Molecular Typing and Drug Resistance Analysis of Carbapenem-resistant Klebsiella Pneumoniae from ICU Patients in China

Characteristics of ICU Carbapenem-resistant Klebsiella Pneumoniae in China

Authors

  • Mengwei Ma College of Public Health, Chongqing Medical University, Chongqing, China
  • Xian Zhang Department of Hospital Infection, The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi, Guizhou, China
  • Yingli Li College of Public Health, Chongqing Medical University, Chongqing, China
  • Jingfu Qiu College of Public Health, Chongqing Medical University, Chongqing, China
  • Jian Xue Department of Health Management, Zunyi Medical and Pharmaceutical College, Guizhou, China

DOI:

https://doi.org/10.31661/gmj.v13i.3302

Keywords:

ICU; Carbapenem-resistant Klebsiella Pneumoniae; Molecular Epidemiology

Abstract

Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) stands out as one of the most detrimental nosocomial pathogens in Chinese hospitals. The resistance rate of CRKP to carbapenems has persistently remained elevated, particularly in intensive care unit (ICU). This study focused on the molecular epidemiological characteristics of CRKP isolated from Chinese ICU patients. Materials and Methods: Five distinct CRKP isolates were obtained from a Chinese hospital. Strain identification and drug susceptibility testing were conducted using the VITEK® 2 Compact Bacterial Identification and Monitoring System. Whole genome sequencing (WGS) technology was used to analyze sequence typing, phylogenetic relationships and drug resistance genes. Results: All five CRKP isolates carried the carbapenem-resistance gene blaKPC-2 and exhibited complete resistance to β-lactams, aminoglycosides, quinolones, and partial resistance to sulfonamides. Based on the single nucleotide polymorphism differences, we classified the five CRKP isolates into 3 distinct clusters. Multilocus sequence typing (MLST) and core genome multilocus sequence typing (cgMLST) identified the main prevalent sequence type of CRKP as ST11-CT1313. Conclusions: Utilizing WGS for sequence typing, phylogenetic analysis, and antibiotic resistance gene identification is essential in enhancing the control and containment of CRKP infections in ICU. However, it is vital to consider both resistance phenotypes and resistance genes when guiding clinical medication decisions.

References

MacKenzie FM, Forbes KJ, Dorai-John T, Amyes SG, Gould IM. Emergence of a carbapenem-resistant Klebsiella pneumoniae. Lancet. 1997;350(9080):783.

https://doi.org/10.1016/S0140-6736(05)62567-6

PMid:9298003

Liao W, Liu Y, Zhang W. Virulence evolution, molecular mechanisms of resistance and prevalence of ST11 carbapenem-resistant Klebsiella pneumoniae in China: A review over the last 10 years. J Glob Antimicrob Resist. 2020;23:174-80.

https://doi.org/10.1016/j.jgar.2020.09.004

PMid:32971292

Karampatakis T, Antachopoulos C, Iosifidis E, Tsakris A, Roilides E. Molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in Greece. Future Microbiol. 2016;11:809-23.

https://doi.org/10.2217/fmb-2016-0042

PMid:27206024

Girmenia C, Serrao A, Canichella M. Epidemiology of Carbapenem Resistant Klebsiella pneumoniae Infections in Mediterranean Countries. Mediterr J Hematol Infect Dis. 2016;8(1):e2016032.

https://doi.org/10.4084/mjhid.2016.032

PMid:27441063 PMCid:PMC4943068

Goncalves Barbosa LC, Silva ESJA, Bordoni GP, Barbosa GO, Carneiro LC. Elevated Mortality Risk from CRKp Associated with Comorbidities: Systematic Review and Meta-Analysis. Antibiotics (Basel). 2022;11(7):874.

https://doi.org/10.3390/antibiotics11070874

PMid:35884128 PMCid:PMC9312274

Wu C, Zheng L, Yao J. Analysis of Risk Factors and Mortality of Patients with Carbapenem-Resistant Klebsiella pneumoniae Infection. Infect Drug Resist. 2022;15:2383-91.

https://doi.org/10.2147/IDR.S362723

PMid:35535031 PMCid:PMC9078358

Tacconelli E, Sifakis F, Harbarth S, Schrijver R, van Mourik M, Voss A et al. Surveillance for control of antimicrobial resistance. Lancet Infect Dis. 2018;18(3):e99-e106.

https://doi.org/10.1016/S1473-3099(17)30485-1

PMid:29102325

Bonomo RA, Burd EM, Conly J, Limbago BM, Poirel L, Segre JA et al. Carbapenemase-Producing Organisms: A Global Scourge. Clin Infect Dis. 2018;66(8):1290-7.

