Schizophrenia Etiological Factors and Their Correlation with the Imbalance of the Immune System: An Update: Schizophrenia and the Imbalance of the Immune System

Schizophrenia and the Imbalance of the Immune System

Authors

  • Noushin Lotfi Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
  • Nahid Rezaei Department of Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
  • Elham Rastgoo Department of Radiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
  • Babak Khodadoustan Shahraki School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
  • Ghazaleh Zahedi Department of General Psychology, Iran University of Medical Sciences, Thran, Iran
  • Morteza Jafarinia Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

DOI:

https://doi.org/10.31661/gmj.v12i.3109

Keywords:

Schizophrenia, Immune System, Environmental Factors, Genes, Inflammation

Abstract

Schizophrenia (SZ) is a severe psychiatric disorder associated with a dysregulation of the immune system. Immune-related genes and environmental factors including stress, food, infections, and microbiota, alter the immune system’s homeostasis and play a role in SZ pathogenesis. The most distinctive feature in the pathophysiology of the disease is a shift in the T helper 1(Th1)/Th2 balance toward Th2 dominance in the immune system. Also, microglial and Th17 cell activation cause inflammatory responses in the central nervous system (CNS). Antibodies play a role in the pathophysiology of SZ and give more evidence of a link between humoral immune reactivity and the disease. Accordingly, an imbalance in cytokine activities and neuroinflammation has been considered the main contributor to the pathogenesis of the SZ. Overall, the deregulation of the immune system caused by genetic, environmental, and neurochemical effects may all play a role in the etiology of SZ. This review summarized the etiological factors for SZ and discussed the role of immune responses and their interaction with genetic and environmental factors in SZ pathogenesis.

References

Howell KR, Law AJ. Neurodevelopmental concepts of schizophrenia in the genome-wide association era: AKT/mTOR signaling as a pathological mediator of genetic and environmental programming during development. Schizophrenia research. 2020 Mar 1;217:95-104.

https://doi.org/10.1016/j.schres.2019.08.036

Pergola G, Papalino M, Gelao B, Sportelli L, Vollerbergh W, Grattagliano I et al. Evocative gene-environment correlation between genetic risk for schizophrenia and bullying victimization. World psychiatry. 2019;18(3):366.

https://doi.org/10.1002/wps.20685

Torrey EF, Yolken RH. Schizophrenia as a pseudogenetic disease: A call for more gene-environmental studies. Psychiatry Res. 2019;278:146-50.

https://doi.org/10.1016/j.psychres.2019.06.006

Van Kesteren C, Gremmels H, De Witte L, Hol E, Van Gool A, Falkai P et al. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry. 2017;7(3):e1075.

https://doi.org/10.1038/tp.2017.4

Wang L-Y, Chen S-F, Chiang J-H, Hsu C-Y, Shen Y-C. Autoimmune diseases are associated with an increased risk of schizophrenia: a nationwide population-based cohort study. Schizophr Res. 2018;202:297-302.

https://doi.org/10.1016/j.schres.2018.06.033

Glass L, Sinclair D, Boerrigter D, Naude K, Fung S, Brown D et al. Brain antibodies in the cortex and blood of people with schizophrenia and controls. Transl Psychiatry. 2017;7(8):e1192.

https://doi.org/10.1038/tp.2017.134

Nielsen PR, Laursen TM, Mortensen PB. Association between parental hospital-treated infection and the risk of schizophrenia in adolescence and early adulthood. Schizophr Bull. 2011;39(1):230-7.

https://doi.org/10.1093/schbul/sbr149

Anderson G, Berk M, Dodd S, Bechter K, Altamura AC, Dell'Osso B et al. Immuno-inflammatory, oxidative and nitrosative stress, and neuroprogressive pathways in the etiology, course and treatment of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:1.

https://doi.org/10.1016/j.pnpbp.2012.07.016

https://doi.org/10.1016/j.pnpbp.2012.10.008

Messaoud A, Rym M, Wahiba D, Neffati F, Najjar MF, Gobbi G et al. Investigation of the relationship among cortisol, pro-inflammatory cytokines, and the degradation of tryptophan into kynurenine in patients with major depression and suicidal behavior. Curr Med Chem. 2022;22(25):2119-25.

https://doi.org/10.2174/1568026621666210909160210

Gomez-Nicola D, Boche D. Post-mortem analysis of neuroinflammatory changes in human Alzheimer's disease. Alzheimers Res Ther. 2015;7(1):42.

https://doi.org/10.1186/s13195-015-0126-1

Debnath M, Berk M. Th17 pathway-mediated immunopathogenesis of schizophrenia: Mechanisms and implications. Schizophr Bull. 2014;40(6):1412-21.

https://doi.org/10.1093/schbul/sbu049

Henriksen MG, Nordgaard J, Jansson LB. Genetics of schizophrenia: overview of methods, findings and limitations. Front Hum Neurosci. 2017;11:322.

https://doi.org/10.3389/fnhum.2017.00322

Yadav R. Gene expression analysis to network construction for the identification of hub genes involved in neurodevelopment. Biomedical and Biotechnology Research Journal. 2021;5(4):425-.

