Role of Artificial Intelligence in Surgical Decision-Making: A Comprehensive Review

Role of AI in SDM

Authors

  • Anita Zarghami Department of Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Keywords:

Artificial Intelligence; Surgical Decision-Making; Outcome; Electronic Health Record; Cancer

Abstract

Artificial intelligence (AI) has emerged as a promising technology that can revolutionize surgical decision-making (SDM). This comprehensive review aims to explore the current state of AI in SDM and highlight its benefits, challenges, and future directions. The integration of AI in SDM offers numerous advantages. AI algorithms can analyze medical images, such as radiographs, computed tomography scans, and magnetic resonance imaging, to detect abnormalities and assist in pre-operative assessments. By leveraging electronic health records, AI can provide personalized surgical recommendations based on patient-specific data.
Additionally, AI can analyze genetic data to assess genetic predispositions and tailor treatment plans accordingly. Intra-operatively, AI can aid in real-time analysis of surgical videos and imaging, helping surgeons identify critical structures and guide precise incisions. AI algorithms can also monitor physiological indicators to detect early signs of complications and predict outcomes, improving intra-operative decision-making. Post-operatively, AI can analyze vital signs, imaging, and patient data to detect complications, provide outcomes analysis, and facilitate personalized patient care. However, challenges and limitations exist. Data quality and availability, interpretability of AI algorithms, data security, integration into surgical workflows, and regulatory considerations are important challenges. Addressing these challenges involves ensuring data privacy, developing transparent AI models, establishing robust infrastructure, engaging clinicians, and establishing regulatory frameworks. AI-powered surgical robots and systems can enhance surgical precision and automation. Improvements in interpretability and explainability foster trust and ethical considerations. Also, data sharing and collaboration advancements could refine AI algorithms’ accuracy and generalizability. Personalized medicine and precision surgery are achieved through AI integration. Also, education and training could benefit from AI-powered decision support systems.

References

Shinkunas LA, Klipowicz CJ, Carlisle EM. Shared decision making in surgery: a scoping review of patient and surgeon preferences. BMC Med Inform Decis Mak. 2020;20(1):190.

https://doi.org/10.1186/s12911-020-01211-0

PMid:32787950 PMCid:PMC7424662

Sepucha KR, Langford AT, Belkora JK, Chang Y, Moy B, Partridge AH, et al. Impact of timing on measurement of decision quality and shared decision making: longitudinal cohort study of breast cancer patients. Med Decis Making. 2019;39(6):642-50.

https://doi.org/10.1177/0272989X19862545

PMid:31354095 PMCid:PMC7240785

Loftus TJ, Tighe PJ, Filiberto AC, Efron PA, Brakenridge SC, Mohr AM, et al. Artificial intelligence and surgical decision-making. JAMA Surg. 2020;155(2):148-58.

https://doi.org/10.1001/jamasurg.2019.4917

PMid:31825465 PMCid:PMC7286802

Saravi B, Hassel F, Ülkümen S, Zink A, Shavlokhova V, Couillard-Despres S, et al. Artificial intelligence-driven prediction modeling and decision making in spine surgery using hybrid machine learning models. J Pers Med. 2022;12(4):509.

https://doi.org/10.3390/jpm12040509

PMid:35455625 PMCid:PMC9029065

Jayatilake SM, Ganegoda GU. Involvement of machine learning tools in healthcare decision making. J Healthc Eng. 2021:2021:6679512.

https://doi.org/10.1155/2021/6679512

PMid:33575021 PMCid:PMC7857908

Byerly S, Maurer LR, Mantero A, Naar L, An G, Kaafarani HM. Machine learning and artificial intelligence for surgical decision making. Surg Infect (Larchmt). 2021;22(6):626-34.

https://doi.org/10.1089/sur.2021.007

PMid:34270361

Stafford IS, Kellermann M, Mossotto E, Beattie RM, MacArthur BD, Ennis S. A systematic review of the applications of artificial intelligence and machine learning in autoimmune diseases. NPJ Digit Med. 2020:3:30.

https://doi.org/10.1038/s41746-020-0229-3

PMid:32195365 PMCid:PMC7062883

Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol. 2019;20(3):405-10.

