Differentiating Primary and Recurrent Lesions in Patients with a History of Breast Cancer: A Comprehensive Review

Differentiating Primary and Recurrent Lesions in Patients with BC

Authors

  • Anita Zarghami Department of Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • Seyed Abbas Mirmalek Department of Surgery, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

Abstract

Breast cancer (BC) recurrence remains a concerning issue, requiring accurate identification and differentiation from primary lesions for optimal patient management. This comprehensive review aims to summarize and evaluate the current evidence on methods to distinguish primary breast tumors from recurrent lesions in patients with a history of BC. Also, we provide a comprehensive understanding of the different imaging techniques, including mammography, ultrasound, magnetic resonance imaging, and positron emission tomography, highlighting their diagnostic accuracy, limitations, and potential integration. In addition, the role of various biopsy modalities and molecular markers was explored. Furthermore, the potential role of liquid biopsy, circulating tumor cells, and circulating tumor DNA in differentiating between primary and recurrent BC was emphasized. Finally, it addresses emerging diagnostic modalities, such as radiomic analysis and artificial intelligence, which show promising potential in enhancing diagnostic accuracy. Through comprehensive analysis and review of the available literature, the current study provides an up-to-date understanding of the current state of knowledge, challenges, and future directions in accurately distinguishing between primary and recurrent breast lesions in patients with a history of BC.

References

Mirmalek SA, Faraji S, Ranjbaran S, Aryan H, Arani HZ, Jangholi E, et al. Cyanidin 3-glycoside induced apoptosis in MCF-7 breast cancer cell line. Arch Med Sci. 2023; 19(4): 1092-8.

Ditsch N, Untch M, Kolberg-Liedtke C, Jackisch C, Krug D, Friedrich M, et al. AGO recommendations for the diagnosis and treatment of patients with locally advanced and metastatic breast cancer: update 2020. Breast Care (Basel). 2020;15(3):294-309.

https://doi.org/10.1159/000508736

PMid:32774225 PMCid:PMC7383289

Miglietta F, Griguolo G, Bottosso M, Giarratano T, Lo Mele M, Fassan M, et al. Evolution of HER2-low expression from primary to recurrent breast cancer. NPJ Breast Cancer. 2021;7(1):137.

https://doi.org/10.1038/s41523-021-00343-4

PMid:34642348 PMCid:PMC8511010

İlgün S, Sarsenov D, Erdoğan Z, Ordu C, Celebi F, Pilancı KN, et al. Receptor discordance rate and its effects on survival in primary and recurrent breast cancer patients. J BUON. 2016;21(6):1425-32.

Jung JI, Kim HH, Park SH, Song SW, Chung MH, Kim HS, et al. Thoracic manifestations of breast cancer and its therapy. Radiographics. 2004;24(5):1269-85.

https://doi.org/10.1148/rg.245035062

PMid:15371608

Simmons C, Miller N, Geddie W, Gianfelice D, Oldfield M, Dranitsaris G, et al. Does confirmatory tumor biopsy alter the management of breast cancer patients with distant metastases?. Ann Oncol. 2009;20(9):1499-504.

https://doi.org/10.1093/annonc/mdp028

PMid:19299408 PMCid:PMC2731014

Liedtke C, Broglio K, Moulder S, Hsu L, Kau SW, Symmans WF, et al. Prognostic impact of discordance between triple-receptor measurements in primary and recurrent breast cancer. Ann Oncol. 2009;20(12):1953-8.

https://doi.org/10.1093/annonc/mdp263

PMid:19596702 PMCid:PMC2791352

Heitz F, Barinoff J, Du Bois O, Hils R, Fisseler-Eckhoff A, Harter P, et al. Differences in the receptor status between primary and recurrent breast cancer-the frequency of and the reasons for discordance. Oncology. 2013;84(6):319-25.

https://doi.org/10.1159/000346184

PMid:23615456

Berg WA, Gutierrez L, NessAiver MS, Carter WB, Bhargavan M, Lewis RS, et al. Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology. 2004;233(3):830-49.

https://doi.org/10.1148/radiol.2333031484

PMid:15486214

Fischer U, Zachariae O, Baum F, von Heyden D, Funke M, Liersch T. The influence of preoperative MRI of the breasts on recurrence rate in patients with breast cancer. Eur Radiol. 2004;14(10):1725-31.

https://doi.org/10.1007/s00330-004-2351-z

PMid:15248080

Hata T, Takahashi H, Watanabe K, Takahashi M, Taguchi K, Itoh T, et al. Magnetic resonance imaging for preoperative evaluation of breast cancer: a comparative study with mammography and ultrasonography. J Am Coll Surg. 2004;198(2):190-7.

https://doi.org/10.1016/j.jamcollsurg.2003.10.008

PMid:14759774

Bartella L, Smith CS, Dershaw DD, Liberman L. Imaging breast cancer. Radiol Clin North Am. 2007;45(1):45-67.

https://doi.org/10.1016/j.rcl.2006.10.007

PMid:17157623

Qu Q, Zong Y, Fei XC, Chen XS, Xu C, Lou GY, et al. The importance of biopsy in clinically diagnosed metastatic lesions in patients with breast cancer. World J Surg Oncol. 2014:12:93.

https://doi.org/10.1186/1477-7819-12-93

PMid:24721777 PMCid:PMC3986435

Oyama T, Koibuchi Y, McKee G. Core needle biopsy (CNB) as a diagnostic method for breast lesions: comparison with fine needle aspiration cytology (FNA). Breast Cancer. 2004;11(4):339-42.

https://doi.org/10.1007/BF02968040

PMid:15604988

Murawa P, Murawa D, Adamczyk B, Połom K. Breast cancer: Actual methods of treatment and future trends. Rep Pract Oncol Radiother. 2014;19(3):165-72.

https://doi.org/10.1016/j.rpor.2013.12.003

PMid:24936340 PMCid:PMC4056541

Morrow M, Schnitt SJ, Norton L. Current management of lesions associated with an increased risk of breast cancer. Nat Rev Clin Oncol. 2015;12(4):227-38.

