Role of Artificial Intelligence in Surgical Decision-Making: A Comprehensive Review
Role of AI in SDM
DOI:
https://doi.org/10.31661/gmj.v13i.3332Keywords:
Artificial Intelligence; Surgical Decision-Making; Outcome; Electronic Health Record; CancerAbstract
Artificial intelligence (AI) has emerged as a promising technology that can revolutionize surgical decision-making (SDM). This comprehensive review aims to explore the current state of AI in SDM and highlight its benefits, challenges, and future directions. The integration of AI in SDM offers numerous advantages. AI algorithms can analyze medical images, such as radiographs, computed tomography scans, and magnetic resonance imaging, to detect abnormalities and assist in pre-operative assessments. By leveraging electronic health records, AI can provide personalized surgical recommendations based on patient-specific data.
Additionally, AI can analyze genetic data to assess genetic predispositions and tailor treatment plans accordingly. Intra-operatively, AI can aid in real-time analysis of surgical videos and imaging, helping surgeons identify critical structures and guide precise incisions. AI algorithms can also monitor physiological indicators to detect early signs of complications and predict outcomes, improving intra-operative decision-making. Post-operatively, AI can analyze vital signs, imaging, and patient data to detect complications, provide outcomes analysis, and facilitate personalized patient care. However, challenges and limitations exist. Data quality and availability, interpretability of AI algorithms, data security, integration into surgical workflows, and regulatory considerations are important challenges. Addressing these challenges involves ensuring data privacy, developing transparent AI models, establishing robust infrastructure, engaging clinicians, and establishing regulatory frameworks. AI-powered surgical robots and systems can enhance surgical precision and automation. Improvements in interpretability and explainability foster trust and ethical considerations. Also, data sharing and collaboration advancements could refine AI algorithms’ accuracy and generalizability. Personalized medicine and precision surgery are achieved through AI integration. Also, education and training could benefit from AI-powered decision support systems.
References
Shinkunas LA, Klipowicz CJ, Carlisle EM. Shared decision making in surgery: a scoping review of patient and surgeon preferences. BMC Med Inform Decis Mak. 2020;20(1):190.
https://doi.org/10.1186/s12911-020-01211-0
PMid:32787950 PMCid:PMC7424662
Sepucha KR, Langford AT, Belkora JK, Chang Y, Moy B, Partridge AH, et al. Impact of timing on measurement of decision quality and shared decision making: longitudinal cohort study of breast cancer patients. Med Decis Making. 2019;39(6):642-50.
https://doi.org/10.1177/0272989X19862545
PMid:31354095 PMCid:PMC7240785
Loftus TJ, Tighe PJ, Filiberto AC, Efron PA, Brakenridge SC, Mohr AM, et al. Artificial intelligence and surgical decision-making. JAMA Surg. 2020;155(2):148-58.
https://doi.org/10.1001/jamasurg.2019.4917
PMid:31825465 PMCid:PMC7286802
Saravi B, Hassel F, Ülkümen S, Zink A, Shavlokhova V, Couillard-Despres S, et al. Artificial intelligence-driven prediction modeling and decision making in spine surgery using hybrid machine learning models. J Pers Med. 2022;12(4):509.
https://doi.org/10.3390/jpm12040509
PMid:35455625 PMCid:PMC9029065
Jayatilake SM, Ganegoda GU. Involvement of machine learning tools in healthcare decision making. J Healthc Eng. 2021:2021:6679512.
https://doi.org/10.1155/2021/6679512
PMid:33575021 PMCid:PMC7857908
Byerly S, Maurer LR, Mantero A, Naar L, An G, Kaafarani HM. Machine learning and artificial intelligence for surgical decision making. Surg Infect (Larchmt). 2021;22(6):626-34.
https://doi.org/10.1089/sur.2021.007
PMid:34270361
Stafford IS, Kellermann M, Mossotto E, Beattie RM, MacArthur BD, Ennis S. A systematic review of the applications of artificial intelligence and machine learning in autoimmune diseases. NPJ Digit Med. 2020:3:30.
https://doi.org/10.1038/s41746-020-0229-3
PMid:32195365 PMCid:PMC7062883
Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol. 2019;20(3):405-10.
