Emerging Technologies in Hand Orthopedic Surgery: Current Trends and Future Directions
Emerging Technologies in Hand Orthopedic Surgery
DOI:
https://doi.org/10.31661/gmj.v13i.3325Keywords:
Hand Orthopedic Surgery; Artificial Intelligence; Robotics; 3D Printing; Virtual Reality and Augmented RealityAbstract
Emerging technologies are changing hand surgery by improving surgical precision, minimizing tissue disruption, and expediting patient recovery. These advancements have the potential to revolutionize surgical procedures, patient outcomes, and rehabilitation processes. However, there are still challenges that need to be addressed before these technologies can be widely adopted. These challenges include the learning curve for surgeons, high costs, and ethical considerations. Future research should focus on addressing the limitations of these technologies, exploring their long-term effects, and evaluating their cost-effectiveness. To successfully implement them, a collaborative approach involving clinicians, researchers, engineers, and policymakers is necessary. This review provides an overview of current and future trends in emerging technologies for hand orthopedic surgery.
References
Satava RM. Advanced technologies and the future of medicine and surgery. Yonsei Med J. 2008 Dec 31;49(6):873-8.
https://doi.org/10.3349/ymj.2008.49.6.873
PMid:19108007 PMCid:PMC2628030
Owens JG, Rauzi MR, Kittelson A, Graber J, Bade MJ, Johnson J, et al. How New Technology Is Improving Physical Therapy. Curr Rev Musculoskelet Med. 2020 Apr;13(2):200-11.
https://doi.org/10.1007/s12178-020-09610-6
PMid:32162144 PMCid:PMC7174486
Dupont PE, Nelson BJ, Goldfarb M, Hannaford B, Menciassi A, O'Malley MK, et al. A decade retrospective of medical robotics research from 2010 to 2020. Sci Robot. 2021 Nov 10;6(60):eabi8017.
https://doi.org/10.1126/scirobotics.abi8017
PMid:34757801 PMCid:PMC8890492
Chu CY, Patterson RM. Soft robotic devices for hand rehabilitation and assistance: a narrative review. J NeuroEngineering Rehabil. 2018 Dec;15(1):9.
https://doi.org/10.1186/s12984-018-0350-6
PMid:29454392 PMCid:PMC5816520
Hakim RM, Tunis BG, Ross MD. Rehabilitation robotics for the upper extremity: review with new directions for orthopaedic disorders. Disabil Rehabil Assist Technol. 2017 Nov 17;12(8):765-71.
https://doi.org/10.1080/17483107.2016.1269211
PMid:28035841
Croke L. Health care technology continues to improve patient care and work efficiencies. AORN J [Internet]: 2020 Mar [cited 2024 Jan 17]; Available from: https://aornjournal.onlinelibrary.wiley.com/doi/10.1002/aorn.12993.
https://doi.org/10.1002/aorn.12993
Lungu AJ, Swinkels W, Claesen L, Tu P, Egger J, Chen X. A review on the applications of virtual reality, augmented reality and mixed reality in surgical simulation: an extension to different kinds of surgery. Expert Rev Med Devices. 2021 Jan 2;18(1):47-62.
https://doi.org/10.1080/17434440.2021.1860750
PMid:33283563
Verhey JT, Haglin JM, Verhey EM, Hartigan DE. Virtual, augmented, and mixed reality applications in orthopedic surgery. Int J Med Robot. 2020 Apr;16(2):e2067.
https://doi.org/10.1002/rcs.2067
PMid:31867864
McKnight RR, Pean CA, Buck JS, Hwang JS, Hsu JR, Pierrie SN. Virtual Reality and Augmented Reality-Translating Surgical Training into Surgical Technique. Curr Rev Musculoskelet Med. 2020 Dec;13(6):663-74.
https://doi.org/10.1007/s12178-020-09667-3
PMid:32779019 PMCid:PMC7661680
Vles MD, Terng NCO, Zijlstra K, Mureau MAM, Corten EML. Virtual and augmented reality for preoperative planning in plastic surgical procedures: A systematic review. J Plast Reconstr Aesthet Surg. 2020 Nov;73(11):1951-9.
