A Short Review on Advances in Early Diagnosis and Treatment of Ischemic Stroke
Advancements in Diagnosis and Treatments of Ischemic Stroke
DOI:
https://doi.org/10.31661/gmj.v12i.2993Keywords:
Ischemic Stroke; Brain Ischemia; Artificial Intelligence; Computed Tomography Angiography; intravenous ThrombolysisAbstract
Ischemic stroke is a leading cause of morbidity and mortality worldwide, necessitating advancements in early diagnosis and treatment modalities. This review aims to provide an overview of recent advances in the early diagnosis and treatment of ischemic stroke, highlighting the importance of the potential impact on patient outcomes. Recent advancements have focused on various aspects of stroke care, including imaging techniques, laboratory testing, telemedicine and mobile technology, intravenous thrombolysis, mechanical thrombectomy, and collaborative systems. Advances in imaging techniques have played a pivotal role in the early diagnosis of ischemic stroke. Computed tomography perfusion imaging, advanced magnetic resonance imaging (MRI) techniques, multimodal imaging, and automated image processing tools have greatly improved the ability to assess the extent of ischemic injury. Laboratory testing has seen significant progress in identifying biomarkers associated with ischemic stroke. High-sensitivity cardiac troponin assays have improved our understanding of the cardiac component of stroke. Additionally, biomarkers such as S100B, glial fibrillary acidic protein, and neuron-specific enolase have shown promise in assessing stroke severity and prognosis. Mobile applications and wearable devices facilitate stroke symptom recognition, risk assessment, and prompt medical attention. The development of tenecteplase, a modified form of tissue plasminogen activator, has enhanced clot-dissolving efficacy. Collaborative systems, including regional stroke systems of care and telestroke networks, have optimized communication and coordination among healthcare providers. Interoperable electronic health records streamline information exchange and facilitate prompt decision-making. Mobile communication technologies enhance real-time collaboration, involving all stakeholders in stroke care. Future directions focus on artificial intelligence and machine learning algorithms for stroke diagnosis and risk assessment. Wearable devices and remote monitoring may enable continuous monitoring of stroke-related indicators. Overall, advances in early diagnosis and treatment of ischemic stroke can enhance stroke care, reduce treatment delays, and improve patient outcomes.
References
Feske SK. Ischemic stroke. The American journal of medicine. 2021 Dec 1;134(12):1457-64.
https://doi.org/10.1016/j.amjmed.2021.07.027
Herpich F, Rincon F. Management of acute ischemic stroke. Critical care medicine. 2020 Nov;48(11):1654.
https://doi.org/10.1097/CCM.0000000000004597
Mendelson SJ, Prabhakaran S. Diagnosis and management of transient ischemic attack and acute ischemic stroke: a review. Jama. 2021 Mar 16;325(11):1088-98.
https://doi.org/10.1001/jama.2020.26867
Jangholi E, Sharifi ZN, Hoseinian M, Zarrindast MR, Rahimi HR, Mowla A, Aryan H, Javidi MA, Parsa Y, Ghaffarpasand F, Yadollah-Damavandi S. Verapamil inhibits mitochondria-induced reactive oxygen species and dependent apoptosis pathways in cerebral transient global ischemia/reperfusion. Oxid Med Cell Longev. 2020; 2020: 5872645.
https://doi.org/10.1155/2020/5872645
Saini V, Guada L, Yavagal DR. Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology. 2021 Nov 16;97(20 Supplement 2):S6-16.
https://doi.org/10.1212/WNL.0000000000012781
Kunst MM, Schaefer PW. Ischemic stroke. Radiologic Clinics. 2011 Jan 1;49(1):1-26.
https://doi.org/10.1016/j.rcl.2010.07.010
Sacco RL. Risk factors and outcomes for ischemic stroke. Neurology. 1995 Feb 1;45(2 Suppl 1):S10-4.
Hankey GJ. Potential new risk factors for ischemic stroke: what is their potential?. Stroke. 2006 Aug 1;37(8):2181-8.
https://doi.org/10.1161/01.STR.0000229883.72010.e4
Andersen KK, Olsen TS, Dehlendorff C, Kammersgaard LP. Hemorrhagic and ischemic strokes compared: stroke severity, mortality, and risk factors. Stroke. 2009 Jun 1;40(6):2068-72.
https://doi.org/10.1161/STROKEAHA.108.540112
Davis PH, Dambrosia JM, Schoenberg BS, Schoenberg DG, Pritchard DA, Lilienfeld AM, Whisnant JP. Risk factors for ischemic stroke: a prospective study in Rochester, Minnesota. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 1987; 22(3): 319-27.
https://doi.org/10.1002/ana.410220307
Ohira T, Shahar E, Chambless LE, Rosamond WD, Mosley Jr TH, Folsom AR. Risk factors for ischemic stroke subtypes: the Atherosclerosis Risk in Communities study. Stroke. 2006 Oct 1;37(10):2493-8.
https://doi.org/10.1161/01.STR.0000239694.19359.88
Simons LA, McCallum J, Friedlander Y, Simons J. Risk factors for ischemic stroke: Dubbo Study of the elderly. Stroke. 1998 Jul;29(7):1341-6.
https://doi.org/10.1161/01.STR.29.7.1341
Garcia-Cazares R, Merlos-Benitez M, Marquez-Romero JM. Role of the physical examination in the determination of etiology of ischemic stroke. Neurology India. 2020 Mar 1;68(2):282.
https://doi.org/10.4103/0028-3886.284386
Ali LK, Saver JL. The ischemic stroke patient who worsens: new assessment and management approaches. Reviews in neurological diseases. 2007 Jan 1;4(2):85-91.