https://doi.org/10.3348/kjr.2019.0025
PMid:30799571 PMCid:PMC6389801
Van der Velden BH, Kuijf HJ, Gilhuijs KG, Viergever MA. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med Image Anal. 2022:79:102470.
https://doi.org/10.1016/j.media.2022.102470
PMid:35576821
Chlap P, Min H, Vandenberg N, Dowling J, Holloway L, Haworth A. A review of medical image data augmentation techniques for deep learning applications. J Med Imaging Radiat Oncol. 2021;65(5):545-63.
https://doi.org/10.1111/1754-9485.13261
PMid:34145766
Payrovnaziri SN, Chen Z, Rengifo-Moreno P, Miller T, Bian J, Chen JH, et al. Explainable artificial intelligence models using real-world electronic health record data: a systematic scoping review. J Am Med Inform Assoc. 2020;27(7):1173-85.
https://doi.org/10.1093/jamia/ocaa053
PMid:32417928 PMCid:PMC7647281
Iftikhar P, Kuijpers MV, Khayyat A, Iftikhar A, De Sa MD. Artificial intelligence: a new paradigm in obstetrics and gynecology research and clinical practice. Cureus. 2020;12(2):e7124.
https://doi.org/10.7759/cureus.7124
Haleem A, Vaishya R, Javaid M, Khan IH. Artificial Intelligence (AI) applications in orthopaedics: an innovative technology to embrace. J Clin Orthop Trauma. 2020;11(Suppl 1):S80-1.
https://doi.org/10.1016/j.jcot.2019.06.012
PMid:31992923 PMCid:PMC6977175
Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci. 2020;111(5):1452-60.
https://doi.org/10.1111/cas.14377
PMid:32133724 PMCid:PMC7226189
Wang S, Yang DM, Rong R, Zhan X, Fujimoto J, Liu H, et al. Artificial intelligence in lung cancer pathology image analysis. Cancers (Basel). 2019;11(11):1673.
https://doi.org/10.3390/cancers11111673
PMid:31661863 PMCid:PMC6895901
Stam WT, Goedknegt LK, Ingwersen EW, Schoonmade LJ, Bruns ER, Daams F. The prediction of surgical complications using artificial intelligence in patients undergoing major abdominal surgery: A systematic review. Surgery. 2022;171(4):1014-21.
https://doi.org/10.1016/j.surg.2021.10.002
PMid:34801265
Wingert T, Lee C, Cannesson M. Machine learning, deep learning, and closed loop devices-anesthesia delivery. Anesthesiol Clin. 2021; 39(3): 565-81.
https://doi.org/10.1016/j.anclin.2021.03.012
PMid:34392886 PMCid:PMC9847584
Zaver HB, Mzaik O, Thomas J, Roopkumar J, Adedinsewo D, Keaveny AP, et al. Utility of an Artificial Intelligence Enabled Electrocardiogram for Risk Assessment in Liver Transplant Candidates. Dig Dis Sci. 2023;68(6):2379-88.
https://doi.org/10.1007/s10620-023-07928-y
PMid:37022601 PMCid:PMC10077316
Tangsrivimol JA, Schonfeld E, Zhang M, Veeravagu A, Smith TR, Härtl R, et al. Artificial Intelligence in Neurosurgery: A State-of-the-Art Review from Past to Future. Diagnostics (Basel). 2023 Jul;13(14):2429.
https://doi.org/10.3390/diagnostics13142429
PMid:37510174 PMCid:PMC10378231
Navarrete-Welton AJ, Hashimoto DA. Current applications of artificial intelligence for intraoperative decision support in surgery. Front Med. 2020;14(4):369-81.
https://doi.org/10.1007/s11684-020-0784-7
PMid:32621201
Giordano C, Brennan M, Mohamed B, Rashidi P, Modave F, Tighe P. Accessing artificial intelligence for clinical decision-making. Front Digit Health. 2021:3:645232.
https://doi.org/10.3389/fdgth.2021.645232
PMid:34713115 PMCid:PMC8521931
Batailler C, Shatrov J, Sappey-Marinier E, Servien E, Parratte S, Lustig S. Artificial intelligence in knee arthroplasty: current concept of the available clinical applications. Arthroplasty. 2022;4(1):17.