https://doi.org/10.1038/nrclinonc.2015.8

PMid:25622978

Jones LW, Haykowsky MJ, Swartz JJ, Douglas PS, Mackey JR. Early breast cancer therapy and cardiovascular injury. J Am Coll Cardiol. 2007;50(15):1435-41.

https://doi.org/10.1016/j.jacc.2007.06.037

PMid:17919562

Pleasant V. Management of breast complaints and high-risk lesions. Best Pract Res Clin Obstet Gynaecol. 2022:83:46-59.

https://doi.org/10.1016/j.bpobgyn.2022.03.017

PMid:35570155

Dolan RT, Butler JS, Kell MR, Gorey TF, Stokes MA. Nipple discharge and the efficacy of duct cytology in evaluating breast cancer risk. Surgeon. 2010;8(5):252-8.

https://doi.org/10.1016/j.surge.2010.03.005

PMid:20709281

Sangma MB, Panda K, Dasiah S. A clinico-pathological study on benign breast diseases. J Clin Diagn Res. 2013;7(3):503-6.

https://doi.org/10.7860/JCDR/2012/5355.2807

PMid:23634406 PMCid:PMC3616566

Irvin Jr W, Muss HB, Mayer DK. Symptom management in metastatic breast cancer. Oncologist. 2011;16(9):1203-14.

https://doi.org/10.1634/theoncologist.2011-0159

PMid:21880861 PMCid:PMC3228166

Goodson WH, Moore DH. Causes of physician delay in the diagnosis of breast cancer. Arch Intern Med. 2002;162(12):1343-8.

https://doi.org/10.1001/archinte.162.12.1343

PMid:12076232

Schneble EJ, Graham LJ, Shupe MP, Flynt FL, Banks KP, Kirkpatrick AD, et al. Current approaches and challenges in early detection of breast cancer recurrence. J Cancer. 2014;5(4):281-90.

https://doi.org/10.7150/jca.8016

PMid:24790656 PMCid:PMC3982041

Olsen O, Gøtzsche PC. Cochrane review on screening for breast cancer with mammography. Lancet. 2001;358(9290):1340-2.

https://doi.org/10.1016/S0140-6736(01)06449-2

PMid:11684218

Pinto AC, De Azambuja E. Improving quality of life after breast cancer: dealing with symptoms. Maturitas 2011;70(4):343-8.

https://doi.org/10.1016/j.maturitas.2011.09.008

PMid:22014722

Senie RT, Rosen PP, Lesser ML, Kinne DW. Breast self-examination and medical examination related to breast cancer stage. Am J Public Health. 1981;71(6):583-90.

https://doi.org/10.2105/AJPH.71.6.583

PMid:7235096 PMCid:PMC1619833

Hassan LM, Mahmoud N, Miller AB, Iraj H, Mohsen M, Majid J, et al. Evaluation of effect of self-examination and physical examination on breast cancer. Breast. 2015;24(4):487-90.

https://doi.org/10.1016/j.breast.2015.04.011

PMid:25977176

Baines CJ, Miller AB, Bassett AA. Physical examination. Its role as a single screening modality in the Canadian National Breast Screening Study. Cancer. 1989;63(9):1816-22.

https://doi.org/10.1002/1097-0142(19900501)63:9<1816::AID-CNCR2820630926>3.0.CO;2-W

PMid:2702588

Nguyen FT, Zysk AM, Chaney EJ, Adie SG, Kotynek JG, Oliphant UJ, et al. Optical coherence tomography: the intraoperative assessment of lymph nodes in breast cancer. IEEE Eng Med Biol Mag. 2010;29(2):63-70.

https://doi.org/10.1109/MEMB.2009.935722

PMid:20659842 PMCid:PMC3042743

Weaver DL. Pathology evaluation of sentinel lymph nodes in breast cancer: protocol recommendations and rationale. Mod Pathol. 2010;23(2):S26-32.

https://doi.org/10.1038/modpathol.2010.36

PMid:20436499

Maxwell F, de Margerie Mellon C, Bricout M, Cauderlier E, Chapelier M, Albiter M, et al. Diagnostic strategy for the assessment of axillary lymph node status in breast cancer. Diagn Interv Imaging. 2015;96(10):1089-101.

https://doi.org/10.1016/j.diii.2015.07.007

PMid:26372221

Cserni G, Maguire A, Bianchi S, Ryska A, Kovács A. Sentinel lymph node assessment in breast cancer-an update on current recommendations. Virchows Arch. 2022;480(1):95-107.

https://doi.org/10.1007/s00428-021-03128-z

PMid:34164706

Marino MA, Avendano D, Zapata P, Riedl CC, Pinker K. Lymph node imaging in patients with primary breast cancer: concurrent diagnostic tools. Oncologist. 2020;25(2):e231-e42.

https://doi.org/10.1634/theoncologist.2019-0427

PMid:32043792 PMCid:PMC7011661

Maguire A, Brogi E. Sentinel lymph nodes for breast carcinoma: a paradigm shift. Arch Pathol Lab Med. 2016;140(8):791-8.

https://doi.org/10.5858/arpa.2015-0140-RA

PMid:27472237 PMCid:PMC5027875

Chae BJ, Bae JS, Kang BJ, Kim SH, Jung SS, Song BJ. Positron emission tomography-computed tomography in the detection of axillary lymph node metastasis in patients with early stage breast cancer. Jpn J Clin Oncol. 2009;39(5):284-9.

https://doi.org/10.1093/jjco/hyp019

PMid:19318373

Grueneisen J, Nagarajah J, Buchbender C, Hoffmann O, Schaarschmidt BM, Poeppel T, et al. Positron Emission Tomography/Magnetic Resonance Imaging for Local Tumor Staging in Patients With Primary Breast Cancer: A Comparison With Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging. Invest Radiol. 2015;50(8):505-13.

https://doi.org/10.1097/RLI.0000000000000197

PMid:26115367

Bleyer A, Welch HG. Effect of three decades of screening mammography on breast-cancer incidence. N Engl J Med. 2012;367(21):1998-2005.