Seyedsaadat SM, Neuhaus AA, Pederson JM, Brinjikji W, Rabinstein AA, Kallmes DF. Location-specific ASPECTS paradigm in acute ischemic stroke: a systematic review and meta-analysis. American Journal of Neuroradiology. 2020 ;41(11):2020-2026.
https://doi.org/10.3174/ajnr.A6847
Chalos V, van der Ende NA, Lingsma HF, Mulder MJ, Venema E, Dijkland SA, Berkhemer OA, Yoo AJ, Broderick JP, Palesch YY, Yeatts SD. National Institutes of Health Stroke Scale: an alternative primary outcome measure for trials of acute treatment for ischemic stroke. Stroke. 2020 Jan;51(1):282-90.
https://doi.org/10.1161/str.50.suppl_1.TMP6
Zöllner JP, Misselwitz B, Kaps M, Stein M, Konczalla J, Roth C, Krakow K, Steinmetz H, Rosenow F, Strzelczyk A. National Institutes of Health Stroke Scale (NIHSS) on admission predicts acute symptomatic seizure risk in ischemic stroke: a population-based study involving 135,117 cases. Scientific Reports. 2020 Mar 2;10(1):3779.
https://doi.org/10.1038/s41598-020-60628-9
Safouris A, Palaiodimou L, Nardai S, Kargiotis O, Magoufis G, Psychogios K. Medical Management Versus Endovascular Treatment for Large-Vessel Occlusion Anterior Circulation Stroke With Low NIHSS. Stroke. 2023; :043937.
https://doi.org/10.1161/STROKEAHA.123.043937
Heldner MR, Zubler C, Mattle HP, Schroth G, Weck A, Mono ML, Gralla J, Jung S, El-Koussy M, Lüdi R, Yan X. National Institutes of Health stroke scale score and vessel occlusion in 2152 patients with acute ischemic stroke. Stroke. 2013 Apr;44(4):1153-7.
https://doi.org/10.1161/STROKEAHA.111.000604
Radhiana H, Syazarina SO, Shahizon Azura MM, Hilwati H, Sobri MA. Non-contrast computed tomography in acute ischaemic stroke: a pictorial review. Med J Malaysia. 2013 Feb;68(1):93-100.
Lin SY, Chiang PL, Chen PW, Cheng LH, Chen MH, Chang PC, Lin WC, Chen YS. Toward automated segmentation for acute ischemic stroke using non-contrast computed tomography. International journal of computer assisted radiology and surgery. 2022 Apr;17(4):661-71.
https://doi.org/10.1007/s11548-022-02570-x
El-Hariri H, Neto LA, Cimflova P, Bala F, Golan R, Sojoudi A, Duszynski C, Elebute I, Mousavi SH, Qiu W, Menon BK. Evaluating nnU-Net for early ischemic change segmentation on non-contrast computed tomography in patients with Acute Ischemic Stroke. Computers in biology and medicine. 2022 Feb 1;141:105033.
https://doi.org/10.1016/j.compbiomed.2021.105033
Nagel S, Joly O, Pfaff J, Papanagiotou P, Fassbender K, Reith W, Möhlenbruch MA, Herweh C, Grunwald IQ. e-ASPECTS derived acute ischemic volumes on non-contrast-enhanced computed tomography images. International Journal of Stroke. 2020 Dec;15(9):995-1001.
https://doi.org/10.1177/1747493019879661
Tolhuisen ML, Ponomareva E, Boers AM, Jansen IG, Koopman MS, Sales Barros R, Berkhemer OA, van Zwam WH, van der Lugt A, Majoie CB, Marquering HA. A convolutional neural network for anterior intra-arterial thrombus detection and segmentation on non-contrast computed tomography of patients with acute ischemic stroke. Applied Sciences. 2020 Jul 15;10(14):4861.
https://doi.org/10.3390/app10144861
Aktar M, Xiao Y, Tampieri D, Rivaz H, Kersten-Oertel M. A Radiomics-Based Machine Learning Approach to Assess Collateral Circulation in Ischemic Stroke on Non-contrast Computed Tomography. InMultimodal Learning for Clinical Decision Support and Clinical Image-Based Procedures: 10th International Workshop, ML-CDS 2020, and 9th International Workshop, CLIP 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4-8, 2020, Proceedings 9 2020 (pp. 24-33). Springer International Publishing.
https://doi.org/10.1007/978-3-030-60946-7_3
Nishio M, Koyasu S, Noguchi S, Kiguchi T, Nakatsu K, Akasaka T, Yamada H, Itoh K. Automatic detection of acute ischemic stroke using non-contrast computed tomography and two-stage deep learning model. Computer Methods and Programs in Biomedicine. 2020 Nov 1;196:105711.
https://doi.org/10.1016/j.cmpb.2020.105711
Bill O, Faouzi M, Meuli R, Maeder P, Wintermark M, Michel P. Added value of multimodal computed tomography imaging: analysis of 1994 acute ischaemic strokes. European journal of neurology. 2017 Jan;24(1):167-74.