https://doi.org/10.1186/s42836-022-00119-6
PMid:35491420 PMCid:PMC9059406
Premaladha J, Ravichandran KS. Novel Approaches for Diagnosing Melanoma Skin Lesions Through Supervised and Deep Learning Algorithms. J Med Syst. 2016;40(4):96.
https://doi.org/10.1007/s10916-016-0460-2
PMid:26872778
Akazawa M, Hashimoto K. Artificial intelligence in gynecologic cancers: Current status and future challenges-A systematic review. Artif Intell Med. 2021;120:102164.
https://doi.org/10.1016/j.artmed.2021.102164
PMid:34629152
Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):E215-20.
https://doi.org/10.1161/01.CIR.101.23.e215
Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018;268(1):70-6.
https://doi.org/10.1097/SLA.0000000000002693
PMid:29389679 PMCid:PMC5995666
He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019;25(1):30-6.
https://doi.org/10.1038/s41591-018-0307-0
PMid:30617336 PMCid:PMC6995276
Panesar S, Cagle Y, Chander D, Morey J, Fernandez-Miranda J, Kliot M. Artificial intelligence and the future of surgical robotics. Ann Surg. 2019;270(2):223-6.
https://doi.org/10.1097/SLA.0000000000003262
PMid:30907754
Matheny ME, Whicher D, Israni ST. Artificial intelligence in health care: a report from the National Academy of Medicine. JAMA. 2020;323(6):509-10.
https://doi.org/10.1001/jama.2019.21579
PMid:31845963
Helm JM, Swiergosz AM, Haeberle HS, Karnuta JM, Schaffer JL, Krebs VE, et al. Machine learning and artificial intelligence: definitions, applications, and future directions. Curr Rev Musculoskelet Med. 2020;13(1):69-76.
https://doi.org/10.1007/s12178-020-09600-8
PMid:31983042 PMCid:PMC7083992
Gupta B, Sahay N, Vinod K, Sandhu K, Basireddy HR, Mudiganti RK. Recent advances in system management, decision support systems, artificial intelligence and computing in anaesthesia. Indian J Anaesth. 2023;67(1):146-51.
https://doi.org/10.4103/ija.ija_974_22
PMid:36970485 PMCid:PMC10034926
Bashir M, Harky A. Artificial Intelligence in Aortic Surgery: The Rise of the Machine. Semin Thorac Cardiovasc Surg. 2019;31(4):635-7.
https://doi.org/10.1053/j.semtcvs.2019.05.040
PMid:31279913
Ghassemi M, Naumann T, Schulam P, Beam AL, Chen IY, Ranganath R. Practical guidance on artificial intelligence for health-care data. Lancet Digit Health. 2019;1(4):e157-9.
https://doi.org/10.1016/S2589-7500(19)30084-6
PMid:33323184
da Costa CA, Pasluosta CF, Eskofier B, Da Silva DB, da Rosa Righi R. Internet of Health Things: Toward intelligent vital signs monitoring in hospital wards. Artif Intell Med. 2018:89:61-9.
https://doi.org/10.1016/j.artmed.2018.05.005
PMid:29871778
Ruan X, Fu S, Storlie CB, Mathis KL, Larson DW, Liu H. Real-time risk prediction of colorectal surgery-related post-surgical complications using GRU-D model. J Biomed Inform. 2022:135:104202.
https://doi.org/10.1016/j.jbi.2022.104202
PMid:36162805
Chen D, Jiang J, Fu S, Demuth G, Liu S, Schaeferle GM, et al. Early detection of post-surgical complications using time-series electronic health records. AMIA Jt Summits Transl Sci Proc. 2021:2021:152-60.
Scardoni A, Balzarini F, Signorelli C, Cabitza F, Odone A. Artificial intelligence-based tools to control healthcare associated infections: a systematic review of the literature. J Infect Public Health. 2020;13(8):1061-77.
https://doi.org/10.1016/j.jiph.2020.06.006
PMid:32561275
Choi HI, Jung SK, Baek SH, Lim WH, Ahn SJ, Yang IH, et al. Artificial intelligent model with neural network machine learning for the diagnosis of orthognathic surgery. J Craniofac Surg. 2019;30(7):1986-9.
https://doi.org/10.1097/SCS.0000000000005650
PMid:31205280
Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med. 2018;24(11):1716-20.
