A Gold Nanoparticle-based Aptasensor for Specific Detection of CA125
An Aptasensor for CA125
DOI:
https://doi.org/10.31661/gmj.v13i.3180Keywords:
Aptamer, Label-free Aptasensor, AuNP Aggregation, Ovarian Cancer, CA-125 AntigenAbstract
Background: In this work, an aptamer-based biosensor was successfully developed based on the salt-induced gold nanoparticle (AuNP) aggregation phenomenon for the detection of carbohydrate antigen 125 (CA125), which is an important tumor marker for ovarian cancer. Materials and Methods: Citrate-coated AuNPs are relatively highly dispersed NPs. In the presence of different salts, the electrostatic stability of NPs is reduced, and depending on the type of salt and its concentration, different degrees of aggregation occur. On the other hand, the aptamer is easily adsorbed on the AuNP surface and can prevent salt-induced AuNP aggregation. This phenomenon was used in this study to develop a simple biosensor for the detection of CA125. Results: In the presence of CA125, the aptamer was desorbed from the AuNP surface to bind to its antigen due to the higher affinity, leading to the aggregation of AuNPs and a change in the absorption spectra of the solution. Under the optimum condition, the fabricated aptasensor showed a linear range of 15-160 U/mL with a limit of detection (LOD) of 14.41 U/mL. Conclusion: The aptasensor exhibited good repeatability with notable selectivity with regard to CA125 detection, even in human serum samples, as compared to the enzyme-linked immunosorbent assay (ELISA). In conclusion, the engineered aptasensor can serve as a promising tool for the simple, rapid, and cost-effective detection of CA125.
References
Wang Y, Wu R, Cho KR, Thomas DG, Gossner G, Liu JR et al. Differential Protein Mapping of Ovarian Serous Adenocarcinomas: Identification of Potential Markers for Distinct Tumor Stage. J Proteome Res. 2009;8(3):1452-63.
https://doi.org/10.1021/pr800820z
PMid:19159301 PMCid:PMC2693455
Cramer DW. The epidemiology of endometrial and ovarian cancer. Hematol Oncol Clin. 2012;26(1):1-12.
https://doi.org/10.1016/j.hoc.2011.10.009
PMid:22244658 PMCid:PMC3259524
Wulfkuhle JD, Liotta LA, Petricoin EF. Proteomic applications for the early detection of cancer. Nat Rev Cancer. 2003;3(4):267-75.
https://doi.org/10.1038/nrc1043
PMid:12671665
Ebrahimi G, Pakchin PS, Mota A, Omidian H, Omidi Y. Electrochemical microfluidic paper-based analytical devices for cancer biomarker detection: From 2D to 3D sensing systems. Talanta. 2023:124370.
https://doi.org/10.1016/j.talanta.2023.124370
PMid:36858013
Zhang B, Cai FF, Zhong XY. An overview of biomarkers for the ovarian cancer diagnosis. Eur J Obstet Gynecol Reprod Biol. 2011;158(2):119-23.
https://doi.org/10.1016/j.ejogrb.2011.04.023
PMid:21632171
Suh KS, Park SW, Castro A, Patel H, Blake P, Liang M et al. Ovarian cancer biomarkers for molecular biosensors and translational medicine. Expert Rev Mol Diagn. 2010;10(8):1069-83.
https://doi.org/10.1586/erm.10.87
PMid:21080822
Perez BH, Gipson IK. Focus on molecules: human mucin MUC16. Exp Eye Res. 2008;87(5):400.
https://doi.org/10.1016/j.exer.2007.12.008
PMid:18289532 PMCid:PMC2586928
Bast Jr RC, Klug TL, John ES, Jenison E, Niloff JM, Lazarus H et al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. NEJM. 1983;309(15):883-7.
https://doi.org/10.1056/NEJM198310133091503
PMid:6310399
Jin H, Gui R, Gong J, Huang W. Aptamer and 5-fluorouracil dual-loading Ag2S quantum dots used as a sensitive label-free probe for near-infrared photoluminescence turn-on detection of CA125 antigen. Biosens Bioelectron. 2017;92:378-84.
