Differential Association of Dietary Linoleic Acid and Alpha-linolenic Acid with Adipose Tissue in a Sample of Iranian Adults; A Cohort-based Cross-sectional Study
DOI:
https://doi.org/10.31661/gmj.v12i.3023Keywords:
Fatty acids, Linoleic Acids, Alpha-linolenic Acid, Body Fat, OverweightAbstract
Background: Overweight and obesity are the most critical risk factors for chronic diseases. The quality of dietary fatty acids as one of the factors affecting fat accumulation has received little attention. This study investigates the association between dietary linoleic acid (LA) and alpha-linolenic acid (ALA) with body fat indices in a sample of healthy Iranian adults.
Materials and Methods: In this cohort-based cross-sectional study, 3,195 individuals aged 20 to 60 who participated in the Shiraz University of Medical Science Employees Health Cohort study were included. Dietary intake was assessed using a validated 118-item Food Frequency Questionnaire (FFQ), and body composition was assessed by the bioelectrical impedance analysis method. Multiple linear regression adjusted for relevant confounders was used to determine the associations.
Results: Mean dietary intake of LA was 14.20 ± 7.01 mg/day for men and 13.90 ± 6.71 mg/day for women. Additionally, the daily intake of ALA was 0.18 ± 0.18 mg/day in men and 0.17 ± 0.19 mg/day in women. Dietary intake of ALA for men had an inversely significant association with body fat mass (BFM) (β: -0.585, 95% CI: -1.137, -0.032, P=0.038), percentage of body fat (PBF) (β: -0.537, 95% CI: -0.945, -0.129, P=0.010), Visceral Fat Area (VFA) (β: -2.998, 95% CI: -5.695, -0.302, P=0.029), and Waist to Hip Ratio (WHR) (β: -0.689, 95% CI: -1.339, -0.040, P=0.038).
Conclusion: Higher dietary ALA intake was associated with lower BFM, BFP, VAF, and WHR in men. The present study confirms that ALA intake should be considered a preventive treatment to improve body composition. However, further research is recommended in this regard.
References
Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metab. 2019;92:6-10. https://doi.org/10.1016/j.metabol.2018.09.005PMid:30253139 Bagheri M, Najafipour H, Saberi S, Farokhi M, Amirzadeh R, Mirzazadeh A. Epidemiological update on prevalence and incidence of overweight and obesity in adults in Southeastern Iran: findings from KERCADRS. EMHJ. 2021:1-17. https://doi.org/10.26719/emhj.21.035PMid:34569042 Raymond JL, Morrow K: Krause and mahan's food and the nutrition care process e-book. Elsevier Health Sciences; 2020. Matsushita Y, Nakagawa T, Yamamoto S, Takahashi Y, Yokoyama T, Noda M et al. Associations of visceral and subcutaneous fat areas with the prevalence of metabolic risk factor clustering in 6,292 Japanese individuals: the Hitachi Health Study. Diabetes Care. 2010;33(9):2117-9. https://doi.org/10.2337/dc10-0120PMid:20460443 PMCid:PMC2928375 Tatsumi Y, Nakao YM, Masuda I, Higashiyama A, Takegami M, Nishimura K et al. Risk for metabolic diseases in normal weight individuals with visceral fat accumulation: a cross-sectional study in Japan. BMJ open. 2017;7(1):e013831. https://doi.org/10.1136/bmjopen-2016-013831PMid:28093438 PMCid:PMC5253636 Dickerman BA, Torfadottir JE, Valdimarsdottir UA, Giovannucci E, Wilson KM, Aspelund T et al. Body fat distribution on computed tomography imaging and prostate cancer risk and mortality in the AGES-Reykjavik study. Cancer. 2019;125(16):2877-85. https://doi.org/10.1002/cncr.32167PMid:31179538 PMCid:PMC6663585 Piché M-E, Tchernof A, Després J-P. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ res. 2020;126(11):1477-500. https://doi.org/10.1161/CIRCRESAHA.120.316101PMid:32437302 Ryan DH, Kahan S. Guideline recommendations for obesity management. Med Clin. 2018;102(1):49-63. https://doi.org/10.1016/j.mcna.2017.08.006PMid:29156187 Markovic TP, Proietto J, Dixon JB, Rigas G, Deed G, Hamdorf JM et al. The Australian Obesity Management Algorithm: A simple tool to guide the management of obesity in primary care. Obes Res Clin Pract. 