https://doi.org/10.1111/ene.13173
Dobshik AV, Verbitskiy SK, Pestunov IA, Sherman KM, Sinyavskiy YN, Tulupov AA, Berikov VB. Acute ischemic stroke lesion segmentation in non-contrast CT images using 3D convolutional neural networks. arXiv preprint arXiv. 2023:230106793.
https://doi.org/10.18287/2412-6179-CO-1233
Kuang H, Qiu W, Najm M, Dowlatshahi D, Mikulik R, Poppe AY, Puig J, Castellanos M, Sohn SI, Ahn SH, Calleja A. Validation of an automated ASPECTS method on non-contrast computed tomography scans of acute ischemic stroke patients. International journal of stroke. 2020 Jul;15(5):528-34.
https://doi.org/10.1177/1747493019895702
Qazi S, Qazi E, Wilson AT, McDougall C, Al-Ajlan F, Evans J, Gensicke H, Hill MD, Lee T, Goyal M, Demchuk AM. Identifying thrombus on non-contrast CT in patients with acute ischemic stroke. Diagnostics. 2021 Oct 16;11(10):1919.
https://doi.org/10.3390/diagnostics11101919
Davis DP, Robertson T, Imbesi SG. Diffusion-weighted magnetic resonance imaging versus computed tomography in the diagnosis of acute ischemic stroke. The Journal of emergency medicine. 2006 Oct 1;31(3):269-77.
https://doi.org/10.1016/j.jemermed.2005.10.003
Koome M, Churilov L, Chen Z, Chen Z, Naylor J, Thevathasan A, Yan B, Kwan P. Computed tomography perfusion as a diagnostic tool for seizures after ischemic stroke. Neuroradiology. 2016 Jun;58:577-84.
https://doi.org/10.1007/s00234-016-1670-5
Ospel JM, Singh N, Marko M, Almekhlafi M, Dowlatshahi D, Puig J, Demchuk A, Coutts SB, Hill MD, Menon BK, Goyal M. Prevalence of ipsilateral nonstenotic carotid plaques on computed tomography angiography in embolic stroke of undetermined source. Stroke. 2020 Jun;51(6):1743-9.
https://doi.org/10.1161/STROKEAHA.120.029404
Knight‐Greenfield A, Quitlong Nario JJ, Vora A, Baradaran H, Merkler A, Navi BB, Kamel H, Gupta A. Associations between features of nonstenosing carotid plaque on computed tomographic angiography and ischemic stroke subtypes. Journal of the American Heart Association. 2019 Dec 17;8(24):e014818.
https://doi.org/10.1161/JAHA.119.014818
Broocks G, Kemmling A, Meyer L, Nawabi J, Schön G, Fiehler J, Kniep H, Hanning U. Computed tomography angiography collateral profile is directly linked to early edema progression rate in acute ischemic stroke. Stroke. 2019 Dec;50(12):3424-30.
https://doi.org/10.1161/STROKEAHA.119.027062
Kauw F, Dankbaar JW, Martin BW, Ding VY, Boothroyd DB, van Ommen F, de Jong HW, Kappelle LJ, Velthuis BK, Heit JJ, Wintermark M. Collateral status in ischemic stroke: a comparison of computed tomography angiography, computed tomography perfusion, and digital subtraction angiography. Journal of computer assisted tomography. 2020 Nov;44(6):984.
https://doi.org/10.1097/RCT.0000000000001090
Mori T, Kasakura S, Yoshioka K. Computed tomography angiographic anatomical features for successful transbrachial insertion of a balloon guide catheter for mechanical thrombectomy in acute ischemic stroke. Brain Circulation. 2020 Jul;6(3):169.
https://doi.org/10.4103/bc.bc_8_20
Yang Y, Yang J, Feng J, Wang Y. Early diagnosis of acute ischemic stroke by brain computed tomography perfusion imaging combined with head and neck computed tomography angiography on deep learning algorithm. Contrast Media & Molecular Imaging. 2022;2022:5373585.
https://doi.org/10.1155/2022/5373585
Weiss D, Kraus B, Rubbert C, Kaschner M, Jander S, Gliem M, Lee JI, Haensch CA, Turowski B, Caspers J. Systematic evaluation of computed tomography angiography collateral scores for estimation of long-term outcome after mechanical thrombectomy in acute ischaemic stroke. The Neuroradiology Journal. 2019 Aug;32(4):277-86.
https://doi.org/10.1177/1971400919847182
Suh CH, Jung SC, Cho SJ, Woo DC, Oh WY, Lee JG, Kim KW. MRI for prediction of hemorrhagic transformation in acute ischemic stroke: a systematic review and meta-analysis. Acta Radiologica. 2020 Jul;61(7):964-72.
https://doi.org/10.1177/0284185119887593
Macha K, Hoelter P, Siedler G, Knott M, Schwab S, Doerfler A, Kallmünzer B, Engelhorn T. Multimodal CT or MRI for IV thrombolysis in ischemic stroke with unknown time of onset. Neurology. 2020 Dec 1;95(22):e2954-64.
https://doi.org/10.1212/WNL.0000000000011059
Zhang XH, Liang HM. Systematic review with network meta-analysis: Diagnostic values of ultrasonography, computed tomography, and magnetic resonance imaging in patients with ischemic stroke. Medicine. 2019 ;98(30):6709059.
https://doi.org/10.1097/MD.0000000000016360
Wong KK, Cummock JS, Li G, Ghosh R, Xu P, Volpi JJ, Wong ST. Automatic segmentation in acute ischemic stroke: Prognostic significance of topological stroke volumes on stroke outcome. Stroke. 2022 Sep;53(9):2896-905.