https://doi.org/10.1016/j.bios.2016.10.093
PMid:27836590
Miralles C, Orea M, Espana P, Provencio M, Sánchez A, Cantos B et al. Cancer antigen 125 associated with multiple benign and malignant pathologies. Ann Surg Oncol. 2003;10:150-4.
https://doi.org/10.1245/ASO.2003.05.015
PMid:12620910
Ren X, Wang H, Wu D, Fan D, Zhang Y, Du B et al. Ultrasensitive immunoassay for CA125 detection using acid site compound as signal and enhancer. Talanta. 2015;144:535-41.
https://doi.org/10.1016/j.talanta.2015.06.086
PMid:26452859
Scholler N, Crawford M, Sato A, Drescher CW, O'Briant KC, Kiviat N et al. Bead-based ELISA for validation of ovarian cancer early detection markers. Clin Cancer Res. 2006;12(7):2117-24.
https://doi.org/10.1158/1078-0432.CCR-05-2007
PMid:16609024 PMCid:PMC2734269
Chen Z, Zheng W, Huang P, Tu D, Zhou S, Huang M et al. Lanthanide-doped luminescent nano-bioprobes for the detection of tumor markers. Nanoscale. 2015;7(10):4274-90.
https://doi.org/10.1039/C4NR05697C
PMid:25532615
Wang J, Ren J. A sensitive and rapid immunoassay for quantification of CA125 in human sera by capillary electrophoresis with enhanced chemiluminescence detection. Electrophor. 2005;26(12):2402-8.
https://doi.org/10.1002/elps.200410246
PMid:15895464
Shi M, Zhao S, Huang Y, Liu Y-M, Ye F. Microchip fluorescence-enhanced immunoaasay for simultaneous quantification of multiple tumor markers. J Chromatogr B. 2011;879(26):2840-4.
https://doi.org/10.1016/j.jchromb.2011.08.013
PMid:21873123
Xu Q, Li J, Li S, Pan H. A highly sensitive electrochemiluminescence immunosensor based on magnetic nanoparticles and its application in CA125 determination. J Solid State Electrochem. 2012;16:2891-8.
https://doi.org/10.1007/s10008-012-1719-2
Tang M, Wen G, Luo Y, Liang A, Jiang Z. A simple resonance Rayleigh scattering method for determination of trace CA125 using immuno-AuRu nanoalloy as probe via ultrasonic irradiation. Spectrochim Acta A Mol Biomol Spectrosc. 2015;135:1032-8.
https://doi.org/10.1016/j.saa.2014.07.066
PMid:25173519
Hamd-Ghadareh S, Salimi A, Fathi F, Bahrami S. An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imaging and sensing. Biosens Bioelectron. 2017;96:308-16.
https://doi.org/10.1016/j.bios.2017.05.003
PMid:28525848
Pakchin PS, Ghanbari H, Saber R, Omidi Y. Electrochemical immunosensor based on chitosan-gold nanoparticle/carbon nanotube as a platform and lactate oxidase as a label for detection of CA125 oncomarker. Biosens Bioelectron. 2018;122:68-74.
https://doi.org/10.1016/j.bios.2018.09.016
PMid:30243046
Pakchin PS, Fathi M, Ghanbari H, Saber R, Omidi Y. A novel electrochemical immunosensor for ultrasensitive detection of CA125 in ovarian cancer. Biosens Bioelectron. 2020;153:112029.
https://doi.org/10.1016/j.bios.2020.112029
PMid:31989938
Shayesteh OH, Ghavami R. A novel label-free colorimetric aptasensor for sensitive determination of PSA biomarker using gold nanoparticles and a cationic polymer in human serum. Spectrochim Acta A Mol Biomol Spectrosc. 2020;226:117644.
https://doi.org/10.1016/j.saa.2019.117644
PMid:31614271
Du G, Zhang D, Xia B, Xu L, Wu S, Zhan S et al. A label-free colorimetric progesterone aptasensor based on the aggregation of gold nanoparticles. Mikrochim Acta. 2016;183:2251-8.