https://doi.org/10.1038/s41591-018-0213-5
PMid:30349085
Bari H, Wadhwani S, Dasari BV. Role of artificial intelligence in hepatobiliary and pancreatic surgery. World J Gastrointest Surg. 2021;13(1):7-18.
https://doi.org/10.4240/wjgs.v13.i1.7
PMid:33552391 PMCid:PMC7830072
Jin R, Luk KD, Cheung JP, Hu Y. Prognosis of cervical myelopathy based on diffusion tensor imaging with artificial intelligence methods. NMR Biomed. 2019;32(8):e4114.
https://doi.org/10.1002/nbm.4114
PMid:31131933
Ahmad Z, Rahim S, Zubair M, Abdul-Ghafar J. Artificial intelligence (AI) in medicine, current applications and future role with special emphasis on its potential and promise in pathology: present and future impact, obstacles including costs and acceptance among pathologists, practical and philosophical considerations A comprehensive review. Diagn Pathol. 2021;16(1):24.
https://doi.org/10.1186/s13000-021-01085-4
PMid:33731170 PMCid:PMC7971952
Farooq H, Deckard ER, Ziemba-Davis M, Madsen A, Meneghini RM. Predictors of patient satisfaction following primary total knee arthroplasty: results from a traditional statistical model and a machine learning algorithm. J Arthroplasty. 2020;35(11):3123-30.
https://doi.org/10.1016/j.arth.2020.05.077
PMid:32595003
Yu KH, Kohane IS. Framing the challenges of artificial intelligence in medicine. BMJ Qual Saf. 2019;28(3):238-41.
https://doi.org/10.1136/bmjqs-2018-008551
PMid:30291179
Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip Rev Data Min Knowl Discov. 2019;9(4):e1312.
https://doi.org/10.1002/widm.1312
PMid:32089788 PMCid:PMC7017860
Cui M, Zhang DY. Artificial intelligence and computational pathology. Lab Invest. 2021;101(4):412-22.
https://doi.org/10.1038/s41374-020-00514-0
PMid:33454724 PMCid:PMC7811340
Guo J, Li B. The application of medical artificial intelligence technology in rural areas of developing countries. Health Equity. 2018;2(1):174-81.
https://doi.org/10.1089/heq.2018.0037
PMid:30283865 PMCid:PMC6110188
Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):195.
https://doi.org/10.1186/s12916-019-1426-2
PMid:31665002 PMCid:PMC6821018
Hatherley J, Sparrow R, Howard M. The virtues of interpretable medical artificial intelligence. Camb Q Healthc Ethics. 2022:1-10.
https://doi.org/10.1017/S0963180122000305
PMid:36524245
Combi C, Amico B, Bellazzi R, Holzinger A, Moore JH, Zitnik M, et al. A manifesto on explainability for artificial intelligence in medicine. Artif Intell Med. 2022:133:102423.
https://doi.org/10.1016/j.artmed.2022.102423
PMid:36328669
Xu Q, Xie W, Liao B, Hu C, Qin L, Yang Z, et al. Interpretability of Clinical Decision Support Systems Based on Artificial Intelligence from Technological and Medical Perspective: A Systematic Review. J Healthc Eng. 2023:2023:9919269.
https://doi.org/10.1155/2023/9919269
PMid:36776958 PMCid:PMC9918364
Kaissis GA, Makowski MR, Rückert D, Braren RF. Secure, privacy-preserving and federated machine learning in medical imaging. Nature Machine Intelligence. 2020;2(6):305-11.
https://doi.org/10.1038/s42256-020-0186-1
Braun M, Hummel P, Beck S, Dabrock P. Primer on an ethics of AI-based decision support systems in the clinic. J Med Ethics. 2020 Apr;47(12):e3.
https://doi.org/10.1136/medethics-2019-105860
PMid:32245804 PMCid:PMC8639945
Phichitchaisopa N, Naenna T. Factors affecting the adoption of healthcare information technology. EXCLI J. 2013; 12: 413-36.