https://doi.org/10.1056/NEJMoa1206809

PMid:23171096

Vachon CM, Van Gils CH, Sellers TA, Ghosh K, Pruthi S, Brandt KR, et al. Mammographic density, breast cancer risk and risk prediction. Breast Cancer Res. 2007;9(6):217.

https://doi.org/10.1186/bcr1829

PMid:18190724 PMCid:PMC2246184

Glechner A, Wagner G, Mitus JW, Teufer B, Klerings I, Böck N, et al. Mammography in combination with breast ultrasonography versus mammography for breast cancer screening in women at average risk. Cochrane Database Syst Rev. 2023;3(3):CD009632.

https://doi.org/10.1002/14651858.CD009632.pub3

PMid:36999589 PMCid:PMC10065327

Pisano ED, Gatsonis C, Hendrick E, Yaffe M, Baum JK, Acharyya S, Conant EF, Fajardo LL, Bassett L, D'Orsi C, Jong R. Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med. 2005;353(17):1773-83.

https://doi.org/10.1056/NEJMoa052911

PMid:16169887

Tabar L, Dean PB. Mammography and breast cancer: the new era. Int J Gynaecol Obstet. 2003;82(3):319-26.

https://doi.org/10.1016/S0020-7292(03)00262-5

PMid:14499978

Hodgson R, Heywang-Köbrunner SH, Harvey SC, Edwards M, Shaikh J, Arber M, et al. Systematic review of 3D mammography for breast cancer screening. Breast. 2016:27:52-61.

https://doi.org/10.1016/j.breast.2016.01.002

PMid:27212700

McCarthy EP, Burns RB, Freund KM, Ash AS, Shwartz M, Marwill SL, et al. Mammography use, breast cancer stage at diagnosis, and survival among older women. J Am Geriatr Soc. 2000;48(10):1226-33.

https://doi.org/10.1111/j.1532-5415.2000.tb02595.x

PMid:11037009

Champion VL, Monahan PO, Springston JK, Russell K, Zollinger TW, Saywell Jr RM, et al. Measuring mammography and breast cancer beliefs in African American women. J Health Psychol. 2008;13(6):827-37.

https://doi.org/10.1177/1359105308093867

PMid:18697896 PMCid:PMC2902247

Sood R, Rositch AF, Shakoor D, Ambinder E, Pool KL, Pollack E, et al. Ultrasound for breast cancer detection globally: a systematic review and meta-analysis. J Glob Oncol. 2019:5:1-17.

https://doi.org/10.1200/JGO.19.00127

PMid:31454282 PMCid:PMC6733207

Teh W, Wilson AR. The role of ultrasound in breast cancer screening. A consensus statement by the European Group for Breast Cancer Screening. Eur J Cancer. 1998;34(4):449-50.

https://doi.org/10.1016/S0959-8049(97)10066-1

PMid:9713292

Guo R, Lu G, Qin B, Fei B. Ultrasound imaging technologies for breast cancer detection and management: a review. Ultrasound Med Biol. 2018;44(1):37-70.

https://doi.org/10.1016/j.ultrasmedbio.2017.09.012

PMid:29107353 PMCid:PMC6169997

Geisel J, Raghu M, Hooley R. The role of ultrasound in breast cancer screening: the case for and against ultrasound. Semin Ultrasound CT MR. 2018;39(1):25-34.

https://doi.org/10.1053/j.sult.2017.09.006

PMid:29317037

Giger ML, Inciardi MF, Edwards A, Papaioannou J, Drukker K, Jiang Y, et al. Automated breast ultrasound in breast cancer screening of women with dense breasts: reader study of mammography-negative and mammography-positive cancers. AJR Am J Roentgenol. 2016;206(6):1341-50.

https://doi.org/10.2214/AJR.15.15367

PMid:27043979

Nothacker M, Duda V, Hahn M, Warm M, Degenhardt F, Madjar H, et al. Early detection of breast cancer: benefits and risks of supplemental breast ultrasound in asymptomatic women with mammographically dense breast tissue. A systematic review. BMC Cancer. 2009:9:335.

https://doi.org/10.1186/1471-2407-9-335

PMid:19765317 PMCid:PMC2760575

Irshad A, Leddy R, Pisano E, Baker N, Lewis M, Ackerman S, et al. Assessing the role of ultrasound in predicting the biological behavior of breast cancer. AJR Am J Roentgenol. 2013;200(2):284-90.

https://doi.org/10.2214/AJR.12.8781

PMid:23345347

Wang Y, Chen H, Li N, Ren J, Zhang K, Dai M, et al. Ultrasound for breast cancer screening in high-risk women: results from a population-based cancer screening program in China. Front Oncol. 2019:9:286.

https://doi.org/10.3389/fonc.2019.00286

PMid:31069168 PMCid:PMC6491776

Morris EA. Breast cancer imaging with MRI. Radiol Clin North Am. 2002;40(3):443-66.

https://doi.org/10.1016/S0033-8389(01)00005-7

PMid:12117186

Morrow M, Waters J, Morris E. MRI for breast cancer screening, diagnosis, and treatment. Lancet. 2011;378(9805):1804-11.

https://doi.org/10.1016/S0140-6736(11)61350-0

PMid:22098853

Houssami N, Hayes DF. Review of preoperative magnetic resonance imaging (MRI) in breast cancer: should MRI be performed on all women with newly diagnosed, early stage breast cancer?. CA Cancer J Clin. 2009;59(5):290-302.

https://doi.org/10.3322/caac.20028

PMid:19679690

Brennan S, Liberman L, Dershaw DD, Morris E. Breast MRI screening of women with a personal history of breast cancer. AJR Am J Roentgenol. 2010;195(2):510-6.

https://doi.org/10.2214/AJR.09.3573

PMid:20651211

Enriquez L, Listinsky J. Role of MRI in breast cancer management. Cleve Clin J Med. 2009;76(9):525-32.

https://doi.org/10.3949/ccjm.76a.06043

PMid:19726557

Ulaner GA. PET/CT for patients with breast cancer: where is the clinical impact?. AJR Am J Roentgenol. 2019;213(2):254-65.