https://doi.org/10.3348/kjr.2019.0025

PMid:30799571 PMCid:PMC6389801

Van der Velden BH, Kuijf HJ, Gilhuijs KG, Viergever MA. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med Image Anal. 2022:79:102470.

https://doi.org/10.1016/j.media.2022.102470

PMid:35576821

Chlap P, Min H, Vandenberg N, Dowling J, Holloway L, Haworth A. A review of medical image data augmentation techniques for deep learning applications. J Med Imaging Radiat Oncol. 2021;65(5):545-63.

https://doi.org/10.1111/1754-9485.13261

PMid:34145766

Payrovnaziri SN, Chen Z, Rengifo-Moreno P, Miller T, Bian J, Chen JH, et al. Explainable artificial intelligence models using real-world electronic health record data: a systematic scoping review. J Am Med Inform Assoc. 2020;27(7):1173-85.

https://doi.org/10.1093/jamia/ocaa053

PMid:32417928 PMCid:PMC7647281

Iftikhar P, Kuijpers MV, Khayyat A, Iftikhar A, De Sa MD. Artificial intelligence: a new paradigm in obstetrics and gynecology research and clinical practice. Cureus. 2020;12(2):e7124.

https://doi.org/10.7759/cureus.7124

Haleem A, Vaishya R, Javaid M, Khan IH. Artificial Intelligence (AI) applications in orthopaedics: an innovative technology to embrace. J Clin Orthop Trauma. 2020;11(Suppl 1):S80-1.

https://doi.org/10.1016/j.jcot.2019.06.012

PMid:31992923 PMCid:PMC6977175

Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci. 2020;111(5):1452-60.

https://doi.org/10.1111/cas.14377

PMid:32133724 PMCid:PMC7226189

Wang S, Yang DM, Rong R, Zhan X, Fujimoto J, Liu H, et al. Artificial intelligence in lung cancer pathology image analysis. Cancers (Basel). 2019;11(11):1673.

https://doi.org/10.3390/cancers11111673

PMid:31661863 PMCid:PMC6895901

Stam WT, Goedknegt LK, Ingwersen EW, Schoonmade LJ, Bruns ER, Daams F. The prediction of surgical complications using artificial intelligence in patients undergoing major abdominal surgery: A systematic review. Surgery. 2022;171(4):1014-21.

https://doi.org/10.1016/j.surg.2021.10.002

PMid:34801265

Wingert T, Lee C, Cannesson M. Machine learning, deep learning, and closed loop devices-anesthesia delivery. Anesthesiol Clin. 2021; 39(3): 565-81.

https://doi.org/10.1016/j.anclin.2021.03.012

PMid:34392886 PMCid:PMC9847584

Zaver HB, Mzaik O, Thomas J, Roopkumar J, Adedinsewo D, Keaveny AP, et al. Utility of an Artificial Intelligence Enabled Electrocardiogram for Risk Assessment in Liver Transplant Candidates. Dig Dis Sci. 2023;68(6):2379-88.

https://doi.org/10.1007/s10620-023-07928-y

PMid:37022601 PMCid:PMC10077316

Tangsrivimol JA, Schonfeld E, Zhang M, Veeravagu A, Smith TR, Härtl R, et al. Artificial Intelligence in Neurosurgery: A State-of-the-Art Review from Past to Future. Diagnostics (Basel). 2023 Jul;13(14):2429.

https://doi.org/10.3390/diagnostics13142429

PMid:37510174 PMCid:PMC10378231

Navarrete-Welton AJ, Hashimoto DA. Current applications of artificial intelligence for intraoperative decision support in surgery. Front Med. 2020;14(4):369-81.

https://doi.org/10.1007/s11684-020-0784-7

PMid:32621201

Giordano C, Brennan M, Mohamed B, Rashidi P, Modave F, Tighe P. Accessing artificial intelligence for clinical decision-making. Front Digit Health. 2021:3:645232.

https://doi.org/10.3389/fdgth.2021.645232

PMid:34713115 PMCid:PMC8521931

Batailler C, Shatrov J, Sappey-Marinier E, Servien E, Parratte S, Lustig S. Artificial intelligence in knee arthroplasty: current concept of the available clinical applications. Arthroplasty. 2022;4(1):17.