https://doi.org/10.4103/bbrj.bbrj_250_21

Fineberg AM, Ellman LM. Inflammatory cytokines and neurological and neurocognitive alterations in the course of schizophrenia. Biol Psychiatry. 2013;73(10):951-66.

https://doi.org/10.1016/j.biopsych.2013.01.001

Momtazmanesh S, Zare-Shahabadi A, Rezaei N. Cytokine Alterations in Schizophrenia: An Updated Review. Front Psychiatr. 2019;10:892.

https://doi.org/10.3389/fpsyt.2019.00892

Na K-S, Jung H-Y, Kim Y-K. The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2014;48:277-86.

https://doi.org/10.1016/j.pnpbp.2012.10.022

Liu Z, Huang L, Wang D, Wu L. Association of interleukin 3 (IL-3) polymorphisms with schizophrenia in Han Chinese population. Neurosci Lett. 2015;605:12-7.

https://doi.org/10.1016/j.neulet.2015.08.014

Gao L, Li Z, Chang S, Wang J. Association of interleukin-10 polymorphisms with schizophrenia: a meta-analysis. PLoS One. 2014;9(3):e90407.

https://doi.org/10.1371/journal.pone.0090407

Modai S, Shomron N. Molecular risk factors for schizophrenia. Trends Mol Med. 2016;22(3):242-53.

https://doi.org/10.1016/j.molmed.2016.01.006

Bergink V, Gibney SM, Drexhage HA. Autoimmunity, inflammation, and psychosis: a search for peripheral markers. Biol Psychiatry. 2014;75(4):324-31.

https://doi.org/10.1016/j.biopsych.2013.09.037

Mansur RB, Zugman A, Asevedo EdM, da Cunha GR, Bressan RA, Brietzke E. Cytokines in schizophrenia: Possible role of anti-inflammatory medications in clinical and preclinical stages. Psychiatry Clin Neurosci. 2012;66(4):247-60.

https://doi.org/10.1111/j.1440-1819.2012.02354.x

Merlot E, Couret D, Otten W. Prenatal stress, fetal imprinting and immunity. Brain Behav Immun. 2008;22(1):42-51.

https://doi.org/10.1016/j.bbi.2007.05.007

Drexhage RC, Weigelt K, van Beveren N, Cohen D, Versnel MA, Nolen WA et al. Immune and neuroimmune alterations in mood disorders and schizophrenia. Int Rev Neurobiol Elsevier. 2011;101: 169-201.

https://doi.org/10.1016/B978-0-12-387718-5.00007-9

Elenkov IJ. Effects of catecholamines on the immune response. Neuroimmune Biol. 2007;7:189-206.

https://doi.org/10.1016/S1567-7443(07)00210-4

Liu Y-Z, Wang Y-X, Jiang C-L. Inflammation: the common pathway of stress-related diseases. Front Hum Neurosci. 2017;11:316.

https://doi.org/10.3389/fnhum.2017.00316

Bernstein H-G, Steiner J, Guest PC, Dobrowolny H, Bogerts B. Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy. Schizophr Res. 2015;161(1):4-18.

https://doi.org/10.1016/j.schres.2014.03.035

Costa R, Teasdale S, Abreu S, Bastos T, Probst M, Rosenbaum S et al. Dietary Intake, Adherence to Mediterranean Diet and Lifestyle-Related Factors in People with Schizophrenia. Issues Ment Health Nurs. 2019;40(10):851-60.

https://doi.org/10.1080/01612840.2019.1642426

Aghanouri R, Sahraii H. Process of economic sanctions success or failure: A neuroscience translation-To be or not to be! Biomedical & Biotechnology Research Journal. 2022;6(4):520-527.

https://doi.org/10.4103/bbrj.bbrj_265_22

Altamura AC, Buoli M, Pozzoli S. Role of immunological factors in the pathophysiology and diagnosis of bipolar disorder: comparison with schizophrenia. Psychiatry Clin Neurosci. 2014;68(1):21-36.

https://doi.org/10.1111/pcn.12089

Sommer IE, van Westrhenen R, Begemann MJ, de Witte LD, Leucht S, Kahn RS. Efficacy of anti-inflammatory agents to improve symptoms in patients with schizophrenia: an update. Schizophr bull. 2013;40(1):181-91.

https://doi.org/10.1093/schbul/sbt139

Grosso G, Galvano F, Marventano S, Malaguarnera M, Bucolo C, Drago F et al. Omega-3 fatty acids and depression: scientific evidence and biological mechanisms. Oxid Med Cell Longev. 2014;2014:313570.

https://doi.org/10.1155/2014/313570

Patterson E, Wall R, Fitzgerald G, Ross R, Stanton C. Health implications of high dietary omega-6 polyunsaturated fatty acids. J Nutr Metabol. 2012;2012:539426.

https://doi.org/10.1155/2012/539426

Wakabayashi C, Kunugi H. Involvement of IL-6 and GSK3β in impaired sensorimotor gating induced by high-fat diet. Neurosci Res. 2019;147:33-8.