2022;16(5):353-363. https://doi.org/10.1016/j.orcp.2022.08.003PMid:36050266 Kaput J, Rodriguez RL. Nutritional genomics: the next frontier in the postgenomic era. Physiol Genom. 2004;16(2):166-77. https://doi.org/10.1152/physiolgenomics.00107.2003PMid:14726599 Paniagua JA, De La Sacristana AG, Romero I, Vidal-Puig A, Latre J, Sanchez E et al. Monounsaturated fat-rich diet prevents central body fat distribution and decreases postprandial adiponectin expression induced by a carbohydrate-rich diet in insulin-resistant subjects. Diabetes care. 2007;30(7):1717-23. https://doi.org/10.2337/dc06-2220PMid:17384344 Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG, Simpson SJ. Macronutrients and caloric intake in health and longevity. J Endocrinol. 2015;226(1):R17. https://doi.org/10.1530/JOE-15-0173PMid:26021555 PMCid:PMC4490104 Yetley EA, MacFarlane AJ, Greene-Finestone LS, Garza C, Ard JD, Atkinson SA et al. Options for basing Dietary Reference Intakes (DRIs) on chronic disease endpoints: report from a joint US-/Canadian-sponsored working group. AJCN. 2017;105(1):249S-85S. https://doi.org/10.3945/ajcn.116.139097PMid:27927637 PMCid:PMC5183726 Hall KD, Bemis T, Brychta R, Chen KY, Courville A, Crayner EJ et al. Calorie for calorie, dietary fat restriction results in more body fat loss than carbohydrate restriction in people with obesity. Cell Metab. 2015;22(3):427-36. https://doi.org/10.1016/j.cmet.2015.07.021https://doi.org/10.1016/j.cmet.2015.08.009PMid:26278052 PMCid:PMC4603544 Bjermo H, Iggman D, Kullberg J, Dahlman I, Johansson L, Persson L et al. Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. AJCN. 2012;95(5):1003-12. https://doi.org/10.3945/ajcn.111.030114PMid:22492369 Rosqvist F, Iggman D, Kullberg J, Cedernaes J, Johansson H-E, Larsson A et al. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes. 2014;63(7):2356-68. https://doi.org/10.2337/db13-1622PMid:24550191 Moleres A, Ochoa MC, Rendo-Urteaga T, MartÃnez-González MA, San Julián MCA, MartÃnez JA et al. Dietary fatty acid distribution modifies obesity risk linked to the rs9939609 polymorphism of the fat mass and obesity-associated gene in a Spanish case-control study of children. BJN. 2012;107(4):533-8. https://doi.org/10.1017/S0007114511003424PMid:21798115 Wiktorowska-Owczarek A, Berezinska M, Nowak JZ. PUFAs: structures, metabolism and functions. Adv Clin Exp Med. 2015;24(6):931-41. https://doi.org/10.17219/acem/31243PMid:26771963 Zello GA. Dietary Reference Intakes for the macronutrients and energy: considerations for physical activity. Appl Physiol Nutr Metab. 2006;31(1):74-9. https://doi.org/10.1139/h05-022PMid:16604146 Meyer BJ, Mann NJ, Lewis JL, Milligan GC, Sinclair AJ, Howe PR. Dietary intakes and food sources of omega-6 and omega-3 polyunsaturated fatty acids. Lipids. 2003;38(4):391-8. https://doi.org/10.1007/s11745-003-1074-0PMid:12848284 Sanders TA. Polyunsaturated fatty acids in the food chain in Europe. AJCN. 2000;71(1):176s-8s. https://doi.org/10.1093/ajcn/71.1.176SPMid:10617968 Gebauer SK, Psota TL, Harris WS, Kris-Etherton PM. n− 3 fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. AJCN. 2006;83(6):1526S-35S. https://doi.org/10.1093/ajcn/83.6.1526SPMid:16841863 Russo GL. Dietary n− 6 and n− 3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochem Pharmacol. 