Emerging Technologies in Hand Orthopedic Surgery: Current Trends and Future Directions

Emerging Technologies in Hand Orthopedic Surgery

Authors

  • Ahmad Dashtbozorg Department of Orthopedic Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
  • Elaheh Heidarian Klinik für Unfallchirurgie und Orthopädie, Kinderorthopädie, Agaplesion Diakonieklinik Rotenburg, Rotenburg (Wümme), Germany
  • Malihe Sagheb Ray Shirazi Depertment of Anatomical Sciences, Faculty of Nursing and Midwifery, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
  • Zahra Movahednia Department of Operating Room, Behbahan Faculty of Medical Sciences, Behbahan, Iran
  • Maryam Jafari Department of General Surgery for Trauma, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • Ramila Abedi Azar Laboratory for Robotic Research, Iran University of Science and technology, Tehran, Iran

DOI:

https://doi.org/10.31661/gmj.v13i.3325

Keywords:

Hand Orthopedic Surgery; Artificial Intelligence; Robotics; 3D Printing; Virtual Reality and Augmented Reality

Abstract

Emerging technologies are changing hand surgery by improving surgical precision, minimizing tissue disruption, and expediting patient recovery. These advancements have the potential to revolutionize surgical procedures, patient outcomes, and rehabilitation processes. However, there are still challenges that need to be addressed before these technologies can be widely adopted. These challenges include the learning curve for surgeons, high costs, and ethical considerations. Future research should focus on addressing the limitations of these technologies, exploring their long-term effects, and evaluating their cost-effectiveness. To successfully implement them, a collaborative approach involving clinicians, researchers, engineers, and policymakers is necessary. This review provides an overview of current and future trends in emerging technologies for hand orthopedic surgery.

References

Satava RM. Advanced technologies and the future of medicine and surgery. Yonsei Med J. 2008 Dec 31;49(6):873-8.

https://doi.org/10.3349/ymj.2008.49.6.873

PMid:19108007 PMCid:PMC2628030

Owens JG, Rauzi MR, Kittelson A, Graber J, Bade MJ, Johnson J, et al. How New Technology Is Improving Physical Therapy. Curr Rev Musculoskelet Med. 2020 Apr;13(2):200-11.

https://doi.org/10.1007/s12178-020-09610-6

PMid:32162144 PMCid:PMC7174486

Dupont PE, Nelson BJ, Goldfarb M, Hannaford B, Menciassi A, O'Malley MK, et al. A decade retrospective of medical robotics research from 2010 to 2020. Sci Robot. 2021 Nov 10;6(60):eabi8017.

https://doi.org/10.1126/scirobotics.abi8017

PMid:34757801 PMCid:PMC8890492

Chu CY, Patterson RM. Soft robotic devices for hand rehabilitation and assistance: a narrative review. J NeuroEngineering Rehabil. 2018 Dec;15(1):9.

https://doi.org/10.1186/s12984-018-0350-6

PMid:29454392 PMCid:PMC5816520

Hakim RM, Tunis BG, Ross MD. Rehabilitation robotics for the upper extremity: review with new directions for orthopaedic disorders. Disabil Rehabil Assist Technol. 2017 Nov 17;12(8):765-71.

https://doi.org/10.1080/17483107.2016.1269211

PMid:28035841

Croke L. Health care technology continues to improve patient care and work efficiencies. AORN J [Internet]: 2020 Mar [cited 2024 Jan 17]; Available from: https://aornjournal.onlinelibrary.wiley.com/doi/10.1002/aorn.12993.

https://doi.org/10.1002/aorn.12993

Lungu AJ, Swinkels W, Claesen L, Tu P, Egger J, Chen X. A review on the applications of virtual reality, augmented reality and mixed reality in surgical simulation: an extension to different kinds of surgery. Expert Rev Med Devices. 2021 Jan 2;18(1):47-62.

https://doi.org/10.1080/17434440.2021.1860750

PMid:33283563

Verhey JT, Haglin JM, Verhey EM, Hartigan DE. Virtual, augmented, and mixed reality applications in orthopedic surgery. Int J Med Robot. 2020 Apr;16(2):e2067.

https://doi.org/10.1002/rcs.2067

PMid:31867864

McKnight RR, Pean CA, Buck JS, Hwang JS, Hsu JR, Pierrie SN. Virtual Reality and Augmented Reality-Translating Surgical Training into Surgical Technique. Curr Rev Musculoskelet Med. 2020 Dec;13(6):663-74.