https://doi.org/10.1016/j.neures.2018.10.004

St Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F et al. Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959-1961. Jama. 2005;294(5):557-62.

https://doi.org/10.1001/jama.294.5.557

Xu M-Q, Sun W-S, Liu B-X, Feng G-Y, Yu L, Yang L et al. Prenatal malnutrition and adult schizophrenia: further evidence from the 1959-1961 Chinese famine. Schizophr bull. 2009;35(3):568-76.

https://doi.org/10.1093/schbul/sbn168

Xu R, Wu B, Liang J, He F, Gu W, Li K et al. Altered gut microbiota and mucosal immunity in patients with schizophrenia. Brain Behav Immun. 2020;85:120-7.

https://doi.org/10.1016/j.bbi.2019.06.039

Ide M, Ohnishi T, Toyoshima M, Balan S, Maekawa M, Shimamoto-Mitsuyama C et al. Excess hydrogen sulfide and polysulfides production underlies a schizophrenia pathophysiology. EMBO Mol Med. 2019;11(12):e10695.

https://doi.org/10.15252/emmm.201910695

Ekeke N, Ossai EN, Kreibich S, Onyima A, Chukwu J, Nwafor C et al. A Cluster Randomized Trial for Improving Mental Health and Well-being of Persons Affected by Leprosy or Buruli Ulcer in Nigeria: A Study Protocol. International J Mycobacteriology. 2022;11(2):133-138.

https://doi.org/10.4103/ijmy.ijmy_247_21

Kumarasamy PS, Stuart JD, Mohamed MA, Sundararajan P. Central nervous system tubercular abscess masquerading as intracranial space-occupying lesion. The International Journal of Mycobacteriology. 2022;11(2):214-6.

https://doi.org/10.4103/ijmy.ijmy_52_22

Blomström Å, Karlsson H, Gardner R, Jörgensen L, Magnusson C, Dalman C. Associations between maternal infection during pregnancy, childhood infections, and the risk of subsequent psychotic disorder-a Swedish Cohort Study of nearly 2 million individuals. Schizophr Bull. 2015;42(1):125-33.

https://doi.org/10.1093/schbul/sbv112

Blomström Å, Karlsson H, Svensson A, Frisell T, Lee BK, Dal H et al. Hospital admission with infection during childhood and risk for psychotic illness-a population-based cohort study. Schizophr Bull. 2014;40(6):1518-25.

https://doi.org/10.1093/schbul/sbt195

Nielsen PR, Benros ME, Mortensen PB. Hospital contacts with infection and risk of schizophrenia: a population-based cohort study with linkage of Danish national registers. Schizophr Bull. 2014;40(6):1526-32.

https://doi.org/10.1093/schbul/sbt200

Debost J-C, Larsen JT, Munk-Olsen T, Mortensen PB, Agerbo E, Petersen LV. Childhood infections and schizophrenia: The impact of parental SES and mental illness, and childhood adversities. Brain Behav Immun Health. 2019;81:341-7.

https://doi.org/10.1016/j.bbi.2019.06.031

Claycombe KJ, Brissette CA, Ghribi O. Epigenetics of Inflammation, Maternal Infection, and Nutrition-3. J Nutr. 2015;145(5):1109S-15S.

https://doi.org/10.3945/jn.114.194639

Urakubo A, Jarskog LF, Lieberman JA, Gilmore JH. Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain. Schizophr Res. 2001;47(1):27-36.

https://doi.org/10.1016/S0920-9964(00)00032-3

Müller N, Weidinger E, Leitner B, Schwarz MJ. The role of inflammation in schizophrenia. Front Neurosci. 2015;9:372.

https://doi.org/10.3389/fnins.2015.00372

Brown AS. Prenatal infection as a risk factor for schizophrenia. Schizophr Bull. 2006;32(2):200-2.

https://doi.org/10.1093/schbul/sbj052

Ellman LM, Deicken RF, Vinogradov S, Kremen WS, Poole JH, Kern DM et al. Structural brain alterations in schizophrenia following fetal exposure to the inflammatory cytokine interleukin-8. Schizophr Res. 2010;121(1-3):46-54.

https://doi.org/10.1016/j.schres.2010.05.014

Grove J, Børglum AD, Pearce BD. GWAS, cytomegalovirus infection, and schizophrenia. Curr Behav Neurosci Rep. 2014;1(4):215-23.

https://doi.org/10.1007/s40473-014-0022-1

Fuglewicz AJ, Piotrowski P, Stodolak A. Relationship between toxoplasmosis and schizophrenia: a review. Adv Clin Exp Med. 2017;26:1031-6.

https://doi.org/10.17219/acem/61435

Moreno JL, Kurita M, Holloway T, López J, Cadagan R, Martínez-Sobrido L et al. Maternal influenza viral infection causes schizophrenia-like alterations of 5-HT2A and mGlu2 receptors in the adult offspring. J Neurosci. 2011;31(5):1863-72.

https://doi.org/10.1523/JNEUROSCI.4230-10.2011

Khandaker GM, Zimbron J, Dalman C, Lewis G, Jones PB. Childhood infection and adult schizophrenia: a meta-analysis of population-based studies. Schizophr Res. 2012;139(1-3):161-8.

https://doi.org/10.1016/j.schres.2012.05.023

Carter C. Schizophrenia: a pathogenetic autoimmune disease caused by viruses and pathogens and dependent on genes. J Pathog. 2011;2011:128318.

https://doi.org/10.4061/2011/128318

Yolken R. Viruses and schizophrenia: a focus on herpes simplex virus. Herpes: the journal of the IHMF. 2004;11:83A-8A.