https://doi.org/10.1016/j.bjps.2020.05.081
PMid:32622713
Kabir R, Sunny M, Ahmed H, Rahman M. Hand Rehabilitation Devices: A Comprehensive Systematic Review. Micromachines. 2022 Jun 29;13(7):1033.
https://doi.org/10.3390/mi13071033
PMid:35888850 PMCid:PMC9325203
Braun BJ, Grimm B, Hanflik AM, Marmor MT, Richter PH, Sands AK, et al. Finding NEEMO: towards organizing smart digital solutions in orthopaedic trauma surgery. EFORT Open Rev. 2020 Jul;5(7):408-20.
https://doi.org/10.1302/2058-5241.5.200021
PMid:32818068 PMCid:PMC7407868
Chatterjee SK. AN EVALUATION OF SMART IMPLANTS IN ORTHOPEDIC SURGERY THAT ENHANCE PATIENT OUTCOMES. Student's Journal of Health Research Africa. 2023;4(12):862.
Keller M, Guebeli A, Thieringer F, Honigmann P. Overview of In-Hospital 3D Printing and Practical Applications in Hand Surgery Duan X, editor. BioMed Res Int. 2021;2021:1-14.
https://doi.org/10.1155/2021/4650245
PMid:33855068 PMCid:PMC8019389
Wixted CM, Peterson JR, Kadakia RJ, Adams SB. Three-dimensional Printing in Orthopaedic Surgery: Current Applications and Future Developments. JAAOS Glob Res Rev. 2021 Apr;5(4):e20.00230-11.
https://doi.org/10.5435/JAAOSGlobal-D-20-00230
PMid:33877073 PMCid:PMC8059996
Zhang D, Bauer AS, Blazar P, Earp BE. Three-dimensional printing in hand surgery. J Hand Surg. 2021;46(11):1016-22.
https://doi.org/10.1016/j.jhsa.2021.05.028
PMid:34274209
Jacobo OM, Giachero VE, Hartwig DK, Mantrana GA. Three-dimensional printing modeling: application in maxillofacial and hand fractures and resident training. Eur J Plast Surg. 2018 Apr;41(2):137-46.
https://doi.org/10.1007/s00238-017-1373-0
Galvez M, Asahi T, Baar A, Carcuro G, Cuchacovich N, Fuentes JA, et al. Use of Three-dimensional Printing in Orthopaedic Surgical Planning. JAAOS Glob Res Rev. 2018 May;2(5):e071.
https://doi.org/10.5435/JAAOSGlobal-D-17-00071
PMid:30211394 PMCid:PMC6132335
Aimar A, Palermo A, Innocenti B. The Role of 3D Printing in Medical Applications: A State of the Art. J Healthc Eng. 2019 Mar 21;2019:1-10.
https://doi.org/10.1155/2019/5340616
PMid:31019667 PMCid:PMC6451800
Hoang D, Perrault D, Stevanovic M, Ghiassi A. Surgical applications of three-dimensional printing: a review of the current literature & how to get started. Ann Transl Med. 2016 Dec;4(23):456-456.
https://doi.org/10.21037/atm.2016.12.18
PMid:28090512 PMCid:PMC5220021
Portnova AA, Mukherjee G, Peters KM, Yamane A, Steele KM. Design of a 3D-printed, open-source wrist-driven orthosis for individuals with spinal cord injury Gard SA, editor. PLOS ONE. 2018 Feb 22;13(2):e0193106.
https://doi.org/10.1371/journal.pone.0193106
PMid:29470557 PMCid:PMC5823450
Diment LE, Thompson MS, Bergmann JHM. Clinical efficacy and effectiveness of 3D printing: a systematic review. BMJ Open. 2017 Dec;7(12):e016891.
https://doi.org/10.1136/bmjopen-2017-016891
PMid:29273650 PMCid:PMC5778284
Wong KC. 3D-printed patient-specific applications in orthopedics. Orthop Res Rev. 2016 Oct;Volume 8:57-66.
https://doi.org/10.2147/ORR.S99614
PMid:30774470 PMCid:PMC6209352
Matter-Parrat V, Liverneaux P. 3D printing in hand surgery. Hand Surg Rehabil. 2019 Dec;38(6):338-47.