Colling R, Pitman H, Oien K, Rajpoot N, Macklin P, CM-Path AI in Histopathology Working Group, et al. Artificial intelligence in digital pathology: a roadmap to routine use in clinical practice. J Pathol. 2019;249(2):143-50.
https://doi.org/10.1002/path.5310
PMid:31144302
Buch VH, Ahmed I, Maruthappu M. Artificial intelligence in medicine: current trends and future possibilities. Br J Gen Pract. 2018;68(668):143-4.
https://doi.org/10.3399/bjgp18X695213
PMid:29472224 PMCid:PMC5819974
Pesapane F, Volonté C, Codari M, Sardanelli F. Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States. Insights Imaging. 2018;9(5):745-53.
https://doi.org/10.1007/s13244-018-0645-y
PMid:30112675 PMCid:PMC6206380
Keskinbora KH. Medical ethics considerations on artificial intelligence. J Clin Neurosci. 2019:64:277-82.
https://doi.org/10.1016/j.jocn.2019.03.001
PMid:30878282
Holzinger A, Dehmer M, Emmert-Streib F, Cucchiara R, Augenstein I, Del Ser J, et al. Information fusion as an integrative cross-cutting enabler to achieve robust, explainable, and trustworthy medical artificial intelligence. Information Fusion. 2022;79:263-78.
https://doi.org/10.1016/j.inffus.2021.10.007
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56.
https://doi.org/10.1038/s41591-018-0300-7
PMid:30617339
London AJ. Artificial intelligence and black-box medical decisions: accuracy versus explainability. Hastings Cent Rep. 2019;49(1):15-21.
https://doi.org/10.1002/hast.973
PMid:30790315
Faes L, Liu X, Wagner SK, Fu DJ, Balaskas K, Sim DA, et al. A clinician's guide to artificial intelligence: how to critically appraise machine learning studies. Transl Vis Sci Technol. 2020;9(2):7.
https://doi.org/10.1167/tvst.9.2.7
PMid:32704413 PMCid:PMC7346877
Noorbakhsh-Sabet N, Zand R, Zhang Y, Abedi V. Artificial intelligence transforms the future of health care. Am J Med. 2019;132(7):795-801.
https://doi.org/10.1016/j.amjmed.2019.01.017
PMid:30710543 PMCid:PMC6669105
Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol. 2019;28(2):73-81.
https://doi.org/10.1080/13645706.2019.1575882
PMid:30810430
O'Sullivan S, Nevejans N, Allen C, Blyth A, Leonard S, Pagallo U, et al. Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery. Int J Med Robot. 2019;15(1):e1968.
https://doi.org/10.1002/rcs.1968
PMid:30397993
Aruni G, Amit G, Dasgupta P. New surgical robots on the horizon and the potential role of artificial intelligence. Investig Clin Urol. 2018;59(4):221-2.
https://doi.org/10.4111/icu.2018.59.4.221
PMid:29984335 PMCid:PMC6028471
Tarassoli SP. Artificial intelligence, regenerative surgery, robotics What is realistic for the future of surgery. Annals of Medicine and Surgery. 2019;41:53-5.
https://doi.org/10.1016/j.amsu.2019.04.001
PMid:31049197 PMCid:PMC6479269
Gumbs AA, Frigerio I, Spolverato G, Croner R, Illanes A, Chouillard E, et al. Artificial Intelligence Surgery: How Do We Get to Autonomous Actions in Surgery?. Sensors (Basel). 2021; 21(16): 5526.
https://doi.org/10.3390/s21165526
PMid:34450976 PMCid:PMC8400539
Briganti G, Le Moine O. Artificial intelligence in medicine: today and tomorrow. Front Med (Lausanne). 2020; 7: 27.
https://doi.org/10.3389/fmed.2020.00027
PMid:32118012 PMCid:PMC7012990
Kulkarni S, Seneviratne N, Baig MS, Khan AH. Artificial intelligence in medicine: where are we now?. Acad Radiol. 2020;27(1):62-70.
https://doi.org/10.1016/j.acra.2019.10.001
PMid:31636002
Tran BX, Vu GT, Ha GH, Vuong QH, Ho MT, Vuong TT, et al. Global evolution of research in artificial intelligence in health and medicine: a bibliometric study. J Clin Med. 2019;8(3):360.
https://doi.org/10.3390/jcm8030360
PMid:30875745 PMCid:PMC6463262
Han ER, Yeo S, Kim MJ, Lee YH, Park KH, Roh H. Medical education trends for future physicians in the era of advanced technology and artificial intelligence: an integrative review. BMC Med Educ. 2019;19(1):460.
