradients and transcriptional networks, cell be-haviour is controlled by endogenous bioelectrical signals resulting from the action of ion channels and pumps. Cells are regulated not only by their own membrane resting potential (Vmem) but also by the Vmem of neighbouring cells, establishing networks through electrical synapses known as gap junctions. V mem is the primary factor in producing a polarity that can regulate cell assimilation of various substances. This article aimed to examine how cell polarity can change and how variations in cell polarity may lead to clinical demonstrations.Materials and Methods: Using Cochrane Central, PubMed, Scopus, Web of Sci-ence (WOS), and Embase, a comprehensive qualitative literature review was con-ducted from February 1, 2018, to February 1, 2023, to identify studies addressing bio-electric, cell polarity, and electroceuticals in patients with foot and ankle problems.Results: Out of 1,281 publications, 27 were included. One study investigated bioelectric wound-healing. Twenty-five studies examined bioelectric nerve cell growth, whereas one study evaluated bioelectricity-induced cellular differentiation in the treatment of arteriopathies.Conclusion: The author of this systematic review support addressing the predisposing fac-tors and healing impediments for a disease, thereby enhancing the healing process and re-ducing the likelihood of recurrence or parallel conditions. This method of treatment has pro-vided a summary of evidence indicating that cell polarity could be addressed for the treat-ment and prevention of most if not all, foot and ankle problems. However, owing to the limitations of V mem and bioelectricity measurement and the direct or indirect involvement of genetics and chemical gradients, further studies are required to confirm these results.