https://doi.org/10.1016/j.hansur.2019.09.006
PMid:31568862
Lee KH, Kim DK, Cha YH, Kwon JY, Kim DH, Kim SJ. Personalized assistive device manufactured by 3D modelling and printing techniques. Disabil Rehabil Assist Technol. 2019 Jul 4;14(5):526-31.
https://doi.org/10.1080/17483107.2018.1494217
PMid:30318956
Alturkistani R, A K, Devasahayam S, Thomas R, Colombini EL, Cifuentes CA, et al. Affordable passive 3D-printed prosthesis for persons with partial hand amputation. Prosthet Orthot Int. 2020 Apr;44(2):92-8.
https://doi.org/10.1177/0309364620905220
PMid:32100630 PMCid:PMC7364768
Kakar S. What's New in Hand and Wrist Surgery. JBJS. 2017 Mar 15;99(6):531.
https://doi.org/10.2106/JBJS.16.01328
PMid:28291187
Diana M, Marescaux J. Robotic surgery. Br J Surg. 2015 Jan 27;102(2):e15-28.
https://doi.org/10.1002/bjs.9711
PMid:25627128
Ghandourah HSH, Schols RM, Wolfs JAGN, Altaweel F, Van Mulken TJM. Robotic Microsurgery in Plastic and Reconstructive Surgery: A Literature Review. Surg Innov. 2023 Oct;30(5):607-14.
https://doi.org/10.1177/15533506231191211
PMid:37490999 PMCid:PMC10515453
Chen AF, Kazarian GS, Jessop GW, Makhdom A. Robotic Technology in Orthopaedic Surgery. JBJS. 2018 Nov 21;100(22):1984.
https://doi.org/10.2106/JBJS.17.01397
PMid:30480604
Roh HF, Nam SH, Kim JM. Robot-assisted laparoscopic surgery versus conventional laparoscopic surgery in randomized controlled trials: A systematic review and meta-analysis Dangal G, editor. PLOS ONE. 2018 Jan 23;13(1):e0191628.
https://doi.org/10.1371/journal.pone.0191628
PMid:29360840 PMCid:PMC5779699
Kim M, Zhang Y, Jin S. Soft tissue surgical robot for minimally invasive surgery: a review. Biomed Eng Lett. 2023 Nov;13(4):561-9.
https://doi.org/10.1007/s13534-023-00326-3
PMid:37872994 PMCid:PMC10590359
Higgins RM, Gould JC. Clinical Applications of Robotics in General Surgery. In: Handbook of Robotic and Image-Guided Surgery [Internet] Elsevier; Available from: https://linkinghub.elsevier.com/retrieve/pii/B978012814245500013X.
Rodrigues Armijo P, Huang CK, Carlson T, Oleynikov D, Siu KC. Ergonomics Analysis for Subjective and Objective Fatigue Between Laparoscopic and Robotic Surgical Skills Practice Among Surgeons. Surg Innov. 2020 Feb;27(1):81-7.
https://doi.org/10.1177/1553350619887861
PMid:31771411
Kockerling F. Robotic vs. Standard Laparoscopic Technique-What is Better: Front Surg [Internet] 2014 May 15 [cited 2024 Jan 17]; Available from: http://journal.frontiersin.org/article/10.3389/fsurg.2014.00015/abstract.
https://doi.org/10.3389/fsurg.2014.00015
PMid:25593939 PMCid:PMC4286948
Zhao B, Lam J, Hollandsworth HM, Lee AM, Lopez NE, Abbadessa B, et al. General surgery training in the era of robotic surgery: a qualitative analysis of perceptions from resident and attending surgeons. Surg Endosc. 2020 Apr;34(4):1712-21.
https://doi.org/10.1007/s00464-019-06954-0
PMid:31286248 PMCid:PMC6946889
Chowriappa A, Raza SJ, Fazili A, Field E, Malito C, Samarasekera D, et al. Augmented-reality-based skills training for robot-assisted urethrovesical anastomosis: a multi-institutional randomised controlled trial. BJU Int. 2015 Feb;115(2):336-45.
https://doi.org/10.1111/bju.12704
PMid:24612471
SAGES Robotic Task Force, Chen R, Rodrigues Armijo P, Krause C, Siu KC, Oleynikov D. A comprehensive review of robotic surgery curriculum and training for residents, fellows, and postgraduate surgical education. Surg Endosc. 2020 Jan;34(1):361-7.