https://doi.org/10.1161/STROKEAHA.121.037982
Lee KY, Liu CC, Chen DY, Weng CL, Chiu HW, Chiang CH. Automatic detection and vascular territory classification of hyperacute staged ischemic stroke on diffusion weighted image using convolutional neural networks. Scientific Reports. 2023 Jan 9;13(1):404.
https://doi.org/10.1038/s41598-023-27621-4
Tedyanto EH, Tini K, Pramana NA. Magnetic Resonance Imaging in Acute Ischemic Stroke. Cureus. 2022 Jul 25;14(7):e27224.
https://doi.org/10.7759/cureus.27224
Khalili N, Wang R, Garg T, Ahmed A, Hoseinyazdi M, Sair HI, Luna LP, Intrapiromkul J, Deng F, Yedavalli V. Clinical application of brain perfusion imaging in detecting stroke mimics: A review. Journal of Neuroimaging. 2023 Jan;33(1):44-57.
https://doi.org/10.1111/jon.13061
Alaya IB, Limam H, Kraiem T. Applications of artificial intelligence for DWI and PWI data processing in acute ischemic stroke: Current practices and future directions. Clinical Imaging. 2022 Jan 1;81:79-86.
https://doi.org/10.1016/j.clinimag.2021.09.015
Dhundass S, Savatovsky J, Duron L, Fahed R, Escalard S, Obadia M, Zuber K, Metten MA, Mejdoubi M, Blanc R, Sadik JC. Improved detection and characterization of arterial occlusion in acute ischemic stroke using contrast enhanced MRA. Journal of Neuroradiology. 2020 Jun 1;47(4):278-83.
https://doi.org/10.1016/j.neurad.2019.02.011
Tsui B, Nour M, Chen I, Qiao JX, Salehi B, Yoo B, Colby GP, Salamon N, Villablanca P, Jahan R, Duckwiler G. MR angiography in assessment of collaterals in patients with acute ischemic stroke: a comparative analysis with digital subtraction angiography. Brain Sciences. 2022 Sep 2;12(9):1181.
https://doi.org/10.3390/brainsci12091181
Kesav P, Krishnavadana B, Kesavadas C, Sreedharan SE, Rajendran A, Sukumaran S, Sylaja PN. Utility of intracranial high-resolution vessel wall magnetic resonance imaging in differentiating intracranial vasculopathic diseases causing ischemic stroke. Neuroradiology. 2019 Apr 12;61:389-96.
https://doi.org/10.1007/s00234-019-02157-5
Schirmer MD, Dalca AV, Sridharan R, Giese AK, Donahue KL, Nardin MJ, Mocking SJ, McIntosh EC, Frid P, Wasselius J, Cole JW. White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts-The MRI-GENIE study. NeuroImage: Clinical. 2019 Jan 1;23:101884.
https://doi.org/10.1016/j.nicl.2019.101884
Bu N, Khlif MS, Lemmens R, Wouters A, Fiebach JB, Chamorro A, Ringelstein EB, Norrving B, Laage R, Grond M, Wilms G. Imaging markers of brain frailty and outcome in patients with acute ischemic stroke. Stroke. 2021 Mar;52(3):1004-11.
https://doi.org/10.1161/STROKEAHA.120.029841
Montellano FA, Ungethüm K, Ramiro L, Nacu A, Hellwig S, Fluri F, Whiteley WN, Bustamante A, Montaner J, Heuschmann PU. Role of blood-based biomarkers in ischemic stroke prognosis: a systematic review. Stroke. 2021 Feb;52(2):543-51.
https://doi.org/10.1161/STROKEAHA.120.029232
Harpaz D, Seet RC, Marks RS, Tok AI. Blood-based biomarkers are associated with different ischemic stroke mechanisms and enable rapid classification between cardioembolic and atherosclerosis etiologies. Diagnostics. 2020 Oct 9;10(10):804.
https://doi.org/10.3390/diagnostics10100804
Broersen LH, Siegerink B, Sperber PS, von Rennenberg R, Piper SK, Nolte CH, Heuschmann PU, Endres M, Scheitz JF, Liman TG. High-sensitivity cardiac troponin T and cognitive function in patients with ischemic stroke. Stroke. 2020 May;51(5):1604-7.
https://doi.org/10.1161/STROKEAHA.119.028410
Onatsu J, Vanninen R, JÄkÄlÄ P, Mustonen P, Pulkki K, Korhonen M, Hedman M, HÖglund K, Blennow K, Zetterberg H, Herukka SK. Tau, S100B and NSE as blood biomarkers in acute cerebrovascular events. in vivo. 2020 Sep 1;34(5):2577-86.
https://doi.org/10.21873/invivo.12075
Rahmati M, Azarpazhooh MR, Ehteram H, Ferns GA, Ghayour-Mobarhan M, Ghannadan H, Mobarra N. The elevation of S100B and downregulation of circulating miR-602 in the sera of ischemic stroke (IS) patients: the emergence of novel diagnostic and prognostic markers. Neurological Sciences. 2020 Aug;41:2185-92.
https://doi.org/10.1007/s10072-020-04323-7
Kumar A, Misra S, Yadav AK, Sagar R, Verma B, Grover A, Prasad K. Role of glial fibrillary acidic protein as a biomarker in differentiating intracerebral haemorrhage from ischaemic stroke and stroke mimics: a meta-analysis. Biomarkers. 2020 Jan 2;25(1):1-8.