Buckley P. Association Between Prenatal Exposure to Bacterial Infection and Risk of Schizophrenia. Year Book of Psychiatry & Applied Mental Health. 2010:341-2.

Alipour A, Shojaee S, Mohebali M, Tehranidoost M, Masoleh FA, Keshavarz H. Toxoplasma infection in schizophrenia patients: a comparative study with control group. Iran J Parasitol. 2011;6(2):31.

Boksa P. Maternal infection during pregnancy and schizophrenia. J Psychiatry Neurosci. 2008;33(3):183.

Asher L, Fekadu A, Hanlon C, Mideksa G, Eaton J, Patel V et al. Development of a community-based rehabilitation intervention for people with schizophrenia in Ethiopia. PLoS One. 2015;10(11):e0143572.

https://doi.org/10.1371/journal.pone.0143572

Severance EG, Yolken RH. Deciphering microbiome and neuroactive immune gene interactions in schizophrenia. Neurobiol Dis. 2018:104331.

https://doi.org/10.1016/j.nbd.2018.11.016

Jaskiw GE, Obrenovich ME, Donskey CJ. The phenolic interactome and gut microbiota: opportunities and challenges in developing applications for schizophrenia and autism. Psychopharmacol. 2019:1-19.

https://doi.org/10.1007/s00213-019-05267-3

Xu R, Wu B, Liang J, He F, Gu W, Li K et al. Altered gut microbiota and mucosal immunity in patients with schizophrenia. Brain Behav Immun. 2020;85:120-7.

https://doi.org/10.1016/j.bbi.2019.06.039

Yuan X, Kang Y, Zhuo C, Huang X-F, Song X. The gut microbiota promotes the pathogenesis of schizophrenia via multiple pathways. Biochem Biophys Res Commun. 2019;512(2):373-80.

https://doi.org/10.1016/j.bbrc.2019.02.152

Colodro-Conde L, Couvy-Duchesne B, Whitfield JB, Streit F, Gordon S, Kemper KE et al. Association between population density and genetic risk for schizophrenia. JAMA psychiatry. 2018;75(9):901-10.

https://doi.org/10.1001/jamapsychiatry.2018.1581

Hou C-L, Wang S-B, Wang F, Xu M-Z, Chen M-Y, Cai M-Y et al. Psychotropic medication treatment patterns in community-dwelling schizophrenia in China: comparisons between rural and urban areas. BMC psychiatry. 2019;19(1):242.

https://doi.org/10.1186/s12888-019-2217-1

Krabbendam L, Van Os J. Schizophrenia and urbanicity: a major environmental influence-conditional on genetic risk. Schizophr Bull. 2005;31(4):795-9.

https://doi.org/10.1093/schbul/sbi060

Eger G, Reuven Y, Dreiher J, Shvartzman P, Weiser M, Aizenberg D et al. Effects of country of origin and wave of immigration on prevalence of schizophrenia among first and second-generation immigrants: A 30-year retrospective study. Schizophr Res. 2020;243:247-53.

https://doi.org/10.1016/j.schres.2020.03.039

Henssler J, Brandt L, Müller M, Liu S, Montag C, Sterzer P et al. Migration and schizophrenia: meta-analysis and explanatory framework. Eur Arch Psychiatry Clin Neurosci. 2019:1-11.

https://doi.org/10.1007/s00406-019-01028-7

Kinney DK, Teixeira P, Hsu D, Napoleon SC, Crowley DJ, Miller A et al. Relation of schizophrenia prevalence to latitude, climate, fish consumption, infant mortality, and skin color: a role for prenatal vitamin d deficiency and infections? Schizophr Bull. 2009;35(3):582-95.

https://doi.org/10.1093/schbul/sbp023

Chiang M, Natarajan R, Fan X. Vitamin D in schizophrenia: a clinical review. Evid Based Ment Health. 2016;19(1):6-9.

https://doi.org/10.1136/eb-2015-102117

Chiappelli J, Postolache TT, Kochunov P, Rowland LM, Wijtenburg SA, Shukla DK et al. Tryptophan metabolism and white matter integrity in schizophrenia. Neuropsychopharmacol. 2016;41(10):2587.

https://doi.org/10.1038/npp.2016.66

Plitman E, Iwata Y, Caravaggio F, Nakajima S, Chung JK, Gerretsen P et al. Kynurenic acid in schizophrenia: a systematic review and meta-analysis. Schizophr Bull. 2017;43(4):764-77.

https://doi.org/10.1093/schbul/sbw221

Linderholm KR, Skogh E, Olsson SK, Dahl M-L, Holtze M, Engberg G et al. Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr Bull. 2010;38(3):426-32.

https://doi.org/10.1093/schbul/sbq086

Alexander KS, Pocivavsek A, Wu H-Q, Pershing ML, Schwarcz R, Bruno JP. Early developmental elevations of brain kynurenic acid impair cognitive flexibility in adults: reversal with galantamine. Neuroscience. 2013;238:19-28.

https://doi.org/10.1016/j.neuroscience.2013.01.063

Krause D, Weidinger E, Dippel C, Riedel M, J Schwarz M, Müller N et al. Impact of different antipsychotics on cytokines and tryptophan metabolites in stimulated cultures from patients with schizophrenia. Psychiatr Danub. 2013;25(4):0-397.