https://doi.org/10.1186/s12909-019-1891-5
PMid:31829208 PMCid:PMC6907217
Miller DD, Brown EW. Artificial intelligence in medical practice: the question to the answer?. Am J Med. 2018;131(2):129-33.
https://doi.org/10.1016/j.amjmed.2017.10.035
PMid:29126825
Stead WW. Clinical implications and challenges of artificial intelligence and deep learning. JAMA. 2018;320(11):1107-8.
https://doi.org/10.1001/jama.2018.11029
PMid:30178025
Langlotz CP, Allen B, Erickson BJ, Kalpathy-Cramer J, Bigelow K, Cook TS, et al. A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology. 2019;291(3):781-91.
https://doi.org/10.1148/radiol.2019190613
PMid:30990384 PMCid:PMC6542624
Goldenberg SL, Nir G, Salcudean SE. A new era: artificial intelligence and machine learning in prostate cancer. Nat Rev Urol. 2019;16(7):391-403.
https://doi.org/10.1038/s41585-019-0193-3
PMid:31092914
Mirchi N, Bissonnette V, Yilmaz R, Ledwos N, Winkler-Schwartz A, Del Maestro RF. The Virtual Operative Assistant: An explainable artificial intelligence tool for simulation-based training in surgery and medicine. PLoS One. 2020;15(2):e0229596.
https://doi.org/10.1371/journal.pone.0229596
PMid:32106247 PMCid:PMC7046231
Bini SA. Artificial intelligence, machine learning, deep learning, and cognitive computing: what do these terms mean and how will they impact health care?. J Arthroplasty. 2018;33(8):2358-61.
https://doi.org/10.1016/j.arth.2018.02.067
PMid:29656964
Bissonnette V, Mirchi N, Ledwos N, Alsidieri G, Winkler-Schwartz A, Del Maestro RF. Artificial intelligence distinguishes surgical training levels in a virtual reality spinal task. J Bone Joint Surg Am. 2019;101(23):e127.
https://doi.org/10.2106/JBJS.18.01197
PMid:31800431 PMCid:PMC7406145
Winkler-Schwartz A, Bissonnette V, Mirchi N, Ponnudurai N, Yilmaz R, Ledwos N, et al. Artificial intelligence in medical education: best practices using machine learning to assess surgical expertise in virtual reality simulation. J Surg Educ. 2019;76(6):1681-90.
https://doi.org/10.1016/j.jsurg.2019.05.015
PMid:31202633
Rabbani M, Kanevsky J, Kafi K, Chandelier F, Giles FJ. Role of artificial intelligence in the care of patients with nonsmall cell lung cancer. Eur J Clin Invest. 2018;48(4):e12901.
https://doi.org/10.1111/eci.12901
PMid:29405289
Lambin P, Leijenaar RT, Deist TM, Peerlings J, De Jong EE, Van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749-62.
https://doi.org/10.1038/nrclinonc.2017.141
PMid:28975929
Nardone V, Boldrini L, Grassi R, Franceschini D, Morelli I, Becherini C, et al. Radiomics in the setting of neoadjuvant radiotherapy: A new approach for tailored treatment. Cancers (Basel). 2021;13(14):3590.
https://doi.org/10.3390/cancers13143590
PMid:34298803 PMCid:PMC8303203
Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, et al. Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp. 2018;2(1):1-8.
https://doi.org/10.1186/s41747-018-0068-z
PMid:30426318 PMCid:PMC6234198
Cepeda S, Pérez-Nuñez A, García-García S, García-Pérez D, Arrese I, Jiménez-Roldán L, et al. Predicting short-term survival after gross total or near total resection in glioblastomas by machine learning-based radiomic analysis of pre-operative MRI. Cancers (Basel). 2021;13(20):5047.
https://doi.org/10.3390/cancers13205047
PMid:34680199 PMCid:PMC8533879
Qi L, Li X, He L, Cheng G, Cai Y, Xue K, et al. Comparison of diagnostic performance of spread through airspaces of lung adenocarcinoma based on morphological analysis and perinodular and intranodular radiomic features on chest CT images. Front Oncol. 2021:11:654413.