https://doi.org/10.1080/1354750X.2019.1691657
Gao L, Xie J, Zhang H, Zheng H, Zheng W, Pang C, Cai Y, Deng B. Neuron-specific enolase in hypertension patients with acute ischemic stroke and its value forecasting long-term functional outcomes. BMC geriatrics. 2023 May 15;23(1):294.
https://doi.org/10.1186/s12877-023-03986-z
Li Y, Han X, Luo S, Huang H, Huang X, Li M, Huang Y, Chen Y, Wu Z. Predictive value of longitudinal changes of serum matrix metalloproteinase-9 and brain-derived neurotrophic factor in acute ischemic stroke. Frontiers in Aging Neuroscience. 2022 Aug 25;14:952038.
https://doi.org/10.3389/fnagi.2022.952038
Totan M, Antonescu E, Catana MG, Cernusca-Mitariu MM, Duica L, Roman-Filip C. C-reactive protein-A predictable biomarker in ischemic stroke. Rev Chim. 2019 Jun 1;70:2290-3.
https://doi.org/10.37358/RC.19.6.7325
McCabe JJ, O'reilly E, Coveney S, Collins R, Healy L, McManus J, Mulcahy R, Moynihan B, Cassidy T, Hsu F, Worrall B. Interleukin-6, C-reactive protein, fibrinogen, and risk of recurrence after ischaemic stroke: systematic review and meta-analysis. European stroke journal. 2021 Mar;6(1):62-71.
https://doi.org/10.1177/2396987320984003
Yu B, Yang P, Xu X, Shao L. C-reactive protein for predicting all-cause mortality in patients with acute ischemic stroke: a meta-analysis. Bioscience reports. 2019 Feb;39(2):BSR20181135.
https://doi.org/10.1042/BSR20181135
Pîrlog BO, Grotta JC. The Applicability of Thromboelastography in Acute Ischemic Stroke: A Literature Review. InSeminars in thrombosis and hemostasis. 2022; 48(7): 842-849.
https://doi.org/10.1055/s-0042-1753529
Levine SR. Hypercoagulable states and stroke: a selective review. CNS spectrums. 2005 Jul;10(7):567-78.
https://doi.org/10.1017/S109285290001021X
Tziomalos K, Athyros VG, Karagiannis A, Mikhailidis DP. Dyslipidemia as a risk factor for ischemic stroke. Current Topics in Medicinal Chemistry. 2009 Oct 1;9(14):1291-7.
https://doi.org/10.2174/156802609789869628
Kruyt ND, Biessels GJ, DeVries JH, Roos YB. Hyperglycemia in acute ischemic stroke: pathophysiology and clinical management. Nature Reviews Neurology. 2010 Mar;6(3):145-55.
https://doi.org/10.1038/nrneurol.2009.231
Lasek-Bal A, Holecki M, Kret B, Hawrot-Kawecka A, Duława J. Evaluation of influence of chronic kidney disease and sodium disturbances on clinical course of acute and sub-acute stage first-ever ischemic stroke. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2014;20:1389.
https://doi.org/10.12659/MSM.890627
Della-Morte D, Guadagni F, Palmirotta R, Testa G, Caso V, Paciaroni M, Abete P, Rengo F, Ferroni P, Sacco RL, Rundek T. Genetics of ischemic stroke, stroke-related risk factors, stroke precursors and treatments. Pharmacogenomics. 2012 Apr;13(5):595-613.
https://doi.org/10.2217/pgs.12.14
Meschia JF, Worrall BB, Rich SS. Genetic susceptibility to ischemic stroke. Nature Reviews Neurology. 2011 Jul;7(7):369-78.
https://doi.org/10.1038/nrneurol.2011.80
Casas JP, Hingorani AD, Bautista LE, Sharma P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18 000 cases and 58 000 controls. Archives of neurology. 2004 Nov 1;61(11):1652-61.
https://doi.org/10.1001/archneur.61.11.1652
Bentley P, Peck G, Smeeth L, Whittaker J, Sharma P. Causal relationship of susceptibility genes to ischemic stroke: comparison to ischemic heart disease and biochemical determinants. PloS one. 2010 Feb 9;5(2):e9136.
https://doi.org/10.1371/journal.pone.0009136
Drescher MJ, Spence A, Rockwell D, Staff I, Smally AJ. Point-of-care testing for coagulation studies in a stroke protocol: a time-saving innovation. The American journal of emergency medicine. 2011 Jan 1;29(1):82-5.
https://doi.org/10.1016/j.ajem.2009.09.020
Harpaz D, Eltzov E, Seet RC, Marks RS, Tok AI. Point-of-care-testing in acute stroke management: an unmet need ripe for technological harvest. Biosensors. 2017 Aug 3;7(3):30.
https://doi.org/10.3390/bios7030030
Green TL, Mansoor A, Newcommon N, Stephenson C, Stewart E, Hill MD. Reliability of point-of-care testing of INR in acute stroke. Canadian journal of neurological sciences. 2008 Jul;35(3):348-51.
https://doi.org/10.1017/S0317167100008945
Kandimalla J, Vellipuram AR, Rodriguez G, Maud A, Cruz-Flores S, Khatri R. Role of telemedicine in prehospital stroke care. Current Cardiology Reports. 2021 Jun;23(6):71.