Orlovska-Waast S, Köhler-Forsberg O, Brix SW, Nordentoft M, Kondziella D, Krogh J et al. Cerebrospinal fluid markers of inflammation and infections in schizophrenia and affective disorders: a systematic review and meta-analysis. Mol Psychiatry. 2019;24(6):869-87.

https://doi.org/10.1038/s41380-018-0220-4

https://doi.org/10.1038/s41380-019-0381-9

Frydecka D, Krzystek-Korpacka M, Lubeiro A, Stramecki F, Stańczykiewicz B, Beszłej JA et al. Profiling inflammatory signatures of schizophrenia: a cross-sectional and meta-analysis study. Brain Behav Immun. 2018;71:28-36.

https://doi.org/10.1016/j.bbi.2018.05.002

Badawy AA. Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int J Tryptophan Res. 2017;10:1178646917691938.

https://doi.org/10.1177/1178646917691938

Kim Y-K, Jeon SW. Neuroinflammation and the immune-kynurenine pathway in anxiety disorders. Curr Neuropharmacol. 2018;16(5):574-82.

https://doi.org/10.2174/1570159X15666170913110426

Kindler J, Lim CK, Weickert CS, Boerrigter D, Galletly C, Liu D et al. Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Mol Psychiatry. 2019:1-13.

https://doi.org/10.1038/s41380-019-0401-9

Banzola I, Mengus C, Wyler S, Hudolin T, Manzella G, Chiarugi A et al. expression of indoleamine 2, 3-Dioxygenase induced by iFn-γ and TnF-α as Potential Biomarker of Prostate cancer Progression. Front Immunol. 2018;9:1051.

https://doi.org/10.3389/fimmu.2018.01051

Dantzer R. Role of the kynurenine metabolism pathway in inflammation-induced depression: preclinical approaches Inflammation-Associated Depression: Evidence, Mechanisms and Implications. Springer. 2017;31:117-38.

https://doi.org/10.1007/7854_2016_6

Ormel PR, van Mierlo HC, Litjens M, van Strien ME, Hol EM, Kahn RS et al. Characterization of macrophages from schizophrenia patients. npj Schizophr. 2017;3(1):1-9.

https://doi.org/10.1038/s41537-017-0042-4

Christmas DM, Potokar J, Davies SJ. A biological pathway linking inflammation and depression: activation of indoleamine 2, 3-dioxygenase. Neuropsychiatr Dis Treat. 2011;7:431.

https://doi.org/10.2147/NDT.S17573

Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011;70(7):663-71.

https://doi.org/10.1016/j.biopsych.2011.04.013

Lee EE, Hong S, Martin AS, Eyler LT, Jeste DV. Inflammation in schizophrenia: cytokine levels and their relationships to demographic and clinical variables. Am J Geriatr Psychiatry. 2017;25(1):50-61.

https://doi.org/10.1016/j.jagp.2016.09.009

Borovcanin MM, Jovanovic I, Radosavljevic G, Pantic J, Minic Janicijevic S, Arsenijevic N et al. interleukin-6 in Schizophrenia-is There a Therapeutic Relevance? Front psychiatry. 2017;8:221.

https://doi.org/10.3389/fpsyt.2017.00221

Carpenter LL, Gawuga CE, Tyrka AR, Lee JK, Anderson GM, Price LH. Association between plasma IL-6 response to acute stress and early-life adversity in healthy adults. Neuropsychopharmacol. 2010;35(13):2617-23.

https://doi.org/10.1038/npp.2010.159

Chase KA, Cone JJ, Rosen C, Sharma RP. The value of interleukin 6 as a peripheral diagnostic marker in schizophrenia. BMC psychiatry. 2016;16(1):152.

https://doi.org/10.1186/s12888-016-0866-x

Stojanovic A, Martorell L, Montalvo I, Ortega L, Monseny R, Vilella E et al. Increased serum interleukin-6 levels in early stages of psychosis: associations with at-risk mental states and the severity of psychotic symptoms. Psychoneuroendocrinology. 2014;41:23-32.

https://doi.org/10.1016/j.psyneuen.2013.12.005

Rohleder N, Aringer M, Boentert M. Role of interleukin-6 in stress, sleep, and fatigue. Ann N Y Acad Sci. 2012;1261(1):88-96.