https://doi.org/10.1007/s00464-019-06775-1
PMid:30953199
Ali M, Phillips D, Kamson A, Nivar I, Dahl R, Hallock R. Learning Curve of Robotic-Assisted Total Knee Arthroplasty for Non-Fellowship-Trained Orthopedic Surgeons. Arthroplasty Today. 2022 Feb;13:194-8.
https://doi.org/10.1016/j.artd.2021.10.020
PMid:35118183 PMCid:PMC8791856
Pierce J, Needham K, Adams C, Coppolecchia A, Lavernia C. Robotic arm-assisted knee surgery: an economic analysis. Am J Manag Care. 2020;26(7):e205-10.
https://doi.org/10.37765/ajmc.2020.43763
PMid:32672918
Shah NL, Laungani RG, Kaufman ME. Financial Considerations in Robotic Surgery. In: Fong Y, Woo Y, Hyung WJ, Lau C, Strong VE, editors The SAGES Atlas of Robotic Surgery [Internet] Cham Springer International Publishing; Available from: http://link.springer.com/10.1007/978-3-319-91045-1_5.
Kolessar DJ, Hayes DS, Harding JL, Rudraraju RT, Graham JH. Robotic-Arm Assisted Technology's Impact on Knee Arthroplasty and Associated Healthcare Costs. J Health Econ Outcomes Res [Internet]: 2022 Aug 23 [cited 2024 Jan 17]; Available from: https://jheor.org/article/37024-robotic-arm-assisted-technology-s-impact-on-knee-arthroplasty-and-associated-healthcare-costs.
https://doi.org/10.36469/001c.37024
PMid:36072348 PMCid:PMC9398468
Chen LWY, Goh M, Goh R, Chao YK, Huang JJ, Kuo WL, et al. Robotic-Assisted Peripheral Nerve Surgery: A Systematic Review. J Reconstr Microsurg. 2021 Jul;37(06):503-13.
https://doi.org/10.1055/s-0040-1722183
PMid:33401326
Zhang F, Li H, Ba Z, Bo C, Li K. Robotic arm-assisted vs conventional unicompartmental knee arthroplasty: A meta-analysis of the effects on clinical outcomes. Medicine (Baltimore). 2019 Aug;98(35):e16968.
https://doi.org/10.1097/MD.0000000000016968
PMid:31464939 PMCid:PMC6736485
Yoo JS, Patel DS, Hrynewycz NM, Brundage TS, Singh K. The utility of virtual reality and augmented reality in spine surgery. Ann Transl Med. 2019 Sep;7(S5):S171-S171.
https://doi.org/10.21037/atm.2019.06.38
PMid:31624737 PMCid:PMC6778272
Iyengar KarthikeyanP, Gowers BTV, Jain VK, Ahluwalia RajuS, Botchu R, Vaishya R. Smart sensor implant technology in total knee arthroplasty. J Clin Orthop Trauma. 2021 Nov;22:101605.
https://doi.org/10.1016/j.jcot.2021.101605
PMid:34631412 PMCid:PMC8479248
Ledet EH, Liddle B, Kradinova K, Harper S. Smart implants in orthopedic surgery, improving patient outcomes: a review. Innov Entrep Health. 2018 Aug;Volume 5:41-51.
https://doi.org/10.2147/IEH.S133518
PMid:30246037 PMCid:PMC6145822
Al-Ayyad M, Owida HA, De Fazio R, Al-Naami B, Visconti P. Electromyography Monitoring Systems in Rehabilitation: A Review of Clinical Applications, Wearable Devices and Signal Acquisition Methodologies. Electronics. 2023 Mar 23;12(7):1520.
https://doi.org/10.3390/electronics12071520
Iyengar KarthikeyanP, Kariya AD, Botchu R, Jain VK, Vaishya R. Significant capabilities of SMART sensor technology and their applications for Industry 4.0 in trauma and orthopaedics. Sens Int. 2022;3:100163.