https://doi.org/10.2214/AJR.19.21177

PMid:31063423

Groheux D, Espié M, Giacchetti S, Hindié E. Performance of FDG PET/CT in the clinical management of breast cancer. Radiology. 2013;266(2):388-405.

https://doi.org/10.1148/radiol.12110853

PMid:23220901

Zangheri B, Messa C, Picchio M, Gianolli L, Landoni C, Fazio F. PET/CT and breast cancer. Eur J Nucl Med Mol Imaging. 2004;31 (Suppl1):S135-S42.

https://doi.org/10.1007/s00259-004-1536-7

PMid:15133636

Koolen BB, Vogel WV, Vrancken Peeters MJ, Loo CE, Rutgers EJ, Valdes Olmos RA. Molecular imaging in breast cancer: from whole-body PET/CT to dedicated breast PET. J Oncol. 2012:2012:438647.

https://doi.org/10.1155/2012/438647

PMid:22848217 PMCid:PMC3400419

Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L, et al. Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F] fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2006;24(34):5366-72.

https://doi.org/10.1200/JCO.2006.05.7406

PMid:17088570

Ulaner GA, Eaton A, Morris PG, Lilienstein J, Jhaveri K, Patil S, et al. Prognostic value of quantitative fluorodeoxyglucose measurements in newly diagnosed metastatic breast cancer. Cancer Med. 2013;2(5):725-33.

https://doi.org/10.1002/cam4.119

PMid:24403238 PMCid:PMC3892804

Godavarty A, Rodriguez S, Jung YJ, Gonzalez S. Optical imaging for breast cancer prescreening. Breast Cancer (Dove Med Press). 2015:7:193-209.

https://doi.org/10.2147/BCTT.S51702

PMid:26229503 PMCid:PMC4516032

Faragalla H, Davoudi B, Nofech-Moses N, Yucel Y, Jakate K. The Use of Optical Coherence Tomography for Gross Examination and Sampling of Fixed Breast Specimens: A Pilot Study. Diagnostics (Basel). 2022; 12(9): 2191.

https://doi.org/10.3390/diagnostics12092191

PMid:36140591 PMCid:PMC9498270

Singla N, Dubey K, Srivastava V. Automated assessment of breast cancer margin in optical coherence tomography images via pretrained convolutional neural network. J Biophotonics. 2019;12(3):e201800255.

https://doi.org/10.1002/jbio.201800255

PMid:30318761

Cerussi AE, Tanamai VW, Hsiang D, Butler J, Mehta RS, Tromberg BJ. Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy. Philos Trans A Math Phys Eng Sci. 2011;369(1955):4512-30.

https://doi.org/10.1098/rsta.2011.0279

PMid:22006904 PMCid:PMC3263790

Nachabé R, Evers DJ, Hendriks BH, Lucassen GW, van der Voort M, Rutgers EJ, et al. Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods. J Biomed Opt. 2011;16(8):087010.

https://doi.org/10.1117/1.3611010

PMid:21895337

Taroni P, Pifferi A, Quarto G, Spinelli L, Torricelli A, Abbate F, et al. Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy. J Biomed Opt. 2010;15(6):060501.

https://doi.org/10.1117/1.3506043

PMid:21198142

Cerussi A, Hsiang D, Shah N, Mehta R, Durkin A, Butler J, et al. Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy. Proc Natl Acad Sci U S A. 2007;104(10):4014-9.

https://doi.org/10.1073/pnas.0611058104

PMid:17360469 PMCid:PMC1805697

Tromberg BJ, Pogue BW, Paulsen KD, Yodh AG, Boas DA, Cerussi AE. Assessing the future of diffuse optical imaging technologies for breast cancer management. Med Phys. 2008;35(6):2443-51.

https://doi.org/10.1118/1.2919078

PMid:18649477 PMCid:PMC2809725

Alkuwari E, Auger M. Accuracy of fine‐needle aspiration cytology of axillary lymph nodes in breast cancer patients: a study of 115 cases with cytologic‐histologic correlation. Cancer. 2008;114(2):89-93.

https://doi.org/10.1002/cncr.23344

PMid:18286535

Mainiero MB, Cinelli CM, Koelliker SL, Graves TA, Chung MA. Axillary ultrasound and fine-needle aspiration in the preoperative evaluation of the breast cancer patient: an algorithm based on tumor size and lymph node appearance. AJR Am J Roentgenol. 2010;195(5):1261-7.

https://doi.org/10.2214/AJR.10.4414

PMid:20966338

Shafique R, Rustam F, Choi GS, Díez ID, Mahmood A, Lipari V, et al. Breast cancer prediction using fine needle aspiration features and upsampling with supervised machine learning. Cancers (Basel). 2023;15(3):681.

https://doi.org/10.3390/cancers15030681

PMid:36765642 PMCid:PMC9913345

Ayele W, Addissie A, Wienke A, Unverzagt S, Jemal A, Taylor L, et al. Breast Awareness, Self‐Reported Abnormalities, and Breast Cancer in Rural Ethiopia: A Survey of 7,573 Women and Predictions of the National Burden. Oncologist. 2021; 26(6): e1009-e17.

https://doi.org/10.1002/onco.13737

PMid:33650727 PMCid:PMC8176994

Panwar S, Handa U, Kaur M, Mohan H, Attri AK. Evaluation of DNA ploidy and S‐phase fraction in fine needle aspirates from breast carcinoma. Diagn Cytopathol. 2021;49(6):761-7.

https://doi.org/10.1002/dc.24738

PMid:33755349

Kalvala J, Parks RM, Green AR, Cheung KL. Concordance between core needle biopsy and surgical excision specimens for Ki‐67 in breast cancer-a systematic review of the literature. Histopathology. 2022;80(3):468-84.

https://doi.org/10.1111/his.14555

PMid:34473381

Shanmugalingam A, Hitos K, Hegde S, Al-Mashat A, Pathmanathan N, Edirimmane S, et al. Concordance between core needle biopsy and surgical excision for breast cancer tumor grade and biomarkers. Breast Cancer Res Treat. 2022;193(1):151-9.