https://doi.org/10.3389/fonc.2021.654413
PMid:34249691 PMCid:PMC8268002
Bashir U, Siddique MM, Mclean E, Goh V, Cook GJ. Imaging heterogeneity in lung cancer: techniques, applications, and challenges. AJR Am J Roentgenol. 2016;207(3):534-43.
https://doi.org/10.2214/AJR.15.15864
PMid:27305342
Bai HX, Lee AM, Yang L, Zhang P, Davatzikos C, Maris JM, et al. Imaging genomics in cancer research: limitations and promises. Br J Radiol. 2016;89(1061):20151030.
https://doi.org/10.1259/bjr.20151030
PMid:26864054 PMCid:PMC4985482
Zhang Y, Ko CC, Chen JH, Chang KT, Chen TY, Lim SW, et al. Radiomics approach for prediction of recurrence in non-functioning pituitary macroadenomas. Front Oncol. 2020:10:590083.
https://doi.org/10.3389/fonc.2020.590083
PMid:33392084 PMCid:PMC7775655
Wang R, Dai W, Gong J, Huang M, Hu T, Li H, et al. Development of a novel combined nomogram model integrating deep learning-pathomics, radiomics and immunoscore to predict post-operative outcome of colorectal cancer lung metastasis patients. J Hematol Oncol. 2022;15(1):11.
https://doi.org/10.1186/s13045-022-01225-3
PMid:35073937 PMCid:PMC8785554
Saravi B, Zink A, Ülkümen S, Couillard-Despres S, Wollborn J, Lang G, et al. Clinical and radiomics feature-based outcome analysis in lumbar disc herniation surgery. BMC Musculoskelet Disord. 2023;24(1):791.
https://doi.org/10.1186/s12891-023-06911-y
PMid:37803313 PMCid:PMC10557221
Fan S, Cui X, Liu C, Li X, Zheng L, Song Q, et al. CT-based radiomics signature: a potential biomarker for predicting post-operative recurrence risk in stage II colorectal cancer. Front Oncol. 2021:11:644933.
https://doi.org/10.3389/fonc.2021.644933
PMid:33816297 PMCid:PMC8017337
Ko CC, Zhang Y, Chen JH, Chang KT, Chen TY, Lim SW, et al. Pre-operative MRI Radiomics for the Prediction of Progression and Recurrence in Meningiomas. Front Neurol. 2021:12:636235.
https://doi.org/10.3389/fneur.2021.636235
PMid:34054688 PMCid:PMC8160291
Xie CY, Pang CL, Chan B, Wong EY, Dou Q, Vardhanabhuti V. Machine learning and radiomics applications in esophageal cancers using non-invasive imaging methods-a critical review of literature. Cancers (Basel). 2021;13(10):2469.
https://doi.org/10.3390/cancers13102469
PMid:34069367 PMCid:PMC8158761
Mu W, Jiang L, Zhang J, Shi Y, Gray JE, Tunali I, et al. Non-invasive decision support for NSCLC treatment using PET/CT radiomics. Nat Commun. 2020;11(1):5228.
https://doi.org/10.1038/s41467-020-19116-x
PMid:33067442 PMCid:PMC7567795
Toivonen J, Montoya Perez I, Movahedi P, Merisaari H, Pesola M, Taimen P, et al. Radiomics and machine learning of multisequence multiparametric prostate MRI: Towards improved non-invasive prostate cancer characterization. PLoS One. 2019;14(7):e0217702.
https://doi.org/10.1371/journal.pone.0217702
PMid:31283771 PMCid:PMC6613688
Oosterhoff JH, Doornberg JN. Artificial intelligence in orthopaedics: false hope or not A narrative review along the line of Gartner's hype cycle. EFORT Open Rev. 2020;5(10):593-603.
https://doi.org/10.1302/2058-5241.5.190092
PMid:33204501 PMCid:PMC7608572
Tran WT, Jerzak K, Lu FI, Klein J, Tabbarah S, Lagree A, et al. Personalized breast cancer treatments using artificial intelligence in radiomics and pathomics. J Med Imaging Radiat Sci. 2019;50(4 Suppl 2):S32-S41.
https://doi.org/10.1016/j.jmir.2019.07.010
PMid:31447230
Published
Issue
Section
License
Copyright (c) 2024 Galen Medical Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.