https://doi.org/10.1007/s11886-021-01473-8
English SW, Barrett KM, Freeman WD, Demaerschalk BM. Telemedicine-enabled ambulances and mobile stroke units for prehospital stroke management. Journal of Telemedicine and Telecare. 2022 Jul;28(6):458-63.
https://doi.org/10.1177/1357633X211047744
Tan E, Gao L, Tran HN, Cadilhac D, Bladin C, Moodie M. Telestroke for acute ischaemic stroke: A systematic review of economic evaluations and a de novo cost-utility analysis for a middle income country. Journal of Telemedicine and Telecare. 2021 Jul 22:1357633X211032407.
https://doi.org/10.1177/1357633X211032407
Blech B, O'carroll CB, Zhang N, Demaerschalk BM. Telestroke program participation and improvement in door-to-needle times. Telemedicine and e-Health. 2020 Apr 1;26(4):406-10.
https://doi.org/10.1089/tmj.2018.0336
Zhang D, Shi L, Ido MS, Green DE, Li Y, Su D, Hess DC. Impact of participation in a telestroke network on clinical outcomes: evidence from the Georgia Coverdell Acute Stroke Registry. Circulation: Cardiovascular Quality and Outcomes. 2019 Jan;12(1):e005147.
https://doi.org/10.1161/CIRCOUTCOMES.118.005147
Bat-Erdene BO, Saver JL. Automatic acute stroke symptom detection and emergency medical systems alerting by mobile health technologies: A review. Journal of Stroke and Cerebrovascular Diseases. 2021 Jul 1;30(7):105826.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105826
Schimpf B, Deanda K, Severenuk DA, Montgomery TM, Cooley GD, Kowalski RG, Vela-Duarte D, Jones WJ. Integration of real-time electronic health records and wireless technology in a mobile stroke unit. Journal of Stroke and Cerebrovascular Diseases. 2019 Sep 1;28(9):2530-6.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.06.008
Yaeger KA, Shoirah H, Kellner CP, Fifi J, Mocco J. Emerging technologies in optimizing pre-intervention workflow for acute stroke. Neurosurgery. 2019 Jul 1;85(suppl_1):S9-17.
https://doi.org/10.1093/neuros/nyz058
Xiong Y, Wakhloo AK, Fisher M. Advances in acute ischemic stroke therapy. Circulation research. 2022 Apr 15;130(8):1230-51.
https://doi.org/10.1161/CIRCRESAHA.121.319948
Zamanlu M, Eskandani M, Barar J, Jaymand M, Pakchin PS, Farhoudi M. Enhanced thrombolysis using tissue plasminogen activator (tPA)-loaded PEGylated PLGA nanoparticles for ischemic stroke. Journal of Drug Delivery Science and Technology. 2019 Oct 1;53:101165.
https://doi.org/10.1016/j.jddst.2019.101165
Yang N, Lee H, Wu C. Intravenous thrombolysis for acute ischemic stroke: From alteplase to tenecteplase. Brain Circulation. 2023 Apr 1;9(2):61-3.
https://doi.org/10.4103/bc.bc_70_22
Grotta JC. Intravenous thrombolysis for acute ischemic stroke. CONTINUUM: Lifelong Learning in Neurology. 2023 Apr 1;29(2):425-42.
https://doi.org/10.1212/CON.0000000000001207
Campbell BC, Nguyen TN. Advances in stroke: treatments-interventional. Stroke. 2022 Jan;53(1):264-7.
https://doi.org/10.1161/STROKEAHA.121.037039
Tsivgoulis G, Kargiotis O, De Marchis G, Kohrmann M, Sandset EC, Karapanayiotides T, Sousa DA, Sarraj A, Safouris A, Psychogios K, Vadikolias K. Off-label use of intravenous thrombolysis for acute ischemic stroke: a critical appraisal of randomized and real-world evidence. Therapeutic advances in neurological disorders. 2021 Feb;14:1756286421997368.
https://doi.org/10.1177/1756286421997368
WU L, LU Q, HE X, GUO Q, WANG H, DENG B. Advances in safety and efficacy of intravenous thrombolytic therapy for post-stroke stroke patients based on multi-modal MRI. Chinese Journal of Primary Medicine and Pharmacy. 2020:505-9.
Warach SJ, Dula AN, Milling Jr TJ. Tenecteplase thrombolysis for acute ischemic stroke. Stroke. 2020 Nov;51(11):3440-51.
https://doi.org/10.1161/STROKEAHA.120.029749
Potla N, Ganti L, Tenecteplase vs. alteplase for acute ischemic stroke: a systematic review. International journal of emergency medicine. 2022 Dec;15(1):1-6.
https://doi.org/10.1186/s12245-021-00399-w
Zhong CS, Beharry J, Salazar D, Smith K, Withington S, Campbell BC, Wilson D, Le Heron C, Mason D, Duncan R, Reimers J. Routine use of tenecteplase for thrombolysis in acute ischemic stroke. Stroke. 2021 Mar;52(3):1087-90.
https://doi.org/10.1161/STROKEAHA.120.030859
Ospel JM, Dmytriw AA, Regenhardt RW, Patel AB, Hirsch JA, Kurz M. Recent developments in pre-hospital and in-hospital triage for endovascular stroke treatment. Journal of NeuroInterventional Surgery. 2022; :01847
https://doi.org/10.1136/jnis-2021-018547
Robbins BT, Howington GT, Swafford K, Zummer J, Woolum JA. Advancements in the management of acute ischemic stroke: A narrative review. Journal of the American College of Emergency Physicians Open. 2023 Feb;4(1):e12896.