https://doi.org/10.1007/s10549-022-06548-w

PMid:35229238

Janeva S, Parris TZ, Nasic S, De Lara S, Larsson K, Audisio RA, et al. Comparison of breast cancer surrogate subtyping using a closed-system RT-qPCR breast cancer assay and immunohistochemistry on 100 core needle biopsies with matching surgical specimens. BMC Cancer. 2021;21(1):439.

https://doi.org/10.1186/s12885-021-08171-2

PMid:33879115 PMCid:PMC8059293

Chen R, Qi Y, Huang Y, Liu W, Yang R, Zhao X, et al. Diagnostic value of core needle biopsy for determining HER2 status in breast cancer, especially in the HER2-low population. Breast Cancer Res Treat. 2023;197(1):189-200.

https://doi.org/10.1007/s10549-022-06781-3

PMid:36346486 PMCid:PMC9823013

Javan H, Gholami H, Assadi M, Pakdel AF, Sadeghi R, Keshtgar M. The accuracy of sentinel node biopsy in breast cancer patients with the history of previous surgical biopsy of the primary lesion: systematic review and meta-analysis of the literature. Eur J Surg Oncol. 2012;38(2):95-109.

https://doi.org/10.1016/j.ejso.2011.11.005

PMid:22138234

Barnes PJ, Boutilier R, Chiasson D, Rayson D. Metaplastic breast carcinoma: clinical-pathologic characteristics and HER2/neu expression. Breast Cancer Res Treat. 2005;91(2):173-8.

https://doi.org/10.1007/s10549-004-7260-y

PMid:15868445

Tamimi RM, Baer HJ, Marotti J, Galan M, Galaburda L, Fu Y, et al. Comparison of molecular phenotypes of ductal carcinoma in situand invasive breast cancer. Breast Cancer Res. 2008;10(4):R67.

https://doi.org/10.1186/bcr2128

PMid:18681955 PMCid:PMC2575540

Itoh M, Iwamoto T, Matsuoka J, Nogami T, Motoki T, Shien T, et al. Estrogen receptor (ER) mRNA expression and molecular subtype distribution in ER-negative/progesterone receptor-positive breast cancers. Breast Cancer Res Treat. 2014;143(2):403-9.

https://doi.org/10.1007/s10549-013-2763-z

PMid:24337596

Ferretti G, Felici A, Papaldo P, Fabi A, Cognetti F. HER2/neu role in breast cancer: from a prognostic foe to a predictive friend. Curr Opin Obstet Gynecol. 2007;19(1):56-62.

https://doi.org/10.1097/GCO.0b013e328012980a

PMid:17218853

Bahreini F, Soltanian AR, Mehdipour P. A meta-analysis on concordance between immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) to detect HER2 gene overexpression in breast cancer. Breast Cancer. 2015;22(6):615-25.

https://doi.org/10.1007/s12282-014-0528-0

PMid:24718809

Godet I, Gilkes DM. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. Integr Cancer Sci Ther. 2017;4(1):10.15761/ICST.1000228.

https://doi.org/10.15761/ICST.1000228

PMid:28706734 PMCid:PMC5505673

Nami B, Maadi H, Wang Z. Mechanisms underlying the action and synergism of trastuzumab and pertuzumab in targeting HER2-positive breast cancer. Cancers (Basel). 2018;10(10):342.

https://doi.org/10.3390/cancers10100342

PMid:30241301 PMCid:PMC6210751

Piccart M, Procter M, Fumagalli D, de Azambuja E, Clark E, Ewer MS, et al. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer in the APHINITY trial: 6 years' follow-up. J Clin Oncol. 2021;39(13):1448-57.

https://doi.org/10.1200/JCO.20.01204

PMid:33539215

Trihia H, Murray S, Price K, Gelber RD, Golouh R, Goldhirsch A, et al. Ki‐67 expression in breast carcinoma: Its association with grading systems, clinical parameters, and other prognostic factors-A surrogate marker?. Cancer. 2003;97(5):1321-31.

https://doi.org/10.1002/cncr.11188

PMid:12599241

Alco GU, Bozdogan A, Selamoglu D, Pilancı KN, Tuzlalı S, Ordu C, et al. Clinical and histopathological factors associated with Ki-67 expression in breast cancer patients. Oncol Lett. 2015;9(3):1046-54.

https://doi.org/10.3892/ol.2015.2852

PMid:25663855 PMCid:PMC4315001

Liang Q, Ma D, Gao RF, Yu KD. Effect of Ki-67 expression levels and histological grade on breast cancer early relapse in patients with different immunohistochemical-based subtypes. Sci Rep. 2020;10(1):7648.

https://doi.org/10.1038/s41598-020-64523-1

PMid:32376868 PMCid:PMC7203155

Lambros MB, Natrajan R, Reis-Filho JS. Chromogenic and fluorescent in situ hybridization in breast cancer. Hum Pathol. 2007;38(8):1105-22.

https://doi.org/10.1016/j.humpath.2007.04.011

PMid:17640550

Jacobs TW, Gown AM, Yaziji H, Barnes MJ, Schnitt SJ. Comparison of fluorescence in situ hybridization and immunohistochemistry for the evaluation of HER-2/neu in breast cancer. J Clin Oncol. 1999;17(7):1974-82.

https://doi.org/10.1200/JCO.1999.17.7.1974

PMid:10561247

Tsukamoto F, Miyoshi Y, Egawa C, Kasugai T, Takami S, Inazawa J, et al. Clinicopathologic analysis of breast carcinoma with chromosomal aneusomy detected by fluorescence in situ hybridization. Cancer. 2001;93(2):165-70.

https://doi.org/10.1002/cncr.9024

PMid:11309784

Kinsella MD, Nassar A, Siddiqui MT, Cohen C. Estrogen receptor (ER), progesterone receptor (PR), and HER2 expression pre-and post-neoadjuvant chemotherapy in primary breast carcinoma: a single institutional experience. Int J Clin Exp Pathol. 2012;5(6):530-6.