https://doi.org/10.1016/j.sintl.2022.100163
undefined undefined, undefined undefined. Wearables for personalized monitoring of masticatory muscle activity - opportunities, challenges, and the future. Clin Oral Investig. 2023;27(8):4861-7.
https://doi.org/10.1007/s00784-023-05127-7
PMid:37410151
de Fátima Domingues M, Rosa V, Nepomuceno AC, Tavares C, Alberto N, Andre P, et al. Wearable devices for remote physical rehabilitation using a Fabry-Perot optical fiber sensor: ankle joint kinematic. IEEE Access. 2020;8:109866-75.
https://doi.org/10.1109/ACCESS.2020.3001091
Bowman T, Gervasoni E, Arienti C, Lazzarini SG, Negrini S, Crea S, et al. Wearable devices for biofeedback rehabilitation: a systematic review and meta-analysis to design application rules and estimate the effectiveness on balance and gait outcomes in neurological diseases. Sensors. 2021;21(10):3444.
https://doi.org/10.3390/s21103444
PMid:34063355 PMCid:PMC8156914
Longo UG, De Salvatore S, Candela V, Zollo G, Calabrese G, Fioravanti S, et al. Augmented Reality, Virtual Reality and Artificial Intelligence in Orthopedic Surgery: A Systematic Review. Appl Sci. 2021 Apr 5;11(7):3253.
https://doi.org/10.3390/app11073253
Jakob I, Kollreider A, Germanotta M, Benetti F, Cruciani A, Padua L, et al. Robotic and Sensor Technology for Upper Limb Rehabilitation. PM&R [Internet]: 2018 Sep [cited 2024 Jan 17]; Available from: https://onlinelibrary.wiley.com/doi/10.1016/j.pmrj.2018.07.011.
https://doi.org/10.1016/j.pmrj.2018.07.011
PMid:30269805
Gassert R, Dietz V. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. J NeuroEngineering Rehabil. 2018 Dec;15(1):46.
https://doi.org/10.1186/s12984-018-0383-x
PMid:29866106 PMCid:PMC5987585
Chen L, Zhou C, Jiang C, Huang X, Liu Z, Zhang H, et al. Translation of nanotechnology-based implants for orthopedic applications: current barriers and future perspective. Front Bioeng Biotechnol. 2023 Aug 22;11:1206806.
https://doi.org/10.3389/fbioe.2023.1206806
PMid:37675405 PMCid:PMC10478008
Annabi N, Tamayol A, Shin SR, Ghaemmaghami AM, Peppas NA, Khademhosseini A. Surgical materials: Current challenges and nano-enabled solutions. Nano Today. 2014 Oct;9(5):574-89.
https://doi.org/10.1016/j.nantod.2014.09.006
PMid:25530795 PMCid:PMC4266934
Sindhu RK, Kaur H, Kumar M, Sofat M, Yapar EA, Esenturk I, et al. The ameliorating approach of nanorobotics in the novel drug delivery systems: a mechanistic review. J Drug Target. 2021 Sep 14;29(8):822-33.
https://doi.org/10.1080/1061186X.2021.1892122
PMid:33641551
Güven E. Nanotechnology-based drug delivery systems in orthopedics. Jt Dis Relat Surg. 2021 Jan 11;32(1):267-73.
https://doi.org/10.5606/ehc.2021.80360
PMid:33463450 PMCid:PMC8073448
Deng Y, Zhou C, Fu L, Huang X, Liu Z, Zhao J, et al. A mini-review on the emerging role of nanotechnology in revolutionizing orthopedic surgery: challenges and the road ahead. Front Bioeng Biotechnol. 2023 May 16;11:1191509.
https://doi.org/10.3389/fbioe.2023.1191509
PMid:37260831 PMCid:PMC10228697
Leary SP, Liu CY, Apuzzo MLJ. Toward the Emergence of Nanoneurosurgery: Part III-Nanomedicine: Targeted Nanotherapy, Nanosurgery, and Progress Toward the Realization of Nanoneurosurgery. Neurosurgery. 2006 Jun;58(6):1009-26.
https://doi.org/10.1227/01.NEU.0000217016.79256.16
PMid:16723880
Li J, Esteban-Fernández De Ávila B, Gao W, Zhang L, Wang J. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci Robot. 2017 Mar;2(4):eaam6431.
https://doi.org/10.1126/scirobotics.aam6431
PMid:31552379 PMCid:PMC6759331
Yadav HKS, Alsalloum GA, Al Halabi NA. Nanobionics and nanoengineered prosthetics. In: Nanostructures for the Engineering of Cells, Tissues and Organs [Internet] Elsevier; Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128136652000144.