References

Reilly JP. Applied bioelectricity. from electrical stimulation to electropathology: Springer Science & Business Media; 2012. Adams DS. What Is Bioelectricity? Bioelectricity. 2019;1(1):3. https://doi.org/10.1089/bioe.2019.0005PMid:34471800 PMCid:PMC8370266 Wang Y, Han X, Cui Z, Shi D. Bioelectricity, Its Fundamentals, Characterization Methodology, and Applications in Nano-Bioprobing and Cancer Diagnosis. Adv Biosyst. 2019;3(10):1900101. https://doi.org/10.1002/adbi.201900101PMid:32648718 Levin M. Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration. J Physiol. 2014;592(11):2295-305. https://doi.org/10.1113/jphysiol.2014.271940PMid:24882814 PMCid:PMC4048089 Ross CL, Syed I, Smith TL, Harrison BS. The regenerative effects of electromagnetic field on spinal cord injury. Electromagn Biol Med. 2017;36(1):74-87. https://doi.org/10.3109/15368378.2016.1160408PMid:27398987 Gordon JS. The paradigm of holistic medicine Health for the whole person. Routledge. 2019:3-35. https://doi.org/10.4324/9780429052088-1PMCid:PMC6616719 Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. bmj. 2021:372. https://doi.org/10.1136/bmj.n160PMid:33781993 PMCid:PMC8005925 Zulbaran-Rojas A, Park C, El-Refaei N, Lepow B, Najafi B. Home-based electrical stimulation to accelerate wound-healing-a double-blinded randomized control trial. J Diabetes Sci Technol. 2023;17(1):15-24. https://doi.org/10.1177/19322968211035128PMid:34328024 PMCid:PMC9846397 Ilfeld BM, Plunkett A, Vijjeswarapu AM, Hackworth R, Dhanjal S, Turan A et al. Percutaneous peripheral nerve stimulation (neuromodulation) for postoperative pain: a randomized, sham-controlled pilot study. Anesthesiology. 2021;135(1):95-110. https://doi.org/10.1097/ALN.0000000000003776PMid:33856424 PMCid:PMC8249357 Park H-K, Jung J, Lee D-W, Shin HC, Lee H-J, Lee W-H. A wearable electromyography-controlled functional electrical stimulation system improves balance, gait function, and symmetry in older adults. Technology and Health Care. 2022;30(2):423-35. https://doi.org/10.3233/THC-212849PMid:34180437 Shideler BL, Bulea TC, Chen J, Stanley CJ, Gravunder AJ, Damiano DL. Toward a hybrid exoskeleton for crouch gait in children with cerebral palsy: Neuromuscular electrical stimulation for improved knee extension. J NeuroEngineering Rehabil. 2020;17(1):1-14. https://doi.org/10.1186/s12984-020-00738-7PMid:32883297 PMCid:PMC7469320 Liu Z, Dong S, Zhong S, Huang F, Zhang C, Zhou Y et al. The effect of combined transcranial pulsed current stimulation and transcutaneous electrical nerve stimulation on lower limb spasticity in children with spastic cerebral palsy: a randomized and controlled clinical study. BMC Pediatr. 2021;21(1):1-17. https://doi.org/10.1186/s12887-021-02615-1PMid:33761932 PMCid:PMC7989146 Rozanski GM, Huntley AH, Crosby LD, Schinkel-Ivy A, Mansfield A, Patterson KK. Lower limb muscle activity underlying temporal gait asymmetry post-stroke. Neurophysiol Clin. 2020;131(8):1848-58. https://doi.org/10.1016/j.clinph.2020.04.171PMid:32570199 Bao W, Yang J, Li M, Chen K, Ma Z, Bai Y et al. Prevention of muscle atrophy in ICU patients without nerve injury by neuromuscular electrical stimulation: a randomized controlled study. BMC Musculoskelet Disord. 2022;23(1):1-10. https://doi.org/10.1186/s12891-022-05739-2PMid:35974369 PMCid:PMC9380284 Elnaggar RK, Elbanna MF. Evaluation of independent versus integrated effects of reciprocal electrical stimulation and botulinum toxin-A on dynamic limits of postural stability and ankle kinematics in spastic diplegia: a single-blinded randomized trial. Eur J Phys Rehabil Med. 2018;55(2):241-9. https://doi.org/10.23736/S1973-9087.18.05196-1PMid:29904047 Granja-Domínguez A, Hochsprung A, Luque-Moreno C, Magni E, Escudero-Uribe S, Heredia-Camacho B et al. Effects of pulsed electromagnetic field therapy on fatigue, walking performance, depression, and quality of life in adults with multiple sclerosis: a randomized placebo-controlled trial. Braz J Phys Ther. 2022;26(5):100449. https://doi.org/10.1016/j.bjpt.2022.100449PMid:36283240 PMCid:PMC9594115 Mitsutake T, Sakamoto M, Horikawa E. The effects of electromyography-triggered neuromuscular electrical stimulation plus tilt sensor functional electrical stimulation training on gait performance in patients with subacute stroke: a randomized controlled pilot trial. Int J Rehabil Res. 2019;42(4):358-64. https://doi.org/10.1097/MRR.0000000000000371PMid:31567484 Turna IF, Erhan B, Gunduz NB, Turna O. The effects of different injection techniques of botulinum toxin a in post-stroke patients with plantar flexor spasticity. Acta Neurol Belg. 2020;120:639-43. https://doi.org/10.1007/s13760-018-0969-xPMid:29978276 del Río Solá ML, Puerta CV. Effectiveness of the Combined Treatment of Functional Electrical Stimulation and Deambulation in Diabetic Arteriopathy. Ann Vasc Surg. 2019;61:83-90. https://doi.org/10.1016/j.avsg.2019.05.015PMid:31382005 Cho JE, Shin JH, Kim H. Does electrical stimulation synchronized with ankle movements better improve ankle proprioception and gait kinematics in chronic stroke A randomized controlled study. NeuroRehabilitation. 