https://doi.org/10.1007/s12178-020-09667-3

PMid:32779019 PMCid:PMC7661680

Vles MD, Terng NCO, Zijlstra K, Mureau MAM, Corten EML. Virtual and augmented reality for preoperative planning in plastic surgical procedures: A systematic review. J Plast Reconstr Aesthet Surg. 2020 Nov;73(11):1951-9.

https://doi.org/10.1016/j.bjps.2020.05.081

PMid:32622713

Kabir R, Sunny M, Ahmed H, Rahman M. Hand Rehabilitation Devices: A Comprehensive Systematic Review. Micromachines. 2022 Jun 29;13(7):1033.

https://doi.org/10.3390/mi13071033

PMid:35888850 PMCid:PMC9325203

Braun BJ, Grimm B, Hanflik AM, Marmor MT, Richter PH, Sands AK, et al. Finding NEEMO: towards organizing smart digital solutions in orthopaedic trauma surgery. EFORT Open Rev. 2020 Jul;5(7):408-20.

https://doi.org/10.1302/2058-5241.5.200021

PMid:32818068 PMCid:PMC7407868

Chatterjee SK. AN EVALUATION OF SMART IMPLANTS IN ORTHOPEDIC SURGERY THAT ENHANCE PATIENT OUTCOMES. Student's Journal of Health Research Africa. 2023;4(12):862.

Keller M, Guebeli A, Thieringer F, Honigmann P. Overview of In-Hospital 3D Printing and Practical Applications in Hand Surgery Duan X, editor. BioMed Res Int. 2021;2021:1-14.

https://doi.org/10.1155/2021/4650245

PMid:33855068 PMCid:PMC8019389

Wixted CM, Peterson JR, Kadakia RJ, Adams SB. Three-dimensional Printing in Orthopaedic Surgery: Current Applications and Future Developments. JAAOS Glob Res Rev. 2021 Apr;5(4):e20.00230-11.

https://doi.org/10.5435/JAAOSGlobal-D-20-00230

PMid:33877073 PMCid:PMC8059996

Zhang D, Bauer AS, Blazar P, Earp BE. Three-dimensional printing in hand surgery. J Hand Surg. 2021;46(11):1016-22.

https://doi.org/10.1016/j.jhsa.2021.05.028

PMid:34274209

Jacobo OM, Giachero VE, Hartwig DK, Mantrana GA. Three-dimensional printing modeling: application in maxillofacial and hand fractures and resident training. Eur J Plast Surg. 2018 Apr;41(2):137-46.

https://doi.org/10.1007/s00238-017-1373-0

Galvez M, Asahi T, Baar A, Carcuro G, Cuchacovich N, Fuentes JA, et al. Use of Three-dimensional Printing in Orthopaedic Surgical Planning. JAAOS Glob Res Rev. 2018 May;2(5):e071.

https://doi.org/10.5435/JAAOSGlobal-D-17-00071

PMid:30211394 PMCid:PMC6132335

Aimar A, Palermo A, Innocenti B. The Role of 3D Printing in Medical Applications: A State of the Art. J Healthc Eng. 2019 Mar 21;2019:1-10.

https://doi.org/10.1155/2019/5340616

PMid:31019667 PMCid:PMC6451800

Hoang D, Perrault D, Stevanovic M, Ghiassi A. Surgical applications of three-dimensional printing: a review of the current literature & how to get started. Ann Transl Med. 2016 Dec;4(23):456-456.

https://doi.org/10.21037/atm.2016.12.18

PMid:28090512 PMCid:PMC5220021

Portnova AA, Mukherjee G, Peters KM, Yamane A, Steele KM. Design of a 3D-printed, open-source wrist-driven orthosis for individuals with spinal cord injury Gard SA, editor. PLOS ONE. 2018 Feb 22;13(2):e0193106.

https://doi.org/10.1371/journal.pone.0193106

PMid:29470557 PMCid:PMC5823450

Diment LE, Thompson MS, Bergmann JHM. Clinical efficacy and effectiveness of 3D printing: a systematic review. BMJ Open. 2017 Dec;7(12):e016891.

https://doi.org/10.1136/bmjopen-2017-016891

PMid:29273650 PMCid:PMC5778284

Wong KC. 3D-printed patient-specific applications in orthopedics. Orthop Res Rev. 2016 Oct;Volume 8:57-66.