https://doi.org/10.1186/s42836-022-00119-6

PMid:35491420 PMCid:PMC9059406

Premaladha J, Ravichandran KS. Novel Approaches for Diagnosing Melanoma Skin Lesions Through Supervised and Deep Learning Algorithms. J Med Syst. 2016;40(4):96.

https://doi.org/10.1007/s10916-016-0460-2

PMid:26872778

Akazawa M, Hashimoto K. Artificial intelligence in gynecologic cancers: Current status and future challenges-A systematic review. Artif Intell Med. 2021;120:102164.

https://doi.org/10.1016/j.artmed.2021.102164

PMid:34629152

Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):E215-20.

https://doi.org/10.1161/01.CIR.101.23.e215

Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018;268(1):70-6.

https://doi.org/10.1097/SLA.0000000000002693

PMid:29389679 PMCid:PMC5995666

He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019;25(1):30-6.

https://doi.org/10.1038/s41591-018-0307-0

PMid:30617336 PMCid:PMC6995276

Panesar S, Cagle Y, Chander D, Morey J, Fernandez-Miranda J, Kliot M. Artificial intelligence and the future of surgical robotics. Ann Surg. 2019;270(2):223-6.

https://doi.org/10.1097/SLA.0000000000003262

PMid:30907754

Matheny ME, Whicher D, Israni ST. Artificial intelligence in health care: a report from the National Academy of Medicine. JAMA. 2020;323(6):509-10.

https://doi.org/10.1001/jama.2019.21579

PMid:31845963

Helm JM, Swiergosz AM, Haeberle HS, Karnuta JM, Schaffer JL, Krebs VE, et al. Machine learning and artificial intelligence: definitions, applications, and future directions. Curr Rev Musculoskelet Med. 2020;13(1):69-76.

https://doi.org/10.1007/s12178-020-09600-8

PMid:31983042 PMCid:PMC7083992

Gupta B, Sahay N, Vinod K, Sandhu K, Basireddy HR, Mudiganti RK. Recent advances in system management, decision support systems, artificial intelligence and computing in anaesthesia. Indian J Anaesth. 2023;67(1):146-51.

https://doi.org/10.4103/ija.ija_974_22

PMid:36970485 PMCid:PMC10034926

Bashir M, Harky A. Artificial Intelligence in Aortic Surgery: The Rise of the Machine. Semin Thorac Cardiovasc Surg. 2019;31(4):635-7.

https://doi.org/10.1053/j.semtcvs.2019.05.040

PMid:31279913

Ghassemi M, Naumann T, Schulam P, Beam AL, Chen IY, Ranganath R. Practical guidance on artificial intelligence for health-care data. Lancet Digit Health. 2019;1(4):e157-9.

https://doi.org/10.1016/S2589-7500(19)30084-6

PMid:33323184

da Costa CA, Pasluosta CF, Eskofier B, Da Silva DB, da Rosa Righi R. Internet of Health Things: Toward intelligent vital signs monitoring in hospital wards. Artif Intell Med. 2018:89:61-9.

https://doi.org/10.1016/j.artmed.2018.05.005

PMid:29871778

Ruan X, Fu S, Storlie CB, Mathis KL, Larson DW, Liu H. Real-time risk prediction of colorectal surgery-related post-surgical complications using GRU-D model. J Biomed Inform. 2022:135:104202.

https://doi.org/10.1016/j.jbi.2022.104202

PMid:36162805

Chen D, Jiang J, Fu S, Demuth G, Liu S, Schaeferle GM, et al. Early detection of post-surgical complications using time-series electronic health records. AMIA Jt Summits Transl Sci Proc. 2021:2021:152-60.

Scardoni A, Balzarini F, Signorelli C, Cabitza F, Odone A. Artificial intelligence-based tools to control healthcare associated infections: a systematic review of the literature. J Infect Public Health. 2020;13(8):1061-77.

https://doi.org/10.1016/j.jiph.2020.06.006

PMid:32561275

Choi HI, Jung SK, Baek SH, Lim WH, Ahn SJ, Yang IH, et al. Artificial intelligent model with neural network machine learning for the diagnosis of orthognathic surgery. J Craniofac Surg. 2019;30(7):1986-9.

https://doi.org/10.1097/SCS.0000000000005650

PMid:31205280

Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med. 2018;24(11):1716-20.