https://doi.org/10.1111/j.1749-6632.2012.06634.x

Kachouchi A, Sebbani M, Akammar S, Berghalout M, Adali I, Manoudi F et al. C-reactive protein and agitation in patients with schizophrenia: A cohort study with a control group. L'Encephale. 2020;46(4):264-8.

https://doi.org/10.1016/j.encep.2019.11.007

Maes M, Leonard B, Myint A, Kubera M, Verkerk R. The new '5-HT'hypothesis of depression: cell-mediated immune activation induces indoleamine 2, 3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(3):702-21.

https://doi.org/10.1016/j.pnpbp.2010.12.017

Steiner J, Frodl T, Schiltz K, Dobrowolny H, Jacobs R, Fernandes BS et al. Innate Immune Cells and C-Reactive Protein in Acute First-Episode Psychosis and Schizophrenia: Relationship to Psychopathology and Treatment. Schizophr Bull. 2019;46(2):363-73.

https://doi.org/10.1093/schbul/sbz068

Figiel I. Pro-inflammatory cytokine TNF-alpha as a neuroprotective agent in the brain. Acta Neurobiol Exp (Wars). 2008;68(4):526-34.

https://doi.org/10.55782/ane-2008-1720

Tian T, Wang M, Ma D. TNF-α, a good or bad factor in hematological diseases? Stem Cell Investig. 2014;1:12.

Suchanek-Raif R, Raif P, Kowalczyk M, Paul-Samojedny M, Kucia K, Merk W et al. Polymorphic Variants of TNFR2 Gene in Schizophrenia and Its Interaction with-308G/A TNF-α Gene Polymorphism. Mediators Inflamm. 2018;2018: 8741249.

https://doi.org/10.1155/2018/8741249

Woo JJ, Pouget JG, Zai CC, Kennedy JL. The complement system in schizophrenia: where are we now and what's next? Mol Psychiatry. 2019:1-17.

https://doi.org/10.1038/s41380-019-0479-0

Tahseen R, Parvez M, Kumar GS, Jahan P. Combined Neutrophil-to-Lymphocyte Ratio and Serum Neutrophil Elastase: Is it an Emerging Marker of Asthma Prognosis? Biomedical and Biotechnology Research Journal (BBRJ). 2022;6(4):538-42.

https://doi.org/10.4103/bbrj.bbrj_290_22

Karageorgiou V, Milas GP, Michopoulos I. Neutrophil-to-lymphocyte ratio in schizophrenia: A systematic review and meta-analysis. Schizophr Res. 2019;206:4-12.

https://doi.org/10.1016/j.schres.2018.12.017

Sevenich L. Brain-resident microglia and blood-borne macrophages orchestrate central nervous system inflammation in neurodegenerative disorders and brain cancer. Front Immunol. 2018;9:697.

https://doi.org/10.3389/fimmu.2018.00697

Yin J, Valin KL, Dixon ML, Leavenworth JW. The role of microglia and macrophages in CNS homeostasis, autoimmunity, and cancer. J Immunol Res. 2017;2017: 5150678.

https://doi.org/10.1155/2017/5150678

Laskaris L, Di Biase MA, Everall I, Chana G, Christopoulos A, Skafidas E et al. Microglial activation and progressive brain changes in schizophrenia. Br J Pharmacol. 2016;173(4):666-80.

https://doi.org/10.1111/bph.13364

Busse S, Busse M, Schiltz K, Bielau H, Gos T, Brisch R et al. Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizophrenia: further evidence for disease course-related immune alterations? Brain Behav Immun. 2012;26(8):1273-9.

https://doi.org/10.1016/j.bbi.2012.08.005

Radewicz K, Garey LJ, Gentleman SM, Reynolds R. Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol. 2000;59(2):137-50.

https://doi.org/10.1093/jnen/59.2.137

Kopi TA, Shahrokh S, Mirzaei S, Aghdaei HA, Kadijani AA. The role of serum calprotectin as a novel biomarker in inflammatory bowel diseases: a review study. Gastroenterol Hepatol Bed Bench. 2019;12(3):183.

Venneti S, Lopresti BJ, Wiley CA. The peripheral benzodiazepine receptor (translocator protein 18 kDa) in microglia: from pathology to imaging. Prog Neurobiol. 2006;80(6):308-22.

https://doi.org/10.1016/j.pneurobio.2006.10.002

Dupont A-C, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Tronel C, Arlicot N. Translocator protein-18 kDa (TSPO) positron emission tomography (PET) imaging and its clinical impact in neurodegenerative diseases. Int J Mol Sci. 2017;18(4):785.

https://doi.org/10.3390/ijms18040785

Zhang Y, Catts V, Sheedy D, McCrossin T, Kril J, Weickert CS. Cortical grey matter volume reduction in people with schizophrenia is associated with neuro-inflammation. Transl Psychiatry. 2016;6(12):e982-e.

https://doi.org/10.1038/tp.2016.238

Chew L-J, Fusar-Poli P, Schmitz T. Oligodendroglial alterations and the role of microglia in white matter injury: relevance to schizophrenia. Dev Neurosci. 2013;35(2-3):102-29.