https://doi.org/10.2147/ORR.S99614

PMid:30774470 PMCid:PMC6209352

Matter-Parrat V, Liverneaux P. 3D printing in hand surgery. Hand Surg Rehabil. 2019 Dec;38(6):338-47.

https://doi.org/10.1016/j.hansur.2019.09.006

PMid:31568862

Lee KH, Kim DK, Cha YH, Kwon JY, Kim DH, Kim SJ. Personalized assistive device manufactured by 3D modelling and printing techniques. Disabil Rehabil Assist Technol. 2019 Jul 4;14(5):526-31.

https://doi.org/10.1080/17483107.2018.1494217

PMid:30318956

Alturkistani R, A K, Devasahayam S, Thomas R, Colombini EL, Cifuentes CA, et al. Affordable passive 3D-printed prosthesis for persons with partial hand amputation. Prosthet Orthot Int. 2020 Apr;44(2):92-8.

https://doi.org/10.1177/0309364620905220

PMid:32100630 PMCid:PMC7364768

Kakar S. What's New in Hand and Wrist Surgery. JBJS. 2017 Mar 15;99(6):531.

https://doi.org/10.2106/JBJS.16.01328

PMid:28291187

Diana M, Marescaux J. Robotic surgery. Br J Surg. 2015 Jan 27;102(2):e15-28.

https://doi.org/10.1002/bjs.9711

PMid:25627128

Ghandourah HSH, Schols RM, Wolfs JAGN, Altaweel F, Van Mulken TJM. Robotic Microsurgery in Plastic and Reconstructive Surgery: A Literature Review. Surg Innov. 2023 Oct;30(5):607-14.

https://doi.org/10.1177/15533506231191211

PMid:37490999 PMCid:PMC10515453

Chen AF, Kazarian GS, Jessop GW, Makhdom A. Robotic Technology in Orthopaedic Surgery. JBJS. 2018 Nov 21;100(22):1984.

https://doi.org/10.2106/JBJS.17.01397

PMid:30480604

Roh HF, Nam SH, Kim JM. Robot-assisted laparoscopic surgery versus conventional laparoscopic surgery in randomized controlled trials: A systematic review and meta-analysis Dangal G, editor. PLOS ONE. 2018 Jan 23;13(1):e0191628.

https://doi.org/10.1371/journal.pone.0191628

PMid:29360840 PMCid:PMC5779699

Kim M, Zhang Y, Jin S. Soft tissue surgical robot for minimally invasive surgery: a review. Biomed Eng Lett. 2023 Nov;13(4):561-9.

https://doi.org/10.1007/s13534-023-00326-3

PMid:37872994 PMCid:PMC10590359

Higgins RM, Gould JC. Clinical Applications of Robotics in General Surgery. In: Handbook of Robotic and Image-Guided Surgery [Internet] Elsevier; Available from: https://linkinghub.elsevier.com/retrieve/pii/B978012814245500013X.

Rodrigues Armijo P, Huang CK, Carlson T, Oleynikov D, Siu KC. Ergonomics Analysis for Subjective and Objective Fatigue Between Laparoscopic and Robotic Surgical Skills Practice Among Surgeons. Surg Innov. 2020 Feb;27(1):81-7.

https://doi.org/10.1177/1553350619887861

PMid:31771411

Kockerling F. Robotic vs. Standard Laparoscopic Technique-What is Better: Front Surg [Internet] 2014 May 15 [cited 2024 Jan 17]; Available from: http://journal.frontiersin.org/article/10.3389/fsurg.2014.00015/abstract.

https://doi.org/10.3389/fsurg.2014.00015

PMid:25593939 PMCid:PMC4286948

Zhao B, Lam J, Hollandsworth HM, Lee AM, Lopez NE, Abbadessa B, et al. General surgery training in the era of robotic surgery: a qualitative analysis of perceptions from resident and attending surgeons. Surg Endosc. 2020 Apr;34(4):1712-21.

https://doi.org/10.1007/s00464-019-06954-0

PMid:31286248 PMCid:PMC6946889

Chowriappa A, Raza SJ, Fazili A, Field E, Malito C, Samarasekera D, et al. Augmented-reality-based skills training for robot-assisted urethrovesical anastomosis: a multi-institutional randomised controlled trial. BJU Int. 2015 Feb;115(2):336-45.