https://doi.org/10.1093/cid/cix893

PMid:29165604 PMCid:PMC5884739

Potter RF, D'Souza AW, Dantas G. The rapid spread of carbapenem-resistant Enterobacteriaceae. Drug Resist Updat. 2016;29:30-46.

https://doi.org/10.1016/j.drup.2016.09.002

PMid:27912842 PMCid:PMC5140036

Liu C, Dong N, Chan EWC, Chen S, Zhang R. Molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in China, 2016-20. Lancet Infect Dis. 2022;22(2):167-8.

https://doi.org/10.1016/S1473-3099(22)00009-3

PMid:35092791

Sun QL, Gu D, Wang Q, Hu Y, Shu L, Hu J et al. Dynamic Colonization of Klebsiella pneumoniae Isolates in Gastrointestinal Tract of Intensive Care Patients. Front Microbiol. 2019;10:230.

https://doi.org/10.3389/fmicb.2019.00230

PMid:30804922 PMCid:PMC6378299

Moghadam MT, Mojtahedi A, Moghaddam MM, Fasihi-Ramandi M, Mirnejad R. Rescuing humanity by antimicrobial peptides against colistin-resistant bacteria. Appl Microbiol Biotechnol. 2022;106(11):3879-93.

https://doi.org/10.1007/s00253-022-11940-z

PMid:35604438 PMCid:PMC9125544

Shahbandeh M, Taati Moghadam M, Mirnejad R, Mirkalantari S, Mirzaei M. The Efficacy of AgNO3 Nanoparticles Alone and Conjugated with Imipenem for Combating Extensively Drug-Resistant Pseudomonas aeruginosa. Int J Nanomedicine. 2020;15:6905-16.

https://doi.org/10.2147/IJN.S260520

PMid:33061358 PMCid:PMC7518771

Tan P, Fu H, Ma X. Design, optimization, and nanotechnology of antimicrobial peptides: From exploration to applications. Nano Today. 2021;39:101229.

https://doi.org/10.1016/j.nantod.2021.101229

O'Neill J. Tackling drug-resistant infections globally. final report and recommendations: Government of the United Kingdom; 2016.

Hosseini M, Ahmed Hamad M, Mohseni G, Salamy S, Dehghan Tarzjani S, Taati Moghadam M. Prediction of tsunami of resistance to some antibiotics is not far-fetched which used during COVID-19 pandemic. J Clin Lab Anal. 2023;37(15-16):e24959.

https://doi.org/10.1002/jcla.24959

PMid:37650531 PMCid:PMC10561589

Hosseininasab SS, Gorji M, Hosseini SS, Moghadam MT. The Use of Last-Line Antibiotics for the Treatment of COVID-19 Is a Risk to Disarm Humanity Against Future Antibiotic-Resistant Infectious Diseases: Suggestions for Prevention. Infectious Diseases in Clinical Practice. 2023;31(4):1-2.

https://doi.org/10.1097/IPC.0000000000001272

Chen C, Zhang Y, Yu SL, Zhou Y, Yang SY, Jin JL et al. Tracking Carbapenem-Producing Klebsiella pneumoniae Outbreak in an Intensive Care Unit by Whole Genome Sequencing. Front Cell Infect Microbiol. 2019;9:281.

https://doi.org/10.3389/fcimb.2019.00281

PMid:31440476 PMCid:PMC6694789

Li L, Wang R, Qiao D, Zhou M, Jin P. Tracking the Outbreak of Carbapenem-Resistant Klebsiella pneumoniae in an Emergency Intensive Care Unit by Whole Genome Sequencing. Infect Drug Resist. 2022;15:6215-24.

https://doi.org/10.2147/IDR.S386385

PMid:36324669 PMCid:PMC9621004

Xian Z, Jian X, Mei-Jing S, Wen-Hong A, Ze-Qiong C, Kai-Feng W. Molecular typing and drug resistance analysis of carbapenem-resistant Klebsiella pneumoniae from paediatric patients in China. The Journal of Infection in Developing Countries. 2022;16(11):1726-31.

https://doi.org/10.3855/jidc.17003

PMid:36449644

Wang J, Liu F, Tartari E, Huang J, Harbarth S, Pittet D et al. The Prevalence of Healthcare-Associated Infections in Mainland China: A Systematic Review and Meta-analysis. Infect Control Hosp Epidemiol. 2018;39(6):701-9.

https://doi.org/10.1017/ice.2018.60

PMid:29655388

Rochford C, Sridhar D, Woods N, Saleh Z, Hartenstein L, Ahlawat H et al. Global governance of antimicrobial resistance. Lancet. 2018;391(10134):1976-8.

https://doi.org/10.1016/S0140-6736(18)31117-6

PMid:29864011

CLSI supplement M100. Clinical and Laboratory Standards Institute; 2022.