https://doi.org/10.1038/s41591-018-0213-5

PMid:30349085

Bari H, Wadhwani S, Dasari BV. Role of artificial intelligence in hepatobiliary and pancreatic surgery. World J Gastrointest Surg. 2021;13(1):7-18.

https://doi.org/10.4240/wjgs.v13.i1.7

PMid:33552391 PMCid:PMC7830072

Jin R, Luk KD, Cheung JP, Hu Y. Prognosis of cervical myelopathy based on diffusion tensor imaging with artificial intelligence methods. NMR Biomed. 2019;32(8):e4114.

https://doi.org/10.1002/nbm.4114

PMid:31131933

Ahmad Z, Rahim S, Zubair M, Abdul-Ghafar J. Artificial intelligence (AI) in medicine, current applications and future role with special emphasis on its potential and promise in pathology: present and future impact, obstacles including costs and acceptance among pathologists, practical and philosophical considerations A comprehensive review. Diagn Pathol. 2021;16(1):24.

https://doi.org/10.1186/s13000-021-01085-4

PMid:33731170 PMCid:PMC7971952

Farooq H, Deckard ER, Ziemba-Davis M, Madsen A, Meneghini RM. Predictors of patient satisfaction following primary total knee arthroplasty: results from a traditional statistical model and a machine learning algorithm. J Arthroplasty. 2020;35(11):3123-30.

https://doi.org/10.1016/j.arth.2020.05.077

PMid:32595003

Yu KH, Kohane IS. Framing the challenges of artificial intelligence in medicine. BMJ Qual Saf. 2019;28(3):238-41.

https://doi.org/10.1136/bmjqs-2018-008551

PMid:30291179

Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip Rev Data Min Knowl Discov. 2019;9(4):e1312.

https://doi.org/10.1002/widm.1312

PMid:32089788 PMCid:PMC7017860

Cui M, Zhang DY. Artificial intelligence and computational pathology. Lab Invest. 2021;101(4):412-22.

https://doi.org/10.1038/s41374-020-00514-0

PMid:33454724 PMCid:PMC7811340

Guo J, Li B. The application of medical artificial intelligence technology in rural areas of developing countries. Health Equity. 2018;2(1):174-81.

https://doi.org/10.1089/heq.2018.0037

PMid:30283865 PMCid:PMC6110188

Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):195.

https://doi.org/10.1186/s12916-019-1426-2

PMid:31665002 PMCid:PMC6821018

Hatherley J, Sparrow R, Howard M. The virtues of interpretable medical artificial intelligence. Camb Q Healthc Ethics. 2022:1-10.

https://doi.org/10.1017/S0963180122000305

PMid:36524245

Combi C, Amico B, Bellazzi R, Holzinger A, Moore JH, Zitnik M, et al. A manifesto on explainability for artificial intelligence in medicine. Artif Intell Med. 2022:133:102423.

https://doi.org/10.1016/j.artmed.2022.102423

PMid:36328669

Xu Q, Xie W, Liao B, Hu C, Qin L, Yang Z, et al. Interpretability of Clinical Decision Support Systems Based on Artificial Intelligence from Technological and Medical Perspective: A Systematic Review. J Healthc Eng. 2023:2023:9919269.

https://doi.org/10.1155/2023/9919269

PMid:36776958 PMCid:PMC9918364

Kaissis GA, Makowski MR, Rückert D, Braren RF. Secure, privacy-preserving and federated machine learning in medical imaging. Nature Machine Intelligence. 2020;2(6):305-11.

https://doi.org/10.1038/s42256-020-0186-1

Braun M, Hummel P, Beck S, Dabrock P. Primer on an ethics of AI-based decision support systems in the clinic. J Med Ethics. 2020 Apr;47(12):e3.

https://doi.org/10.1136/medethics-2019-105860

PMid:32245804 PMCid:PMC8639945

Phichitchaisopa N, Naenna T. Factors affecting the adoption of healthcare information technology. EXCLI J. 2013; 12: 413-36.