https://doi.org/10.1111/bju.12704

PMid:24612471

SAGES Robotic Task Force, Chen R, Rodrigues Armijo P, Krause C, Siu KC, Oleynikov D. A comprehensive review of robotic surgery curriculum and training for residents, fellows, and postgraduate surgical education. Surg Endosc. 2020 Jan;34(1):361-7.

https://doi.org/10.1007/s00464-019-06775-1

PMid:30953199

Ali M, Phillips D, Kamson A, Nivar I, Dahl R, Hallock R. Learning Curve of Robotic-Assisted Total Knee Arthroplasty for Non-Fellowship-Trained Orthopedic Surgeons. Arthroplasty Today. 2022 Feb;13:194-8.

https://doi.org/10.1016/j.artd.2021.10.020

PMid:35118183 PMCid:PMC8791856

Pierce J, Needham K, Adams C, Coppolecchia A, Lavernia C. Robotic arm-assisted knee surgery: an economic analysis. Am J Manag Care. 2020;26(7):e205-10.

https://doi.org/10.37765/ajmc.2020.43763

PMid:32672918

Shah NL, Laungani RG, Kaufman ME. Financial Considerations in Robotic Surgery. In: Fong Y, Woo Y, Hyung WJ, Lau C, Strong VE, editors The SAGES Atlas of Robotic Surgery [Internet] Cham Springer International Publishing; Available from: http://link.springer.com/10.1007/978-3-319-91045-1_5.

Kolessar DJ, Hayes DS, Harding JL, Rudraraju RT, Graham JH. Robotic-Arm Assisted Technology's Impact on Knee Arthroplasty and Associated Healthcare Costs. J Health Econ Outcomes Res [Internet]: 2022 Aug 23 [cited 2024 Jan 17]; Available from: https://jheor.org/article/37024-robotic-arm-assisted-technology-s-impact-on-knee-arthroplasty-and-associated-healthcare-costs.

https://doi.org/10.36469/001c.37024

PMid:36072348 PMCid:PMC9398468

Chen LWY, Goh M, Goh R, Chao YK, Huang JJ, Kuo WL, et al. Robotic-Assisted Peripheral Nerve Surgery: A Systematic Review. J Reconstr Microsurg. 2021 Jul;37(06):503-13.

https://doi.org/10.1055/s-0040-1722183

PMid:33401326

Zhang F, Li H, Ba Z, Bo C, Li K. Robotic arm-assisted vs conventional unicompartmental knee arthroplasty: A meta-analysis of the effects on clinical outcomes. Medicine (Baltimore). 2019 Aug;98(35):e16968.

https://doi.org/10.1097/MD.0000000000016968

PMid:31464939 PMCid:PMC6736485

Yoo JS, Patel DS, Hrynewycz NM, Brundage TS, Singh K. The utility of virtual reality and augmented reality in spine surgery. Ann Transl Med. 2019 Sep;7(S5):S171-S171.

https://doi.org/10.21037/atm.2019.06.38

PMid:31624737 PMCid:PMC6778272

Iyengar KarthikeyanP, Gowers BTV, Jain VK, Ahluwalia RajuS, Botchu R, Vaishya R. Smart sensor implant technology in total knee arthroplasty. J Clin Orthop Trauma. 2021 Nov;22:101605.

https://doi.org/10.1016/j.jcot.2021.101605

PMid:34631412 PMCid:PMC8479248

Ledet EH, Liddle B, Kradinova K, Harper S. Smart implants in orthopedic surgery, improving patient outcomes: a review. Innov Entrep Health. 2018 Aug;Volume 5:41-51.

https://doi.org/10.2147/IEH.S133518

PMid:30246037 PMCid:PMC6145822

Al-Ayyad M, Owida HA, De Fazio R, Al-Naami B, Visconti P. Electromyography Monitoring Systems in Rehabilitation: A Review of Clinical Applications, Wearable Devices and Signal Acquisition Methodologies. Electronics. 2023 Mar 23;12(7):1520.

https://doi.org/10.3390/electronics12071520

Iyengar KarthikeyanP, Kariya AD, Botchu R, Jain VK, Vaishya R. Significant capabilities of SMART sensor technology and their applications for Industry 4.0 in trauma and orthopaedics. Sens Int. 2022;3:100163.

https://doi.org/10.1016/j.sintl.2022.100163

undefined undefined, undefined undefined. Wearables for personalized monitoring of masticatory muscle activity - opportunities, challenges, and the future. Clin Oral Investig. 2023;27(8):4861-7.