2022 Jan 1(Preprint):1-1. https://doi.org/10.3233/NRE-220018PMid:35527578 PMCid:PMC9535592 Moll I, Marcellis RG, Coenen ML, Fleuren SM, Willems PJ, Speth LA et al. A randomized crossover study of functional electrical stimulation during walking in spastic cerebral palsy: the FES on participation (FESPa) trial. BMC pediatr. 2022;22(1):1-15. https://doi.org/10.1186/s12887-021-03037-9PMid:35027013 PMCid:PMC8756646 Levin M, Martyniuk CJ. The bioelectric code: An ancient computational medium for dynamic control of growth and form. Biosystems. 2018;1:76-93. https://doi.org/10.1016/j.biosystems.2017.08.009PMid:28855098 Zarkou A, Lee SC, Prosser LA, Hwang S, Jeka J. Stochastic resonance stimulation improves balance in children with cerebral palsy: a case control study. J Neuroeng Rehabil. 2018;15(1):1-12. https://doi.org/10.1186/s12984-018-0467-7PMid:30526617 PMCid:PMC6288963 Trueman RP, Ahlawat AS, Phillips JB. A shock to the (nervous) system: bioelectricity within peripheral nerve tissue engineering. Tissue Eng Part B Rev. 2022;28(5):1137-50. https://doi.org/10.1089/ten.teb.2021.0159PMid:34806913 Mao YR, Zhao JL, Bian MJ, Lo WLA, Leng Y, Bian RH et al. Spatiotemporal, kinematic and kinetic assessment of the effects of a foot drop stimulator for home-based rehabilitation of patients with chronic stroke: a randomized clinical trial. J Neuroeng Rehabil. 2022;19(1):1-12. https://doi.org/10.1186/s12984-022-01036-0PMid:35672756 PMCid:PMC9172181 Sivaramakrishnan A, Solomon JM, Manikandan N. Comparison of transcutaneous electrical nerve stimulation (TENS) and functional electrical stimulation (FES) for spasticity in spinal cord injury-A pilot randomized cross-over trial. J Spinal Cord Med. 2018;41(4):397-406. https://doi.org/10.1080/10790268.2017.1390930PMid:29067867 PMCid:PMC6055976 Renfrew L, Paul L, McFadyen A, Rafferty D, Moseley O, Lord AC et al. The clinical-and cost-effectiveness of functional electrical stimulation and ankle-foot orthoses for foot drop in Multiple Sclerosis: a multicentre randomized trial. Clin Rehabil. 2019;33(7):1150-62. https://doi.org/10.1177/0269215519842254PMid:30974955 Blackiston DJ, Vien K, Levin M. Serotonergic stimulation induces nerve growth and promotes visual learning via posterior eye grafts in a vertebrate model of induced sensory plasticity. NPJ Regen Med. 2017;2(1):8. https://doi.org/10.1038/s41536-017-0012-5PMid:29302344 PMCid:PMC5665622 Shariat A, Nakhostin Ansari N, Honarpishe R, Moradi V, Hakakzadeh A, Cleland JA et al. Effect of cycling and functional electrical stimulation with linear and interval patterns of timing on gait parameters in patients after stroke: a randomized clinical trial. Disabil Rehabil. 2021;43(13):1890-6. https://doi.org/10.1080/09638288.2019.1685600PMid:31707865 Zhao M, Rolandi M, Isseroff RR. Bioelectric Signaling: Role of Bioelectricity in Directional Cell Migration in Wound-healing. Cold Spring Harb Perspect Biol. 2022;14(10):a041236. https://doi.org/10.1101/cshperspect.a041236PMid:36041786 Yang J, Liu X, Wang W, Chen Y, Liu J, Zhang Z et al. Bioelectric fields coordinate wound contraction and re-epithelialization process to accelerate wound-healing via promoting myofibroblast transformation. Bioelectrochemistry. 2022;148:108247. https://doi.org/10.1016/j.bioelechem.2022.108247PMid:35994901 Luo R, Dai J, Zhang J, Li Z. Accelerated skin wound-healing by electrical stimulation. Adv Healthc Mater. 2021;10(16):2100557. https://doi.org/10.1002/adhm.202100557PMid:33945225 Naixin J, Jinrui Y, Jie L, ZHANG J. Electric field: A key signal in wound-healing. Plast Reconstr Surg. 2021;3(2):95-102. https://doi.org/10.1016/S2096-6911(21)00090-X Kang X, Li X, Liu C, Cai M, Guan P, Luo Y et al. A shape-persistent plasticine-like conductive hydrogel with self-healing properties for peripheral nerve regeneration. J Mater Sci Technol. 2023;142:134-43. https://doi.org/10.1016/j.jmst.2022.09.036 Jiao J, Wang F, Huang J-J, Huang J-J, Li Z-A, Kong Y et al. Microfluidic hollow fiber with improved stiffness repairs peripheral nerve injury through non-invasive electromagnetic induction and controlled release of NGF. Chem Eng J. 2021;426:131826. https://doi.org/10.1016/j.cej.2021.131826 Shahidi S, Janmaleki M, Riaz S, Nezhad AS, Syed N. A tuned gelatin methacryloyl (GelMA) hydrogel facilitates myelination of dorsal root ganglia neurons in vitro. Mater Sci Eng C. 2021;126:112131. https://doi.org/10.1016/j.msec.2021.112131PMid:34082948 Ganesh GS, Kumari R, Pattnaik M, Mohanty P, Mishra C, Kaur P et al. Effectiveness of Faradic and Russian currents on plantar flexor muscle spasticity, ankle motor recovery, and functional gait in stroke patients. Physiother Res Int. 2018;23(2):e1705. https://doi.org/10.1002/pri.1705PMid:29417699 Hyer CF, Berlet G, Philbin T, Bull P, Brandão R, Prissel M. Does Functional Neuromuscular Electrical Stimulation (NMES) Influence Calf Atrophy Following Achilles Tendon Surgery Prospective Double-Blind Randomized Controlled Trial on the Use of Immediate Postoperative Electrical Muscle Stimulation to Preserve Muscle Function and Volume. The Journal of Foot and Ankle Surgery. 