Colling R, Pitman H, Oien K, Rajpoot N, Macklin P, CM-Path AI in Histopathology Working Group, et al. Artificial intelligence in digital pathology: a roadmap to routine use in clinical practice. J Pathol. 2019;249(2):143-50.

https://doi.org/10.1002/path.5310

PMid:31144302

Buch VH, Ahmed I, Maruthappu M. Artificial intelligence in medicine: current trends and future possibilities. Br J Gen Pract. 2018;68(668):143-4.

https://doi.org/10.3399/bjgp18X695213

PMid:29472224 PMCid:PMC5819974

Pesapane F, Volonté C, Codari M, Sardanelli F. Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States. Insights Imaging. 2018;9(5):745-53.

https://doi.org/10.1007/s13244-018-0645-y

PMid:30112675 PMCid:PMC6206380

Keskinbora KH. Medical ethics considerations on artificial intelligence. J Clin Neurosci. 2019:64:277-82.

https://doi.org/10.1016/j.jocn.2019.03.001

PMid:30878282

Holzinger A, Dehmer M, Emmert-Streib F, Cucchiara R, Augenstein I, Del Ser J, et al. Information fusion as an integrative cross-cutting enabler to achieve robust, explainable, and trustworthy medical artificial intelligence. Information Fusion. 2022;79:263-78.

https://doi.org/10.1016/j.inffus.2021.10.007

Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56.

https://doi.org/10.1038/s41591-018-0300-7

PMid:30617339

London AJ. Artificial intelligence and black-box medical decisions: accuracy versus explainability. Hastings Cent Rep. 2019;49(1):15-21.

https://doi.org/10.1002/hast.973

PMid:30790315

Faes L, Liu X, Wagner SK, Fu DJ, Balaskas K, Sim DA, et al. A clinician's guide to artificial intelligence: how to critically appraise machine learning studies. Transl Vis Sci Technol. 2020;9(2):7.

https://doi.org/10.1167/tvst.9.2.7

PMid:32704413 PMCid:PMC7346877

Noorbakhsh-Sabet N, Zand R, Zhang Y, Abedi V. Artificial intelligence transforms the future of health care. Am J Med. 2019;132(7):795-801.

https://doi.org/10.1016/j.amjmed.2019.01.017

PMid:30710543 PMCid:PMC6669105

Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol. 2019;28(2):73-81.

https://doi.org/10.1080/13645706.2019.1575882

PMid:30810430

O'Sullivan S, Nevejans N, Allen C, Blyth A, Leonard S, Pagallo U, et al. Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery. Int J Med Robot. 2019;15(1):e1968.

https://doi.org/10.1002/rcs.1968

PMid:30397993

Aruni G, Amit G, Dasgupta P. New surgical robots on the horizon and the potential role of artificial intelligence. Investig Clin Urol. 2018;59(4):221-2.

https://doi.org/10.4111/icu.2018.59.4.221

PMid:29984335 PMCid:PMC6028471

Tarassoli SP. Artificial intelligence, regenerative surgery, robotics What is realistic for the future of surgery. Annals of Medicine and Surgery. 2019;41:53-5.

https://doi.org/10.1016/j.amsu.2019.04.001

PMid:31049197 PMCid:PMC6479269

Gumbs AA, Frigerio I, Spolverato G, Croner R, Illanes A, Chouillard E, et al. Artificial Intelligence Surgery: How Do We Get to Autonomous Actions in Surgery?. Sensors (Basel). 2021; 21(16): 5526.

https://doi.org/10.3390/s21165526

PMid:34450976 PMCid:PMC8400539

Briganti G, Le Moine O. Artificial intelligence in medicine: today and tomorrow. Front Med (Lausanne). 2020; 7: 27.

https://doi.org/10.3389/fmed.2020.00027

PMid:32118012 PMCid:PMC7012990

Kulkarni S, Seneviratne N, Baig MS, Khan AH. Artificial intelligence in medicine: where are we now?. Acad Radiol. 2020;27(1):62-70.

https://doi.org/10.1016/j.acra.2019.10.001

PMid:31636002

Tran BX, Vu GT, Ha GH, Vuong QH, Ho MT, Vuong TT, et al. Global evolution of research in artificial intelligence in health and medicine: a bibliometric study. J Clin Med. 2019;8(3):360.

https://doi.org/10.3390/jcm8030360

PMid:30875745 PMCid:PMC6463262

Han ER, Yeo S, Kim MJ, Lee YH, Park KH, Roh H. Medical education trends for future physicians in the era of advanced technology and artificial intelligence: an integrative review. BMC Med Educ. 2019;19(1):460.