https://doi.org/10.1007/s00784-023-05127-7

PMid:37410151

de Fátima Domingues M, Rosa V, Nepomuceno AC, Tavares C, Alberto N, Andre P, et al. Wearable devices for remote physical rehabilitation using a Fabry-Perot optical fiber sensor: ankle joint kinematic. IEEE Access. 2020;8:109866-75.

https://doi.org/10.1109/ACCESS.2020.3001091

Bowman T, Gervasoni E, Arienti C, Lazzarini SG, Negrini S, Crea S, et al. Wearable devices for biofeedback rehabilitation: a systematic review and meta-analysis to design application rules and estimate the effectiveness on balance and gait outcomes in neurological diseases. Sensors. 2021;21(10):3444.

https://doi.org/10.3390/s21103444

PMid:34063355 PMCid:PMC8156914

Longo UG, De Salvatore S, Candela V, Zollo G, Calabrese G, Fioravanti S, et al. Augmented Reality, Virtual Reality and Artificial Intelligence in Orthopedic Surgery: A Systematic Review. Appl Sci. 2021 Apr 5;11(7):3253.

https://doi.org/10.3390/app11073253

Jakob I, Kollreider A, Germanotta M, Benetti F, Cruciani A, Padua L, et al. Robotic and Sensor Technology for Upper Limb Rehabilitation. PM&R [Internet]: 2018 Sep [cited 2024 Jan 17]; Available from: https://onlinelibrary.wiley.com/doi/10.1016/j.pmrj.2018.07.011.

https://doi.org/10.1016/j.pmrj.2018.07.011

PMid:30269805

Gassert R, Dietz V. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. J NeuroEngineering Rehabil. 2018 Dec;15(1):46.

https://doi.org/10.1186/s12984-018-0383-x

PMid:29866106 PMCid:PMC5987585

Chen L, Zhou C, Jiang C, Huang X, Liu Z, Zhang H, et al. Translation of nanotechnology-based implants for orthopedic applications: current barriers and future perspective. Front Bioeng Biotechnol. 2023 Aug 22;11:1206806.

https://doi.org/10.3389/fbioe.2023.1206806

PMid:37675405 PMCid:PMC10478008

Annabi N, Tamayol A, Shin SR, Ghaemmaghami AM, Peppas NA, Khademhosseini A. Surgical materials: Current challenges and nano-enabled solutions. Nano Today. 2014 Oct;9(5):574-89.

https://doi.org/10.1016/j.nantod.2014.09.006

PMid:25530795 PMCid:PMC4266934

Sindhu RK, Kaur H, Kumar M, Sofat M, Yapar EA, Esenturk I, et al. The ameliorating approach of nanorobotics in the novel drug delivery systems: a mechanistic review. J Drug Target. 2021 Sep 14;29(8):822-33.

https://doi.org/10.1080/1061186X.2021.1892122

PMid:33641551

Güven E. Nanotechnology-based drug delivery systems in orthopedics. Jt Dis Relat Surg. 2021 Jan 11;32(1):267-73.

https://doi.org/10.5606/ehc.2021.80360

PMid:33463450 PMCid:PMC8073448

Deng Y, Zhou C, Fu L, Huang X, Liu Z, Zhao J, et al. A mini-review on the emerging role of nanotechnology in revolutionizing orthopedic surgery: challenges and the road ahead. Front Bioeng Biotechnol. 2023 May 16;11:1191509.

https://doi.org/10.3389/fbioe.2023.1191509

PMid:37260831 PMCid:PMC10228697

Leary SP, Liu CY, Apuzzo MLJ. Toward the Emergence of Nanoneurosurgery: Part III-Nanomedicine: Targeted Nanotherapy, Nanosurgery, and Progress Toward the Realization of Nanoneurosurgery. Neurosurgery. 2006 Jun;58(6):1009-26.

https://doi.org/10.1227/01.NEU.0000217016.79256.16

PMid:16723880

Li J, Esteban-Fernández De Ávila B, Gao W, Zhang L, Wang J. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci Robot. 2017 Mar;2(4):eaam6431.

https://doi.org/10.1126/scirobotics.aam6431

PMid:31552379 PMCid:PMC6759331

Yadav HKS, Alsalloum GA, Al Halabi NA. Nanobionics and nanoengineered prosthetics. In: Nanostructures for the Engineering of Cells, Tissues and Organs [Internet] Elsevier; Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128136652000144.