Hu Y, Liu C, Shen Z, Zhou H, Cao J, Chen S et al. Prevalence, risk factors and molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in patients from Zhejiang, China, 2008-2018. Emerg Microbes Infect. 2020;9(1):1771-9.

https://doi.org/10.1080/22221751.2020.1799721

PMid:32689907 PMCid:PMC7475806

Zhang WX, Chen HY, Chen C, Chen JH, Wan FS, Li LX et al. Resistance Phenotype and Molecular Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae Isolates in Shanghai. Microb Drug Resist. 2021;27(10):1312-8.

https://doi.org/10.1089/mdr.2020.0390

PMid:34297609

Wang L, Yuan XD, Pang T, Duan SH. The Risk Factors of Carbapenem-Resistant Klebsiella pneumoniae Infection: A Single-Center Chinese Retrospective Study. Infect Drug Resist. 2022;15:1477-85..

https://doi.org/10.2147/IDR.S352070

PMid:35411153 PMCid:PMC8994608

Hu FP, Guo Y, Zhu DM, Wang F, Jiang XF, Xu YC et al. CHINET surveillance of antimicrobial resistance among the bacterial isolates in 2021. Chinese Journal of Infection and Chemotherapy. 2022;22(05):521-30.

Han Y, Huang L, Liu C, Huang X, Zheng R, Lu Y et al. Characterization of Carbapenem-Resistant Klebsiella pneumoniae ST15 Clone Coproducing KPC-2, CTX-M-15 and SHV-28 Spread in an Intensive Care Unit of a Tertiary Hospital. Infect Drug Resist. 2021;14:767-73.

https://doi.org/10.2147/IDR.S298515

PMid:33688212 PMCid:PMC7937386

Zhang M, Li J, Lu Y, Wu W, Wu J, Xu Y et al. Expanding of ST11 Carbapenemase-Producing Klebsiella pneumoniae Subclones in a Chinese Hospital, Shenzhen, China. Infect Drug Resist. 2021;14:1415-22.

https://doi.org/10.2147/IDR.S299478

PMid:33880046 PMCid:PMC8053513

Jiang Y, Wei Z, Wang Y, Hua X, Feng Y, Yu Y. Tracking a hospital outbreak of KPC-producing ST11 Klebsiella pneumoniae with whole genome sequencing. Clin Microbiol Infect. 2015;21(11):1001-7.

https://doi.org/10.1016/j.cmi.2015.07.001

PMid:26166545

Zeng L, Yang C, Zhang J, Hu K, Zou J, Li J et al. An Outbreak of Carbapenem-Resistant Klebsiella pneumoniae in an Intensive Care Unit of a Major Teaching Hospital in Chongqing, China. Front Cell Infect Microbiol. 2021;11:656070.

https://doi.org/10.3389/fcimb.2021.656070

PMid:34150672 PMCid:PMC8208809

Xiao S, Chen T, Wang H, Zeng Q, Chen Q, Yang Z et al. Drug Susceptibility and Molecular Epidemiology of Klebsiella pneumoniae Bloodstream Infection in ICU Patients in Shanghai, China. Front Med (Lausanne). 2021;8:754944.

https://doi.org/10.3389/fmed.2021.754944

PMid:34722591 PMCid:PMC8548373

Yan Z, Zhou Y, Du M, Bai Y, Liu B, Gong M et al. Prospective investigation of carbapenem-resistant Klebsiella pneumonia transmission among the staff, environment and patients in five major intensive care units, Beijing. J Hosp Infect. 2019;101(2):150-7.

https://doi.org/10.1016/j.jhin.2018.11.019

PMid:30529506

Li J, Bi W, Dong G, Zhang Y, Wu Q, Dong T et al. The new perspective of old antibiotic: In vitro antibacterial activity of TMP-SMZ against Klebsiella pneumoniae. J Microbiol Immunol Infect. 2020;53(5):757-65.

https://doi.org/10.1016/j.jmii.2018.12.013

PMid:30857922

Gandor NHM, Amr GE, Eldin Algammal SMS, Ahmed AA. Characterization of Carbapenem-Resistant K Pneumoniae Isolated from Intensive Care Units of Zagazig University Hospitals. Antibiotics (Basel). 2022;11(8):1108.

https://doi.org/10.3390/antibiotics11081108

PMid:36009977 PMCid:PMC9405146

Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin Microbiol Infect. 2017;23(1):2-22.

https://doi.org/10.1016/j.cmi.2016.11.012

PMid:27890457

Lou T, Du X, Zhang P, Shi Q, Han X, Lan P et al. Risk factors for infection and mortality caused by carbapenem-resistant Klebsiella pneumoniae: A large multicentre case-control and cohort study. J Infect. 2022;84(5):637-47.

https://doi.org/10.1016/j.jinf.2022.03.010

PMid:35301013

Downloads

Published

2024-01-29

Issue

Section

Original Article