2021;60(4):683-8. https://doi.org/10.1053/j.jfas.2020.12.005PMid:33736944 Levin M. Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell. 2021;184(8):1971-89. https://doi.org/10.1016/j.cell.2021.02.034PMid:33826908 Srivastava P, Kane A, Harrison C, Levin M. A meta-analysis of bioelectric data in cancer, embryogenesis, and regeneration. Bioelectricity. 2021;3(1):42-67. https://doi.org/10.1089/bioe.2019.0034PMid:34476377 PMCid:PMC8370481 McLaughlin KA, Levin M. Bioelectric signaling in regeneration: Mechanisms of ionic controls of growth and form. J Dev Biol. 2018;433(2):177-89. https://doi.org/10.1016/j.ydbio.2017.08.032PMid:29291972 PMCid:PMC5753428 Hronik-Tupaj M, Kaplan DL. A Review of the Responses of Two- and Three-Dimensional Engineered Tissues to Electric Fields. Tissue Eng Part B Rev. 2011;18(3):167-80. https://doi.org/10.1089/ten.teb.2011.0244PMid:22046979 PMCid:PMC3357076 Miller TM, Layzer RB. Muscle cramps. Muscle Nerve. 2005;32(4):431-42. https://doi.org/10.1002/mus.20341PMid:15902691 Farrall MJ. Doctors' working hours: Treat the cause, not the symptoms. Med J Aust. 1998;169(6):340-1. https://doi.org/10.5694/j.1326-5377.1998.tb140299.xPMid:9785536 Bland J. Functional Medicine: An Operating System for Integrative Medicine. Integr Med (Encinitas). 2015;14(5):18-20. Dede HÖ, Sirin NG, Kocasoy-Orhan E, Idrisoglu HA, Baslo MB. Changes in motor unit bioelectrical activity recorded at two different sites in a muscle. Neurophysiologie Clinique. 2020;50(2):113-8. https://doi.org/10.1016/j.neucli.2020.02.001PMid:32171639 Wagner E, Wagner P. Metatarsal Pronation in Hallux Valgus Deformity: A Review. J Am Acad Orthop Surg Glob Res Rev. 2020;4(6): e20.00091. https://doi.org/10.5435/JAAOSGlobal-D-20-00091PMid:32656482 PMCid:PMC7322783 Visser HJ. Case #6: Management of Stage 3 Hallux Limitus Deformity with Acellular Dermal Allomatrix for Resurfacing of the First Metatarsal Head. In: Visser HJ, editor. Challenges in Foot and Ankle Reconstructive Surgery: A Case-based Approach. Cham: Springer International Publishing; 2022. p. 37-47. https://doi.org/10.1007/978-3-031-07893-4_6PMCid:PMC9102351 Rose M, Flatt T, Graves Jr J, Greer LF, Martínez D, Matos M et al. What is Aging? Front Genet. 2012;3:134. https://doi.org/10.3389/fgene.2012.00134PMid:22833755 Lipner SR, Scher RK. Onychomycosis: Clinical overview and diagnosis. J Am Acad Dermatol. 2019;80(4):835-51. https://doi.org/10.1016/j.jaad.2018.03.062PMid:29959961 Purnell MC, Skrinjar TJ. Bioelectric Field Enhancement: The Influence on Membrane Potential and Cell Migration In Vitro. Adv Wound Care (New Rochelle). 2016;5(12):539-45. https://doi.org/10.1089/wound.2016.0708PMid:28078187 PMCid:PMC5165661 Blackiston DJ, McLaughlin KA, Levin M. Bioelectric controls of cell proliferation: Ion channels, membrane voltage and the cell cycle. Cell Cycle. 2009;8(21):3527-36. https://doi.org/10.4161/cc.8.21.9888PMid:19823012 PMCid:PMC2862582 Thorp JE, Adamczyk PG. Mechanisms of gait phase entrainment in healthy subjects during rhythmic electrical stimulation of the medial gastrocnemius. Plos one. 2020;15(10):e0241339. https://doi.org/10.1371/journal.pone.0241339PMid:33095823 PMCid:PMC7584166 Levin M, Martyniuk CJ. The bioelectric code: An ancient computational medium for dynamic control of growth and form. Biosystems. 2018;164:76-93. https://doi.org/10.1016/j.biosystems.2017.08.009PMid:28855098 Alahmari KA, Silvian P, Ahmad I, Reddy RS, Tedla JS, Kakaraparthi VN et al. Effectiveness of Low-Frequency Stimulation in Proprioceptive Neuromuscular Facilitation Techniques for Post Ankle Sprain Balance and Proprioception in Adults: A Randomized Controlled Trial. Biomed Res Int. 2020;2020:9012930. https://doi.org/10.1155/2020/9012930PMid:33029528 PMCid:PMC7532422 Thapa N, Yang JG, Bae S, Kim GM, Park HJ, Park H. Effect of Electrical Muscle Stimulation and Resistance Exercise Intervention on Physical and Brain Function in Middle-Aged and Older Women. Int J Environ Res Public Health. 2022;20(1):101. https://doi.org/10.3390/ijerph20010101PMid:36612423 PMCid:PMC9819342 Sota K, Uchiyama Y, Ochi M, Matsumoto S, Hachisuka K, Domen K. Examination of Factors Related to the Effect of Improving Gait Speed With Functional Electrical Stimulation Intervention for Stroke Patients. Pm r. 2018;10(8):798-805. https://doi.org/10.1016/j.pmrj.2018.02.012PMid:29518588

Downloads

Published

2023-05-28

Issue

Section

Review Article