Pantalone D, Faini GS, Cialdai F, Sereni E, Bacci S, Bani D, et al. Robot-assisted surgery in space: pros and cons A review from the surgeon's point of view. Npj Microgravity. 2021;7(1):56.

https://doi.org/10.1038/s41526-021-00183-3

PMid:34934056 PMCid:PMC8692617

Sen RK, Tripathy SK, Shetty N. Ethics in Clinical Orthopedic Surgery. Indian J Orthop. 2023 Nov;57(11):1714-21.

https://doi.org/10.1007/s43465-023-01003-4

PMid:37881283

Mahure SA, Teo GM, Kissin YD, Stulberg BN, Kreuzer S, Long WJ. Learning curve for active robotic total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2022 Aug;30(8):2666-76.

https://doi.org/10.1007/s00167-021-06452-8

PMid:33611607

Moeini S, Shahriari M, Shamali M. Ethical challenges of obtaining informed consent from surgical patients. Nurs Ethics. 2020 Mar;27(2):527-36.

https://doi.org/10.1177/0969733019857781

PMid:31296111

Bhimani SJ, Bhimani R, Smith A, Eccles C, Smith L, Malkani A. Robotic-assisted total knee arthroplasty demonstrates decreased postoperative pain and opioid usage compared to conventional total knee arthroplasty. Bone Jt Open. 2020 Feb 18;1(2):8-12.

https://doi.org/10.1302/2633-1462.12.BJO-2019-0004.R1

PMid:33215101 PMCid:PMC7659658

Haskell A, Kim T. Implementation of Patient-Reported Outcomes Measurement Information System Data Collection in a Private Orthopedic Surgery Practice. Foot Ankle Int. 2018 May;39(5):517-21.

https://doi.org/10.1177/1071100717753967

PMid:29366343

Karimi A, HaddadPajouh H. Artificial Intelligence, Important Assistant of Scientists and Physicians. Galen Med J. 2020 Nov 11;9:e2048.

https://doi.org/10.31661/gmj.v9i0.2048

PMid:34466625 PMCid:PMC8343766

Hernigou P, Lustig S, Caton J. Artificial intelligence and robots like us (surgeons) for people like you (patients): toward a new human-robot-surgery shared experience What is the moral and legal status of robots and surgeons in the operating room? Int Orthop. 2023 Feb;47(2):289-94.

https://doi.org/10.1007/s00264-023-05690-4

PMid:36637460

Thurzo A, Kurilová V, Varga I. Artificial Intelligence in Orthodontic Smart Application for Treatment Coaching and Its Impact on Clinical Performance of Patients Monitored with AI-TeleHealth System. Healthcare. 2021 Dec 7;9(12):1695.

https://doi.org/10.3390/healthcare9121695

PMid:34946421 PMCid:PMC8701246

Maza G, Sharma A. Past, present, and future of robotic surgery. Otolaryngol Clin North Am. 2020;53(6):935-41.

https://doi.org/10.1016/j.otc.2020.07.005

PMid:32838968

D'Souza M, Gendreau J, Feng A, Kim LH, Ho AL, Veeravagu A. Robotic-Assisted Spine Surgery: History, Efficacy, Cost, And Future Trends. Robot Surg Res Rev. 2019 Nov;Volume 6:9-23.

https://doi.org/10.2147/RSRR.S190720

PMid:31807602 PMCid:PMC6844237

Bargar WL. Robots in orthopaedic surgery: past, present, and future. Clin Orthop Relat Res. 2007;463:31-6.

https://doi.org/10.1097/BLO.0b013e318146874f

PMid:17960673

Balasubramanian S, Klein J, Burdet E. Robot-assisted rehabilitation of hand function. Curr Opin Neurol. 2010 Dec;23(6):661-70.

https://doi.org/10.1097/WCO.0b013e32833e99a4

PMid:20852421

Downloads

Published

2024-04-16

How to Cite

Dashtbozorg, A., Heidarian, E., Sagheb Ray Shirazi, M., Movahednia, Z., Jafari, M., & Abedi Azar, R. (2024). Emerging Technologies in Hand Orthopedic Surgery: Current Trends and Future Directions: Emerging Technologies in Hand Orthopedic Surgery. Galen Medical Journal, 13, e3325. https://doi.org/10.31661/gmj.v13i.3325

Issue

Section

Review Article