2009;77(6):937-46. https://doi.org/10.1016/j.bcp.2008.10.020PMid:19022225 Saito S, Fukuhara I, Osaki N, Nakamura H, Katsuragi Y. Consumption of alpha-linolenic acid-enriched diacylglycerol reduces visceral fat area in overweight and obese subjects: a randomized, double-blind controlled, parallel-group designed trial. J Oleo Sci. 2016;65(7):603-11. https://doi.org/10.5650/jos.ess16059PMid:27321122 Perng W, Villamor E, Mora-Plazas M, Marin C, Baylin A. Alpha-linolenic acid (ALA) is inversely related to development of adiposity in school-age children. Eur J Clin Nutr. 2015;69(2):167-72. https://doi.org/10.1038/ejcn.2014.210PMid:25271016 PMCid:PMC4648352 Gil-Campos M, del Carmen RamÃrez-Tortosa M, Larqué E, Linde J, Aguilera CM, Cañete R et al. Metabolic syndrome affects fatty acid composition of plasma lipids in obese prepubertal children. Lipids. 2008;43:723-32. https://doi.org/10.1007/s11745-008-3203-4PMid:18592286 Burrows T, Collins C, Garg M. Omega-3 index, obesity and insulin resistance in children. IJPO. 2011;6(sup3):e532-9. https://doi.org/10.3109/17477166.2010.549489PMid:21226540 Halonen JI, Erhola M, Furman E, Haahtela T, Jousilahti P, Barouki R et al. The helsinki declaration 2020: Europe that protects. Lancet Planet Health. 2020;4(11):e503-e5. https://doi.org/10.1016/S2542-5196(20)30242-4PMid:33159874 Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE et al. International physical activity questionnaire: 12-country reliability and validity. MSSE. 2003;35(8):1381-95. https://doi.org/10.1249/01.MSS.0000078924.61453.FBPMid:12900694 Mirmiran P, Esfahani FH, Mehrabi Y, Hedayati M, Azizi F. Reliability and relative validity of an FFQ for nutrients in the Tehran lipid and glucose study. Public Health Nutr. 2010;13(5):654-62. https://doi.org/10.1017/S1368980009991698PMid:19807937 Nihiser AJ, Lee SM, Wechsler H, McKenna M, Odom E, Reinold C et al. Body mass index measurement in schools. J Sch Health. 2007;77(10):651-71. https://doi.org/10.1111/j.1746-1561.2007.00249.xPMid:18076411 Jaacks LM, Vandevijvere S, Pan A, McGowan CJ, Wallace C, Imamura F et al. The obesity transition: stages of the global epidemic. Lancet Diabetes Endocrinol. 2019;7(3):231-40. https://doi.org/10.1016/S2213-8587(19)30026-9PMid:30704950 Chicco AG, D'Alessandro ME, Hein GJ, Oliva ME, Lombardo YB. Dietary chia seed (Salvia hispanica L.) rich in α-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats. BJN. 2008;101(1):41-50. https://doi.org/10.1017/S000711450899053XPMid:18492301 Murase T, Nagasawa A, Suzuki J, Wakisaka T, Hase T, Tokimitsu I. Dietary α-Linolenic Acid-Rich Diacylglycerols Reduce Body Weight Gain Accompanying the Stimulation of Intestinal β-Oxidation and Related Gene Expressions in C57BL/KsJ-db/db Mice. J Nutr. 2002;132(10):3018-22. https://doi.org/10.1093/jn/131.10.3018PMid:12368389 Ide T. Effect of dietary α-linolenic acid on the activity and gene expression of hepatic fatty acid oxidation enzymes. Biofactors. 2000;13(1-4):9-14. https://doi.org/10.1002/biof.5520130103PMid:11237206 Massiera F, Saint-Marc P, Seydoux J, Murata T, Kobayashi T, Narumiya S et al. Arachidonic acid and prostacyclin signaling promote adipose tissue development: a human health concern?. J Lipid Res. 2003;44(2):271-9. https://doi.org/10.1194/jlr.M200346-JLR200PMid:12576509 DeLany JP, Windhauser MM, Champagne CM, Bray GA. Differential oxidation of individual dietary fatty acids in humans. AJCN. 2000;72(4):905-11. https://doi.org/10.1093/ajcn/72.4.905PMid:11010930 Neville MM, Geppert J, Min Y, Grimble G, Crawford MA, Ghebremeskel K. Dietary fat intake, body composition and blood lipids of university men and women. J Nutr Health. 2012;21(3):173-85. https://doi.org/10.1177/0260106012467242PMid:23533205 Kien CL, Bunn JY. Gender alters the effects of palmitate and oleate on fat oxidation and energy expenditure. Obesity. 2008;16(1):29-33. https://doi.org/10.1038/oby.2007.13PMid:18223608 PMCid:PMC2263004 Chang E, Varghese M, Singer K. Gender and sex differences in adipose tissue. Curr Diab Rep. 2018;18:1-10. https://doi.org/10.1007/s11892-018-1031-3PMid:30058013 PMCid:PMC6525964