https://doi.org/10.1002/emp2.12896
Ebinger M, Siegerink B, Kunz A, Wendt M, Weber JE, Schwabauer E, Geisler F, Freitag E, Lange J, Behrens J, Erdur H. Association between dispatch of mobile stroke units and functional outcomes among patients with acute ischemic stroke in Berlin. Jama. 2021 Feb 2;325(5):454-66.
https://doi.org/10.1001/jama.2020.26345
Fassbender K, Merzou F, Lesmeister M, Walter S, Grunwald IQ, Ragoschke-Schumm A, Bertsch T, Grotta J. Impact of mobile stroke units. Journal of Neurology, Neurosurgery & Psychiatry. 2021 Aug 1;92(8):815-22.
https://doi.org/10.1136/jnnp-2020-324005
Jadhav AP, Desai SM, Jovin TG. Indications for mechanical thrombectomy for acute ischemic stroke: current guidelines and beyond. Neurology. 2021 Nov 16;97(20 Supplement 2):S126-36.
https://doi.org/10.1212/WNL.0000000000012801
Podlasek A, Dhillon PS, Butt W, Grunwald IQ, England TJ. Direct mechanical thrombectomy without intravenous thrombolysis versus bridging therapy for acute ischemic stroke: a meta-analysis of randomized controlled trials. International Journal of Stroke. 2021 Aug;16(6):621-31.
https://doi.org/10.1177/17474930211021353
Texakalidis P, Giannopoulos S, Karasavvidis T, Rangel-Castilla L, Rivet DJ, Reavey-Cantwell J. Mechanical thrombectomy in acute ischemic stroke: a meta-analysis of stent retrievers vs direct aspiration vs a combined approach. Neurosurgery. 2020 Apr 1;86(4):464-77.
https://doi.org/10.1093/neuros/nyz258
Zhang Y, Zhang Y, Hu C, Zhao W, Zhang Z, Li W. A direct aspiration first-pass technique (ADAPT) versus stent retriever for acute ischemic stroke (AIS): a systematic review and meta-analysis. Journal of Neurology. 2021 Dec 1:1-3.
Liu R, Jin C, Wang L, Yang Y, Fan Y, Wang W. Simulation of stent retriever thrombectomy in acute ischemic stroke by finite element analysis. Computer Methods in Biomechanics and Biomedical Engineering. 2022 May 19;25(7):740-9.
https://doi.org/10.1080/10255842.2021.1976761
Vidale S, Romoli M, Consoli D, Agostoni EC. Bridging versus direct mechanical thrombectomy in acute ischemic stroke: a subgroup pooled meta-analysis for time of intervention, eligibility, and study design. Cerebrovascular Diseases. 2020 Apr 24;49(2):223-32.
https://doi.org/10.1159/000507844
Aburto-Murrieta Y, Méndez B, Marquez-Romero JM. Extended time window mechanical thrombectomy for pediatric acute ischemic stroke. Journal of Central Nervous System Disease. 2022 Apr 23;14:11795735221098140.
https://doi.org/10.1177/11795735221098140
Rudilosso S, Urra X, Amaro S, Llull L, Renú A, Laredo C, Obach V, Chamorro Á. Timing and relevance of clinical improvement after mechanical thrombectomy in patients with acute ischemic stroke. Stroke. 2019 Jun;50(6):1467-72.
https://doi.org/10.1161/STROKEAHA.118.024067
Ansari J, Triay R, Kandregula S, Adeeb N, Cuellar H, Sharma P. Endovascular intervention in acute ischemic stroke: history and evolution. Biomedicines. 2022 Feb 10;10(2):418.
https://doi.org/10.3390/biomedicines10020418
Vishnu VY, Srivastava MP. Innovations in acute stroke reperfusion strategies. Annals of Indian Academy of Neurology. 2019 Jan;22(1):6.
https://doi.org/10.4103/aian.AIAN_263_18
Vargas J, Blalock J, Venkatraman A, Anagnostakou V, King RM, Ewing JA, Gounis MJ, Turner RD, Chaudry I, Turk A. Efficacy of beveled tip aspiration catheter in mechanical thrombectomy for acute ischemic stroke. Journal of NeuroInterventional Surgery. 2021 Sep 1;13(9):823-6.
https://doi.org/10.1136/neurintsurg-2020-016695
Guerrero WR, Al Kasab S, Samaniego EA. Mechanical Thrombectomy: Emerging Devices and Technologies. Acute Stroke Management in the Era of Thrombectomy. 2019:71-85.
https://doi.org/10.1007/978-3-030-17535-1_7
Osanai T, Ito Y, Ushikoshi S, Aoki T, Kawabori M, Fujiwara K, Ogasawara K, Tokairin K, Maruichi K, Nakayama N, Kazumata K. Efficacy of 'drive and retrieve'as a cooperative method for prompt endovascular treatment for acute ischemic stroke. Journal of NeuroInterventional Surgery. 2019 Aug 1;11(8):757-61.
https://doi.org/10.1136/neurintsurg-2018-014296
Goyal M, Almekhlafi M, Dippel DW, Campbell BC, Muir K, Demchuk AM, Bracard S, Davalos A, Guillemin F, Jovin TG, Menon BK. Rapid alteplase administration improves functional outcomes in patients with stroke due to large vessel occlusions: Meta-analysis of the noninterventional arm from the HERMES collaboration. Stroke. 2019 Mar;50(3):645-51.