Zhu X, Ying J, Wang F, Wang J, Yang H. Estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 status in invasive breast cancer: a 3,198 cases study at National Cancer Center, China. Breast Cancer Res Treat. 2014;147(3):551-5.

https://doi.org/10.1007/s10549-014-3136-y

PMid:25234844

Lips EH, Michaut M, Hoogstraat M, Mulder L, Besselink NJ, Koudijs MJ, et al. Next generation sequencing of triple negative breast cancer to find predictors for chemotherapy response. Breast Cancer Res. 2015;17(1):134.

https://doi.org/10.1186/s13058-015-0642-8

PMid:26433948 PMCid:PMC4592753

Tamaddon M, Shokri G, Hosseini Rad SMA, Rad I, Emami Razavi À, Kouhkan F. Involved microRNAs in alternative polyadenylation intervene in breast cancer via regulation of cleavage factor "CFIm25". Sci Rep. 2020;10(1):11608.

https://doi.org/10.1038/s41598-020-68406-3

PMid:32665581 PMCid:PMC7360588

Hempel D, Ebner F, Garg A, Trepotec Z, Both A, Stein W, et al. Real world data analysis of next generation sequencing and protein expression in metastatic breast cancer patients. Sci Rep. 2020;10(1):10459.

https://doi.org/10.1038/s41598-020-67393-9

PMid:32591580 PMCid:PMC7319999

Alimirzaie S, Bagherzadeh M, Akbari MR. Liquid biopsy in breast cancer: A comprehensive review. Clin Genet. 2019;95(6):643-60.

https://doi.org/10.1111/cge.13514

PMid:30671931

Tay TK, Tan PH. Liquid biopsy in breast cancer: a focused review. Arch Pathol Lab Med. 2021;145(6):678-86.

https://doi.org/10.5858/arpa.2019-0559-RA

PMid:32045277

Shah AN, Carroll KJ, Gerratana L, Lin C, Davis AA, Zhang Q, et al. Circulating tumor cells, circulating tumor DNA, and disease characteristics in young women with metastatic breast cancer. Breast Cancer Res Treat. 2021;187(2):397-405.

https://doi.org/10.1007/s10549-021-06236-1

PMid:34076801

Tellez-Gabriel M, Knutsen E, Perander M. Current status of circulating tumor cells, circulating tumor DNA, and exosomes in breast cancer liquid biopsies. Int J Mol Sci. 2020;21(24):9457.

https://doi.org/10.3390/ijms21249457

PMid:33322643 PMCid:PMC7763984

Thery L, Meddis A, Cabel L, Proudhon C, Latouche A, Pierga JY, et al. Circulating tumor cells in early breast cancer. JNCI Cancer Spectr. 2019; 3(2): pkz026.

https://doi.org/10.1093/jncics/pkz026

PMid:31360902 PMCid:PMC6649836

Antropova N, Huynh BQ, Giger ML. A Deep Feature Fusion Methodology for Breast Cancer Diagnosis Demonstrated on Three Imaging Modality Datasets. Med Phys. 2017; 44(10): 5162-71.

https://doi.org/10.1002/mp.12453

PMid:28681390 PMCid:PMC5646225

Daimiel Naranjo I, Gibbs P, Reiner JS, Lo Gullo R, Sooknanan C, Thakur SB, et al. Radiomics and machine learning with multiparametric breast MRI for improved diagnostic accuracy in breast cancer diagnosis. Diagnostics (Basel). 2021;11(6):919.

https://doi.org/10.3390/diagnostics11060919

PMid:34063774 PMCid:PMC8223779

Li X, Yang L, Jiao X. Comparison of traditional radiomics, deep learning radiomics and fusion methods for axillary lymph node metastasis prediction in breast cancer. Acad Radiol. 2023;30(7):1281-7.

https://doi.org/10.1016/j.acra.2022.10.015

PMid:36376154

Mostert B, Sleijfer S, Foekens JA, Gratama JW. Circulating tumor cells (CTCs): detection methods and their clinical relevance in breast cancer. Cancer Treat Rev. 2009;35(5):463-74.

https://doi.org/10.1016/j.ctrv.2009.03.004

PMid:19410375

Bidard FC, Proudhon C, Pierga JY. Circulating tumor cells in breast cancer. Mol Oncol. 2016;10(3):418-30.

https://doi.org/10.1016/j.molonc.2016.01.001

PMid:26809472 PMCid:PMC5528978

Onstenk W, Gratama JW, Foekens JA, Sleijfer S. Towards a personalized breast cancer treatment approach guided by circulating tumor cell (CTC) characteristics. Cancer Treat Rev. 2013;39(7):691-700.

https://doi.org/10.1016/j.ctrv.2013.04.001

PMid:23683721

Mego M, Gao H, Cohen EN, Anfossi S, Giordano A, Sanda T, et al. Circulating tumor cells (CTC) are associated with defects in adaptive immunity in patients with inflammatory breast cancer. J Cancer. 2016;7(9):1095-104.

https://doi.org/10.7150/jca.13098

PMid:27326253 PMCid:PMC4911877

Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368(13):1199-209.

https://doi.org/10.1056/NEJMoa1213261

PMid:23484797

Madic J, Kiialainen A, Bidard FC, Birzele F, Ramey G, Leroy Q, et al. Circulating tumor DNA and circulating tumor cells in metastatic triple negative breast cancer patients. Int J Cancer. 2015;136(9):2158-65.

https://doi.org/10.1002/ijc.29265

PMid:25307450

Shoukry M, Broccard S, Kaplan J, Gabriel E. The emerging role of circulating tumor DNA in the management of breast cancer. Cancers (Basel). 2021;13(15):3813.

https://doi.org/10.3390/cancers13153813

PMid:34359713 PMCid:PMC8345044

Coombes RC, Page K, Salari R, Hastings RK, Armstrong A, Ahmed S, et al. Personalized detection of circulating tumor DNA antedates breast cancer metastatic recurrence. Clin Cancer Res. 2019;25(14):4255-63.