https://doi.org/10.1159/000346157

Romeo B, Brunet-Lecomte M, Martelli C, Benyamina A. Kinetics of Cytokine Levels during Antipsychotic Treatment in Schizophrenia: A Meta-Analysis. Int J Neuropsychopharmacol. 2018;21(9):828-36.

https://doi.org/10.1093/ijnp/pyy062

Strous RD, Shoenfeld Y. Schizophrenia, autoimmunity and immune system dysregulation: a comprehensive model updated and revisited. J Autoimmun. 2006;27(2):71-80.

https://doi.org/10.1016/j.jaut.2006.07.006

Avgustin B, Wraber B, Tavcar R. Increased Th1 and Th2 immune reactivity with relative Th2 dominance in patients with acute exacerbation of schizophrenia. Croat Med J. 2005;46(2):268-74.

https://doi.org/10.1016/j.bbi.2005.10.008

Qu Z, Titus ASCLS, Xuan Z, D'Mello SR. Neuroprotection by Heat Shock Factor-1 (HSF1) and Trimerization-Deficient Mutant Identifies Novel Alterations in Gene Expression. Sci Rep. 2018;8(1):17255.

https://doi.org/10.1038/s41598-018-35610-1

Riedel M, Spellmann I, Schwarz MJ, Strassnig M, Sikorski C, Möller H-J et al. Decreased T cellular immune response in schizophrenic patients. J psychiatric Res. 2007;41(1-2):3-7.

https://doi.org/10.1016/j.jpsychires.2005.11.007

Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol. 2012;32(1):23-63.

https://doi.org/10.1615/CritRevImmunol.v32.i1.30

Bachis A, Colangelo AM, Vicini S, Doe PP, De Bernardi MA, Brooker G et al. Interleukin-10 prevents glutamate-mediated cerebellar granule cell death by blocking caspase-3-like activity. J Neurosci. 2001;21(9):3104-12.

https://doi.org/10.1523/JNEUROSCI.21-09-03104.2001

Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014;2014:561459.

https://doi.org/10.1155/2014/561459

Ribeiro-Santos R, Lucio Teixeira A, Vinicius Salgado J. Evidence for an immune role on cognition in schizophrenia: a systematic review. Curr Neuropharmacol. 2014;12(3):273-80.

https://doi.org/10.2174/1570159X1203140511160832

Xiu MH, Yang GG, Tan YL, Tan SP, Wang ZR, De Yang F et al. Decreased interleukin-10 serum levels in first-episode drug-naïve schizophrenia: relationship to psychopathology. Schizophr Res. 2014;156(1):9-14.

https://doi.org/10.1016/j.schres.2014.03.024

Chenniappan R, Nandeesha H, Kattimani S, Nanjaiah ND. Interleukin-17 and Interleukin-10 Association with Disease Progression in Schizophrenia. Ann Neurosci. 2020;27(1):24-8.

https://doi.org/10.1177/0972753120929565

Guglani L, Khader SA. Th17 cytokines in mucosal immunity and inflammation. Curr Opin HIV AIDS. 2010;5(2):120.

https://doi.org/10.1097/COH.0b013e328335c2f6

Jadidi-Niaragh F, Mirshafiey A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol. 2011;74(1):1-13.

https://doi.org/10.1111/j.1365-3083.2011.02536.x

Schmitt A, Bertsch T, Tost H, Bergmann A, Henning U, Klimke A et al. Increased serum interleukin-1β and interleukin-6 in elderly, chronic schizophrenic patients on stable antipsychotic medication. Neuropsychiatr Dis Treat. 2005;1(2):171.

https://doi.org/10.2147/nedt.1.2.171.61048

Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N. Neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol. 2019;10:1008.

https://doi.org/10.3389/fphar.2019.01008

Brito-Melo GE, Nicolato R, de Oliveira ACP, Menezes GB, Lélis FJ, Avelar RS et al. Increase in dopaminergic, but not serotoninergic, receptors in T-cells as a marker for schizophrenia severity. J Psychiatry Res. 2012;46(6):738-42.

https://doi.org/10.1016/j.jpsychires.2012.03.004

Prado C, Contreras F, González H, Díaz P, Elgueta D, Barrientos M et al. Stimulation of dopamine receptor D5 expressed on dendritic cells potentiates Th17-mediated immunity. J Immunl. 2012:1103096.

https://doi.org/10.4049/jimmunol.1103096

Nakagome K, Imamura M, Okada H, Kawahata K, Inoue T, Hashimoto K et al. Dopamine D1-like receptor antagonist attenuates Th17-mediated immune response and ovalbumin antigen-induced neutrophilic airway inflammation. J Immunol. 2011:1001274.

https://doi.org/10.1016/j.jaci.2010.12.263

Schwarcz R, Stone TW. The kynurenine pathway and the brain: challenges, controversies and promises. Neuropharmacol. 2017;112:237-47.

https://doi.org/10.1016/j.neuropharm.2016.08.003

Zakharyan R, Boyajyan A, Arakelyan A, Melkumova M, Mrazek F, Petrek M. Monocyte chemoattractant protein-1 in schizophrenia:− 2518A/G genetic variant and protein levels in Armenian population. Cytokine. 2012;58(3):351-4.