https://doi.org/10.1186/s12909-019-1891-5

PMid:31829208 PMCid:PMC6907217

Miller DD, Brown EW. Artificial intelligence in medical practice: the question to the answer?. Am J Med. 2018;131(2):129-33.

https://doi.org/10.1016/j.amjmed.2017.10.035

PMid:29126825

Stead WW. Clinical implications and challenges of artificial intelligence and deep learning. JAMA. 2018;320(11):1107-8.

https://doi.org/10.1001/jama.2018.11029

PMid:30178025

Langlotz CP, Allen B, Erickson BJ, Kalpathy-Cramer J, Bigelow K, Cook TS, et al. A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology. 2019;291(3):781-91.

https://doi.org/10.1148/radiol.2019190613

PMid:30990384 PMCid:PMC6542624

Goldenberg SL, Nir G, Salcudean SE. A new era: artificial intelligence and machine learning in prostate cancer. Nat Rev Urol. 2019;16(7):391-403.

https://doi.org/10.1038/s41585-019-0193-3

PMid:31092914

Mirchi N, Bissonnette V, Yilmaz R, Ledwos N, Winkler-Schwartz A, Del Maestro RF. The Virtual Operative Assistant: An explainable artificial intelligence tool for simulation-based training in surgery and medicine. PLoS One. 2020;15(2):e0229596.

https://doi.org/10.1371/journal.pone.0229596

PMid:32106247 PMCid:PMC7046231

Bini SA. Artificial intelligence, machine learning, deep learning, and cognitive computing: what do these terms mean and how will they impact health care?. J Arthroplasty. 2018;33(8):2358-61.

https://doi.org/10.1016/j.arth.2018.02.067

PMid:29656964

Bissonnette V, Mirchi N, Ledwos N, Alsidieri G, Winkler-Schwartz A, Del Maestro RF. Artificial intelligence distinguishes surgical training levels in a virtual reality spinal task. J Bone Joint Surg Am. 2019;101(23):e127.

https://doi.org/10.2106/JBJS.18.01197

PMid:31800431 PMCid:PMC7406145

Winkler-Schwartz A, Bissonnette V, Mirchi N, Ponnudurai N, Yilmaz R, Ledwos N, et al. Artificial intelligence in medical education: best practices using machine learning to assess surgical expertise in virtual reality simulation. J Surg Educ. 2019;76(6):1681-90.

https://doi.org/10.1016/j.jsurg.2019.05.015

PMid:31202633

Rabbani M, Kanevsky J, Kafi K, Chandelier F, Giles FJ. Role of artificial intelligence in the care of patients with nonsmall cell lung cancer. Eur J Clin Invest. 2018;48(4):e12901.

https://doi.org/10.1111/eci.12901

PMid:29405289

Lambin P, Leijenaar RT, Deist TM, Peerlings J, De Jong EE, Van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749-62.

https://doi.org/10.1038/nrclinonc.2017.141

PMid:28975929

Nardone V, Boldrini L, Grassi R, Franceschini D, Morelli I, Becherini C, et al. Radiomics in the setting of neoadjuvant radiotherapy: A new approach for tailored treatment. Cancers (Basel). 2021;13(14):3590.

https://doi.org/10.3390/cancers13143590

PMid:34298803 PMCid:PMC8303203

Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, et al. Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp. 2018;2(1):1-8.

https://doi.org/10.1186/s41747-018-0068-z

PMid:30426318 PMCid:PMC6234198

Cepeda S, Pérez-Nuñez A, García-García S, García-Pérez D, Arrese I, Jiménez-Roldán L, et al. Predicting short-term survival after gross total or near total resection in glioblastomas by machine learning-based radiomic analysis of pre-operative MRI. Cancers (Basel). 2021;13(20):5047.

https://doi.org/10.3390/cancers13205047

PMid:34680199 PMCid:PMC8533879

Qi L, Li X, He L, Cheng G, Cai Y, Xue K, et al. Comparison of diagnostic performance of spread through airspaces of lung adenocarcinoma based on morphological analysis and perinodular and intranodular radiomic features on chest CT images. Front Oncol. 2021:11:654413.