https://doi.org/10.1158/1078-0432.CCR-18-3663

PMid:30992300

Rohanizadegan M. Analysis of circulating tumor DNA in breast cancer as a diagnostic and prognostic biomarker. Cancer Genet. 2018:228-229:159-68.

https://doi.org/10.1016/j.cancergen.2018.02.002

PMid:29572011 PMCid:PMC6108954

Liu B, Hu Z, Ran J, Xie N, Tian C, Tang Y, et al. The circulating tumor DNA (ctDNA) alteration level predicts therapeutic response in metastatic breast cancer: Novel prognostic indexes based on ctDNA. Breast. 2022:65:116-23.

https://doi.org/10.1016/j.breast.2022.07.010

PMid:35926241 PMCid:PMC9356206

Huerta-Nuñez LF, Gutierrez-Iglesias G, Martinez-Cuazitl A, Mata-Miranda MM, Alvarez-Jiménez VD, Sánchez-Monroy V, et al. A biosensor capable of identifying low quantities of breast cancer cells by electrical impedance spectroscopy. Sci Rep. 2019;9(1):6419.

https://doi.org/10.1038/s41598-019-42776-9

PMid:31015522 PMCid:PMC6478841

Moqadam SM, Grewal PK, Haeri Z, Ingledew PA, Kohli K, Golnaraghi F. Cancer detection based on electrical impedance spectroscopy: A clinical study. J Electr Bioimpedance. 2018;9(1):17-23.

https://doi.org/10.2478/joeb-2018-0004

PMid:33584916 PMCid:PMC7852020

Mahdavi R, Yousefpour N, Abbasvandi F, Ataee H, Hoseinpour P, Akbari ME, et al. Intraoperative pathologically-calibrated diagnosis of lymph nodes involved by breast cancer cells based on electrical impedance spectroscopy; a prospective diagnostic human model study. Int J Surg. 2021:96:106166.

https://doi.org/10.1016/j.ijsu.2021.106166

PMid:34768024

Lederman D, Zheng B, Wang X, Sumkin JH, Gur D. A GMM‐based breast cancer risk stratification using a resonance‐frequency electrical impedance spectroscopy. Med Phys. 2011;38(3):1649-59.

https://doi.org/10.1118/1.3555300

PMid:21520878 PMCid:PMC3064686

Puglisi F, Fontanella C, Numico G, Sini V, Evangelista L, Monetti F, et al. Follow-up of patients with early breast cancer: is it time to rewrite the story?. Crit Rev Oncol Hematol. 2014;91(2):130-41.

https://doi.org/10.1016/j.critrevonc.2014.03.001

PMid:24726438

Brumec M, Sobočan M, Takač I, Arko D. Clinical implications of androgen-positive triple-negative breast cancer. Cancers (Basel). 2021;13(7):1642.

https://doi.org/10.3390/cancers13071642

PMid:33915941 PMCid:PMC8037213

Nelson HD, O'meara ES, Kerlikowske K, Balch S, Miglioretti D. Factors associated with rates of false-positive and false-negative results from digital mammography screening: an analysis of registry data. Ann Intern Med. 2016;164(4):226-35.

https://doi.org/10.7326/M15-0971

PMid:26756902 PMCid:PMC5091936

Burt JR, Torosdagli N, Khosravan N, RaviPrakash H, Mortazi A, Tissavirasingham F, et al. Deep learning beyond cats and dogs: recent advances in diagnosing breast cancer with deep neural networks. Br J Radiol. 2018; 91(1089): 20170545.

https://doi.org/10.1259/bjr.20170545

PMid:29565644 PMCid:PMC6223155

Jafari SH, Saadatpour Z, Salmaninejad A, Momeni F, Mokhtari M, Nahand JS, et al. Breast cancer diagnosis: Imaging techniques and biochemical markers. J Cell Physiol. 2018;233(7):5200-13.

https://doi.org/10.1002/jcp.26379

PMid:29219189

Zhao H, Zou L, Geng X, Zheng S. Limitations of mammography in the diagnosis of breast diseases compared with ultrasonography: a single-center retrospective analysis of 274 cases. Eur J Med Res. 2015;20(1):49.

https://doi.org/10.1186/s40001-015-0140-6

PMid:25896757 PMCid:PMC4406115

Snyder J, Schultz L, Walbert T. The role of tumor board conferences in neuro-oncology: a nationwide provider survey. J Neurooncol. 2017;133(1):1-7.

https://doi.org/10.1007/s11060-017-2416-x

PMid:28421461

Newman EA, Guest AB, Helvie MA, Roubidoux MA, Chang AE, Kleer CG, et al. Changes in surgical management resulting from case review at a breast cancer multidisciplinary tumor board. Cancer. 2006;107(10):2346-51.

https://doi.org/10.1002/cncr.22266

PMid:16998942

Brandão M, Guisseve A, Bata G, Firmino-Machado J, Alberto M, Ferro J, et al. Survival impact and cost-effectiveness of a multidisciplinary tumor board for breast cancer in Mozambique, sub-Saharan Africa. Oncologist. 2021;26(6):e996-e1008.

https://doi.org/10.1002/onco.13643

PMid:33325595 PMCid:PMC8176970

Garcia D, Spruill LS, Irshad A, Wood J, Kepecs D, Klauber-DeMore N. The value of a second opinion for breast cancer patients referred to a National Cancer Institute (NCI)-designated cancer center with a multidisciplinary breast tumor board. Ann Surg Oncol. 2018;25(10):2953-7.

https://doi.org/10.1245/s10434-018-6599-y

PMid:29971672 PMCid:PMC6132422

Driul L, Bernardi S, Bertozzi S, Schiavon M, Londero AP, Petri R. New surgical trends in breast cancer treatment: conservative interventions and oncoplastic breast surgery. Minerva Ginecol. 2013;65(3):289-96.