Pantalone D, Faini GS, Cialdai F, Sereni E, Bacci S, Bani D, et al. Robot-assisted surgery in space: pros and cons A review from the surgeon's point of view. Npj Microgravity. 2021;7(1):56.
https://doi.org/10.1038/s41526-021-00183-3
PMid:34934056 PMCid:PMC8692617
Sen RK, Tripathy SK, Shetty N. Ethics in Clinical Orthopedic Surgery. Indian J Orthop. 2023 Nov;57(11):1714-21.
https://doi.org/10.1007/s43465-023-01003-4
PMid:37881283
Mahure SA, Teo GM, Kissin YD, Stulberg BN, Kreuzer S, Long WJ. Learning curve for active robotic total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2022 Aug;30(8):2666-76.
https://doi.org/10.1007/s00167-021-06452-8
PMid:33611607
Moeini S, Shahriari M, Shamali M. Ethical challenges of obtaining informed consent from surgical patients. Nurs Ethics. 2020 Mar;27(2):527-36.
https://doi.org/10.1177/0969733019857781
PMid:31296111
Bhimani SJ, Bhimani R, Smith A, Eccles C, Smith L, Malkani A. Robotic-assisted total knee arthroplasty demonstrates decreased postoperative pain and opioid usage compared to conventional total knee arthroplasty. Bone Jt Open. 2020 Feb 18;1(2):8-12.
https://doi.org/10.1302/2633-1462.12.BJO-2019-0004.R1
PMid:33215101 PMCid:PMC7659658
Haskell A, Kim T. Implementation of Patient-Reported Outcomes Measurement Information System Data Collection in a Private Orthopedic Surgery Practice. Foot Ankle Int. 2018 May;39(5):517-21.
https://doi.org/10.1177/1071100717753967
PMid:29366343
Karimi A, HaddadPajouh H. Artificial Intelligence, Important Assistant of Scientists and Physicians. Galen Med J. 2020 Nov 11;9:e2048.
https://doi.org/10.31661/gmj.v9i0.2048
PMid:34466625 PMCid:PMC8343766
Hernigou P, Lustig S, Caton J. Artificial intelligence and robots like us (surgeons) for people like you (patients): toward a new human-robot-surgery shared experience What is the moral and legal status of robots and surgeons in the operating room? Int Orthop. 2023 Feb;47(2):289-94.
https://doi.org/10.1007/s00264-023-05690-4
PMid:36637460
Thurzo A, Kurilová V, Varga I. Artificial Intelligence in Orthodontic Smart Application for Treatment Coaching and Its Impact on Clinical Performance of Patients Monitored with AI-TeleHealth System. Healthcare. 2021 Dec 7;9(12):1695.
https://doi.org/10.3390/healthcare9121695
PMid:34946421 PMCid:PMC8701246
Maza G, Sharma A. Past, present, and future of robotic surgery. Otolaryngol Clin North Am. 2020;53(6):935-41.
https://doi.org/10.1016/j.otc.2020.07.005
PMid:32838968
D'Souza M, Gendreau J, Feng A, Kim LH, Ho AL, Veeravagu A. Robotic-Assisted Spine Surgery: History, Efficacy, Cost, And Future Trends. Robot Surg Res Rev. 2019 Nov;Volume 6:9-23.
https://doi.org/10.2147/RSRR.S190720
PMid:31807602 PMCid:PMC6844237
Bargar WL. Robots in orthopaedic surgery: past, present, and future. Clin Orthop Relat Res. 2007;463:31-6.
https://doi.org/10.1097/BLO.0b013e318146874f
PMid:17960673
Balasubramanian S, Klein J, Burdet E. Robot-assisted rehabilitation of hand function. Curr Opin Neurol. 2010 Dec;23(6):661-70.
https://doi.org/10.1097/WCO.0b013e32833e99a4
PMid:20852421
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Galen Medical Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.