https://doi.org/10.1161/STROKEAHA.118.021840
Gu HQ, Rao ZZ, Yang X, Wang CJ, Zhao XQ, Wang YL, Liu LP, Wang CY, Liu C, Li H, Li ZX. Use of emergency medical services and timely treatment among ischemic stroke: findings from the China stroke center alliance. Stroke. 2019 Apr;50(4):1013-6.
https://doi.org/10.1161/STROKEAHA.118.024232
Yin X, Yang T, Gong Y, Zhou Y, Li W, Song X, Wang M, Hu B, Lu Z. Determinants of emergency medical services utilization among acute ischemic stroke patients in Hubei Province in China. Stroke. 2016 Mar;47(3):891-4.
https://doi.org/10.1161/STROKEAHA.115.011877
Kogan E, Twyman K, Heap J, Milentijevic D, Lin JH, Alberts M. Assessing stroke severity using electronic health record data: a machine learning approach. BMC medical informatics and decision making. 2020 Dec;20:1-8.
https://doi.org/10.1186/s12911-019-1010-x
Waddell KJ, Myers LJ, Perkins AJ, Sico JJ, Sexson A, Burrone L, Taylor S, Koo B, Daggy JK, Bravata DM. Development and validation of a model predicting mild stroke severity on admission using electronic health record data. Journal of Stroke and Cerebrovascular Diseases. 2023 Sep 1;32(9):107255.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2023.107255
Rabinovich EP, Capek S, Kumar JS, Park MS. Tele-robotics and artificial-intelligence in stroke care. Journal of Clinical Neuroscience. 2020 Sep 1;79:129-32.
https://doi.org/10.1016/j.jocn.2020.04.125
Lui YW, Chang PD, Zaharchuk G, Barboriak DP, Flanders AE, Wintermark M, Hess CP, Filippi CG. Artificial intelligence in neuroradiology: current status and future directions. American Journal of Neuroradiology. 2020 Aug 1;41(8):E52-9.
Shlobin NA, Baig AA, Waqas M, Patel TR, Dossani RH, Wilson M, Cappuzzo JM, Siddiqui AH, Tutino VM, Levy EI. Artificial intelligence for large-vessel occlusion stroke: a systematic review. World neurosurgery. 2022 Mar 1;159:207-20.
https://doi.org/10.1016/j.wneu.2021.12.004
Noorian AR, Hosseini MB, Avila G, Gerardi R, Andrle AF, Su M, Starkman S, Saver JL, Sharma LK. Use of wearable technology in remote evaluation of acute stroke patients: feasibility and reliability of a Google Glass-based device. Journal of Stroke and Cerebrovascular Diseases. 2019 Oct 1;28(10):104258.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.06.016
Jung S, Lee HA, Kang IS, Shin SH, Chang Y, Woo Shin D, Park MS, Kim YD, Nam HS, Heo JH, Kim TH. Clinical implications of atrial fibrillation detection using wearable devices in patients with cryptogenic stroke (CANDLE-AF) trial: Design and rationale. Frontiers in Cardiovascular Medicine. 2022 Apr 4;9:837958.
https://doi.org/10.3389/fcvm.2022.837958
Motolese F, Capone F, Magliozzi A, Vico C, Iaccarino G, Falato E, Pilato F, Di Lazzaro V. A smart devices based secondary prevention program for cerebrovascular disease patients. Frontiers in Neurology. 2023 Jun 2;14:1176744.
https://doi.org/10.3389/fneur.2023.1176744
Barthels D, Das H. Current advances in ischemic stroke research and therapies. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2020 Apr 1;1866(4):165260.
https://doi.org/10.1016/j.bbadis.2018.09.012
Zamanlu M, Farhoudi M, Eskandani M, Mahmoudi J, Barar J, Rafi M, Omidi Y. Recent advances in targeted delivery of tissue plasminogen activator for enhanced thrombolysis in ischaemic stroke. Journal of drug targeting. 2018 Feb 7;26(2):95-109.
https://doi.org/10.1080/1061186X.2017.1365874
Zhou Z, Lu J, Liu WW, Manaenko A, Hou X, Mei Q, Huang JL, Tang J, Zhang JH, Yao H, Hu Q. Advances in stroke pharmacology. Pharmacology & therapeutics. 2018 Nov 1;191:23-42.
https://doi.org/10.1016/j.pharmthera.2018.05.012
Aghamiri H, Paybast S, Lima BS, Mansoori B. New advances in acute ischemic stroke management. International Clinical Neuroscience Journal. 2020 Mar 10;7(2):55-60.
https://doi.org/10.34172/icnj.2020.02
Nishijima H, Kon T, Ueno T, Haga R, Yamazaki K, Yagihashi K, Funamizu Y, Arai A, Suzuki C, Nunomura JI, Baba M. Effect of educational television commercial on pre-hospital delay in patients with ischemic stroke. Neurological Sciences. 2016 Jan;37:105-9.
https://doi.org/10.1007/s10072-015-2372-1
Maalouf E, Hallit S, Salameh P, Hosseini H. Eating behaviors, lifestyle, and ischemic stroke: a Lebanese case-control study. International Journal of Environmental Research and Public Health. 2023 Jan 13;20(2):1487.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Galen Medical Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.