https://doi.org/10.1007/s00604-016-1861-0
Zheng Y, Wang Y, Yang X. Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles. Sens Actuators B Chem. 2011;156(1):95-9.
https://doi.org/10.1016/j.snb.2011.03.077
McKeague M, Foster A, Miguel Y, Giamberardino A, Verdin C, Chan JY et al. Development of a DNA aptamer for direct and selective homocysteine detection in human serum. RSC Adv. 2013;3(46):24415-22.
https://doi.org/10.1039/c3ra43893g
Jazayeri MH, Amani H, Pourfatollah AA, Pazoki-Toroudi H, Sedighimoghaddam B. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens Bio-Sens Res. 2016;9:17-22.
https://doi.org/10.1016/j.sbsr.2016.04.002
Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: A review. Talanta. 2018;184:537-56.
https://doi.org/10.1016/j.talanta.2018.02.088
PMid:29674080
Bohlouli S, Jafarmadar Gharehbagh F, Dalir Abdolahinia E, Kouhsoltani M, Ebrahimi G, Roshangar L et al. Preparation, characterization, and evaluation of rutin nanocrystals as an anticancer agent against head and neck squamous cell carcinoma cell line. J Nanomater. 2021;2021:1-8.
https://doi.org/10.1155/2021/9980451
Wu Y-Y, Huang P, Wu F-Y. A label-free colorimetric aptasensor based on controllable aggregation of AuNPs for the detection of multiplex antibiotics. Food Chem. 2020;304:125377.
https://doi.org/10.1016/j.foodchem.2019.125377
PMid:31476547
Bunka DH, Stockley PG. Aptamers come of age-at last. Nat Rev Microbiol. 2006;4(8):588-96.
https://doi.org/10.1038/nrmicro1458
PMid:16845429
Yoo H, Jo H, Oh SS. Detection and beyond: Challenges and advances in aptamer-based biosensors. Mater Adv. 2020;1(8):2663-87.
https://doi.org/10.1039/D0MA00639D
Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 2005;33(suppl_2):W363-W7.
https://doi.org/10.1093/nar/gki481
PMid:15980490 PMCid:PMC1160241
Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 2015;43(W1):W174-W81.
https://doi.org/10.1093/nar/gkv342
PMid:25883148 PMCid:PMC4489253
Mousivand M, Anfossi L, Bagherzadeh K, Barbero N, Mirzadi-Gohari A, Javan-Nikkhah M. In silico maturation of affinity and selectivity of DNA aptamers against aflatoxin B1 for biosensor development. Anal Chim Acta. 2020;1105:178-86.
https://doi.org/10.1016/j.aca.2020.01.045
PMid:32138917
Wang Y-K, Zou Q, Sun J-H, Wang H-a, Sun X, Chen Z-F et al. Screening of single-stranded DNA (ssDNA) aptamers against a zearalenone monoclonal antibody and development of a ssDNA-based enzyme-linked oligonucleotide assay for determination of zearalenone in corn. J Agric Food Chem. 2015;63(1):136-41.
https://doi.org/10.1021/jf503733g
PMid:25485848
Chen X, Huang Y, Duan N, Wu S, Ma X, Xia Y et al. Selection and identification of ssDNA aptamers recognizing zearalenone. Anal Bioanal Chem. 2013;405:6573-81.
https://doi.org/10.1007/s00216-013-7085-9
PMid:23748593
Lu T, Ma Q, Yan W, Wang Y, Zhang Y, Zhao L et al. Selection of an aptamer against Muscovy duck parvovirus for highly sensitive rapid visual detection by label-free aptasensor. Talanta. 2018;176:214-20.
https://doi.org/10.1016/j.talanta.2017.08.037
PMid:28917743
Marcos-Silva L, Narimatsu Y, Halim A, Campos D, Yang Z, Tarp MA et al. Characterization of binding epitopes of CA125 monoclonal antibodies. J Proteome Res. 2014;13(7):3349-59.
https://doi.org/10.1021/pr500215g
PMid:24850311
Published
Issue
Section
License
Copyright (c) 2024 Galen Medical Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.