https://doi.org/10.1016/j.cyto.2012.02.013

Teixeira AL, Reis HJ, Nicolato R, Brito-Melo G, Correa H, Teixeira MM et al. Increased serum levels of CCL11/eotaxin in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(3):710-4.

https://doi.org/10.1016/j.pnpbp.2007.11.019

Cremaschi L, Kardell M, Johansson V, Isgren A, Sellgren CM, Altamura AC et al. Prevalences of autoimmune diseases in schizophrenia, bipolar I and II disorder, and controls. Psychiat Res. 2017;258:9-14.

https://doi.org/10.1016/j.psychres.2017.09.071

Ganapathy S, Vedam V, Rajeev V, Arunachalam R. Autoimmune Disorders-Immunopathogenesis and Potential Therapies. J Young Pharm. 2017;9(1):14.

https://doi.org/10.5530/jyp.2017.9.4

Wang L-Y, Chen S-F, Chiang J-H, Hsu C-Y, Shen Y-C. Autoimmune diseases are associated with an increased risk of schizophrenia: A nationwide population-based cohort study. Schizophrenia research. 2018;202:297-302.

https://doi.org/10.1016/j.schres.2018.06.033

Ogah OS, Timeyin AO, Kayode OA, Otukoya AS, Akinyemi RO, Adeyemi FI. Graves' disease presenting as paranoid schizophrenia in a Nigerian woman: a case report. Cases journal. 2009;2(1):6708.

https://doi.org/10.4076/1757-1626-2-6708

Arneth B. Multiple sclerosis and schizophrenia. Int J Mol Sci. 2017;18(8):1760.

https://doi.org/10.3390/ijms18081760

Ungprasert P, Wijarnpreecha K, Cheungpasitporn W. Patients with psoriasis have a higher risk of schizophrenia: a systematic review and meta-analysis of observational studies. J Postgrad Med. 2019;65(3):141.

https://doi.org/10.4103/jpgm.JPGM_253_18

Suvisaari J, Keinänen J, Eskelinen S, Mantere O. Diabetes and schizophrenia. Curr Diab Rep. 2016;16(2):1-10.

https://doi.org/10.1007/s11892-015-0704-4

Lluch E, Miller BJ. Rates of hepatitis B and C in patients with schizophrenia: a meta-analysis. Gen Hosp Psychiatry. 2019;61:41-6.

https://doi.org/10.1016/j.genhosppsych.2019.10.007

Suvisaari J, Mantere O. Inflammation theories in psychotic disorders: a critical review. Infect Disord Drug Targets. 2013;13(1):59-70.

https://doi.org/10.2174/18715265112129990032

Benros ME, Nielsen PR, Nordentoft M, Eaton WW, Dalton SO, Mortensen PB. Autoimmune diseases and severe infections as risk factors for schizophrenia: a 30-year population-based register study. Am J Psychiatry. 2011;168(12):1303-10.

https://doi.org/10.1176/appi.ajp.2011.11030516

Benros ME, Pedersen MG, Rasmussen H, Eaton WW, Nordentoft M, Mortensen PB. A nationwide study on the risk of autoimmune diseases in individuals with a personal or a family history of schizophrenia and related psychosis. Am J Psychiatry. 2014;171(2):218-26.

https://doi.org/10.1176/appi.ajp.2013.13010086

Mader S, Brimberg L, Diamond B. The role of brain-reactive autoantibodies in brain pathology and cognitive impairment. Front Immunol. 2017;8:1101.

https://doi.org/10.3389/fimmu.2017.01101

Richard MD, Brahm NC. Schizophrenia and the immune system: pathophysiology, prevention, and treatment. Am J Health Syst Pharm. 2012;69(9):757-66.

https://doi.org/10.2146/ajhp110271

Young JW, Geyer MA. Evaluating the role of the alpha-7 nicotinic acetylcholine receptor in the pathophysiology and treatment of schizophrenia. Biochem Pharmacol. 2013;86(8):1122-32.

https://doi.org/10.1016/j.bcp.2013.06.031

Rosas-Ballina M, Goldstein RS, Gallowitsch-Puerta M, Yang L, Valdés-Ferrer SI, Patel NB et al. The selective α7 agonist GTS-21 attenuates cytokine production in human whole blood and human monocytes activated by ligands for TLR2, TLR3, TLR4, TLR9, and RAGE. Mol Med. 2009;15(7-8):195.

https://doi.org/10.2119/molmed.2009.00039

Kipnis J, Cohen H, Cardon M, Ziv Y, Schwartz M. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc Natl Acad Sci. 2004;101(21):8180-5.

https://doi.org/10.1073/pnas.0402268101

Kipnis J, Cardon M, Strous RD, Schwartz M. Loss of autoimmune T cells correlates with brain diseases: possible implications for schizophrenia? Trends Mol Med. 2006;12(3):107-12.

https://doi.org/10.1016/j.molmed.2006.01.003

Downloads

Published

2023-12-01

Issue

Section

Review Article