https://doi.org/10.3389/fonc.2021.654413

PMid:34249691 PMCid:PMC8268002

Bashir U, Siddique MM, Mclean E, Goh V, Cook GJ. Imaging heterogeneity in lung cancer: techniques, applications, and challenges. AJR Am J Roentgenol. 2016;207(3):534-43.

https://doi.org/10.2214/AJR.15.15864

PMid:27305342

Bai HX, Lee AM, Yang L, Zhang P, Davatzikos C, Maris JM, et al. Imaging genomics in cancer research: limitations and promises. Br J Radiol. 2016;89(1061):20151030.

https://doi.org/10.1259/bjr.20151030

PMid:26864054 PMCid:PMC4985482

Zhang Y, Ko CC, Chen JH, Chang KT, Chen TY, Lim SW, et al. Radiomics approach for prediction of recurrence in non-functioning pituitary macroadenomas. Front Oncol. 2020:10:590083.

https://doi.org/10.3389/fonc.2020.590083

PMid:33392084 PMCid:PMC7775655

Wang R, Dai W, Gong J, Huang M, Hu T, Li H, et al. Development of a novel combined nomogram model integrating deep learning-pathomics, radiomics and immunoscore to predict post-operative outcome of colorectal cancer lung metastasis patients. J Hematol Oncol. 2022;15(1):11.

https://doi.org/10.1186/s13045-022-01225-3

PMid:35073937 PMCid:PMC8785554

Saravi B, Zink A, Ülkümen S, Couillard-Despres S, Wollborn J, Lang G, et al. Clinical and radiomics feature-based outcome analysis in lumbar disc herniation surgery. BMC Musculoskelet Disord. 2023;24(1):791.

https://doi.org/10.1186/s12891-023-06911-y

PMid:37803313 PMCid:PMC10557221

Fan S, Cui X, Liu C, Li X, Zheng L, Song Q, et al. CT-based radiomics signature: a potential biomarker for predicting post-operative recurrence risk in stage II colorectal cancer. Front Oncol. 2021:11:644933.

https://doi.org/10.3389/fonc.2021.644933

PMid:33816297 PMCid:PMC8017337

Ko CC, Zhang Y, Chen JH, Chang KT, Chen TY, Lim SW, et al. Pre-operative MRI Radiomics for the Prediction of Progression and Recurrence in Meningiomas. Front Neurol. 2021:12:636235.

https://doi.org/10.3389/fneur.2021.636235

PMid:34054688 PMCid:PMC8160291

Xie CY, Pang CL, Chan B, Wong EY, Dou Q, Vardhanabhuti V. Machine learning and radiomics applications in esophageal cancers using non-invasive imaging methods-a critical review of literature. Cancers (Basel). 2021;13(10):2469.

https://doi.org/10.3390/cancers13102469

PMid:34069367 PMCid:PMC8158761

Mu W, Jiang L, Zhang J, Shi Y, Gray JE, Tunali I, et al. Non-invasive decision support for NSCLC treatment using PET/CT radiomics. Nat Commun. 2020;11(1):5228.

https://doi.org/10.1038/s41467-020-19116-x

PMid:33067442 PMCid:PMC7567795

Toivonen J, Montoya Perez I, Movahedi P, Merisaari H, Pesola M, Taimen P, et al. Radiomics and machine learning of multisequence multiparametric prostate MRI: Towards improved non-invasive prostate cancer characterization. PLoS One. 2019;14(7):e0217702.

https://doi.org/10.1371/journal.pone.0217702

PMid:31283771 PMCid:PMC6613688

Oosterhoff JH, Doornberg JN. Artificial intelligence in orthopaedics: false hope or not A narrative review along the line of Gartner's hype cycle. EFORT Open Rev. 2020;5(10):593-603.

https://doi.org/10.1302/2058-5241.5.190092

PMid:33204501 PMCid:PMC7608572

Tran WT, Jerzak K, Lu FI, Klein J, Tabbarah S, Lagree A, et al. Personalized breast cancer treatments using artificial intelligence in radiomics and pathomics. J Med Imaging Radiat Sci. 2019;50(4 Suppl 2):S32-S41.

https://doi.org/10.1016/j.jmir.2019.07.010

PMid:31447230

Downloads

Published

2024-03-19

Issue

Section

Review Article