Tartter PI, Kaplan J, Bleiweiss I, Gajdos C, Kong A, Ahmed S, et al. Lumpectomy margins, reexcision, and local recurrence of breast cancer. Am J Surg. 2000;179(2):81-5.

https://doi.org/10.1016/S0002-9610(00)00272-5

PMid:10773138

Admoun C, Mayrovitz H, Mayrovitz HN. Choosing mastectomy vs. lumpectomy-with-radiation: experiences of breast cancer survivors. Cureus. 2021;13(10):e18433.

https://doi.org/10.7759/cureus.18433

PMid:34729260 PMCid:PMC8555933

Plesca M, Bordea C, El Houcheimi B, Ichim E, Blidaru A. Evolution of radical mastectomy for breast cancer. J Med Life. 2016;9(2):183-6.

Lagendijk M, van Maaren MC, Saadatmand S, Strobbe LJ, Poortmans PM, Koppert LB, et al. Breast conserving therapy and mastectomy revisited: Breast cancer‐specific survival and the influence of prognostic factors in 129,692 patients. Int J Cancer. 2018;142(1):165-75.

https://doi.org/10.1002/ijc.31034

PMid:28884470

Ng ET, Ang RZ, Tran BX, Ho CS, Zhang Z, Tan W, et al. Comparing quality of life in breast cancer patients who underwent mastectomy versus breast-conserving surgery: a meta-analysis. Int J Environ Res Public Health. 2019;16(24):4970.

https://doi.org/10.3390/ijerph16244970

PMid:31817811 PMCid:PMC6950729

Gu J, Groot G, Boden C, Busch A, Holtslander L, Lim H. Review of factors influencing women's choice of mastectomy versus breast conserving therapy in early stage breast cancer: a systematic review. Clin Breast Cancer. 2018;18(4):e539-e54.

https://doi.org/10.1016/j.clbc.2017.12.013

PMid:29396079

Trayes KP, Cokenakes SE. Breast cancer treatment. Am Fam Physician. 2021;104(2):171-8.

Katsura C, Ogunmwonyi I, Kankam HK, Saha S. Breast cancer: presentation, investigation and management. Br J Hosp Med (Lond). 2022;83(2):1-7.

https://doi.org/10.12968/hmed.2021.0459

PMid:35243878

Balaji K, Subramanian B, Yadav P, Radha CA, Ramasubramanian V. Radiation therapy for breast cancer: Literature review. Med Dosim. 2016;41(3):253-7.

https://doi.org/10.1016/j.meddos.2016.06.005

PMid:27545009

Brown LC, Mutter RW, Halyard MY. Benefits, risks, and safety of external beam radiation therapy for breast cancer. Int J Womens Health. 2015:7:449-58.

https://doi.org/10.2147/IJWH.S55552

PMid:25977608 PMCid:PMC4418389

Buchholz TA. Radiation therapy for early-stage breast cancer after breast-conserving surgery. N Engl J Med. 2009;360(1):63-70.

https://doi.org/10.1056/NEJMct0803525

PMid:19118305

Tsoutsou PG, Koukourakis MI, Azria D, Belkacémi Y. Optimal timing for adjuvant radiation therapy in breast cancer: a comprehensive review and perspectives. Crit Rev Oncol Hematol. 2009;71(2):102-16.

https://doi.org/10.1016/j.critrevonc.2008.09.002

PMid:18922700

Horton JK, Jagsi R, Woodward WA, Ho A. Breast cancer biology: clinical implications for breast radiation therapy. Int J Radiat Oncol Biol Phys. 2018;100(1):23-37.

https://doi.org/10.1016/j.ijrobp.2017.08.025

PMid:29254776

Burstein HJ, Curigliano G, Thürlimann B, Weber WP, Poortmans P, Regan MM, et al. Customizing local and systemic therapies for women with early breast cancer: the St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021. Ann Oncol. 2021;32(10):1216-35.

https://doi.org/10.1016/j.annonc.2021.06.023

PMid:34242744 PMCid:PMC9906308

Wang H, Mao X. Evaluation of the efficacy of neoadjuvant chemotherapy for breast cancer. Drug Des Devel Ther. 2020:14:2423-33.

https://doi.org/10.2147/DDDT.S253961

PMid:32606609 PMCid:PMC7308147

Anampa J, Makower D, Sparano JA. Progress in adjuvant chemotherapy for breast cancer: an overview. BMC Med. 2015:13:195.

https://doi.org/10.1186/s12916-015-0439-8

PMid:26278220 PMCid:PMC4538915

Bergh J, Jönsson PE, Glimelius B, Nygren P. A systematic overview of chemotherapy effects in breast cancer. Acta Oncologica. 2001;40(2-3):253-81.

https://doi.org/10.1080/02841860120784

Salek R, Dehghani M, Mohajeri SA, Talaei A, Fanipakdel A, Javadinia SA. Amelioration of anxiety, depression, and chemotherapy related toxicity after crocin administration during chemotherapy of breast cancer: a double blind, randomized clinical trial. Phytother Res. 2021;35(9):5143-53.

https://doi.org/10.1002/ptr.7180

PMid:34164855

Drãgãnescu M, Carmocan C. Hormone therapy in breast cancer. Chirurgia (Bucur). 2017;112(4):413-7.

https://doi.org/10.21614/chirurgia.112.4.413

PMid:28862117

Puhalla S, Bhattacharya S, Davidson NE. Hormonal therapy in breast cancer: a model disease for the personalization of cancer care. Mol Oncol. 2012;6(2):222-36.

https://doi.org/10.1016/j.molonc.2012.02.003

PMid:22406404 PMCid:PMC5528370

Chumsri S, Howes T, Bao T, Sabnis G, Brodie A. Aromatase, aromatase inhibitors, and breast cancer. J Steroid Biochem Mol Biol. 2011;125(1-2):13-22.

https://doi.org/10.1016/j.jsbmb.2011.02.001

PMid:21335088 PMCid:PMC3104073

Paik S, Kim C, Wolmark N. HER2 status and benefit from adjuvant trastuzumab in breast cancer. N Engl J Med. 2008;358(13):1409-11.

https://doi.org/10.1056/NEJMc0801440

PMid:18367751

Cortés J, Kim SB, Chung WP, Im SA, Park YH, Hegg R, et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N Engl J Med. 2022;386(12):1143-54.

https://doi.org/10.1056/NEJMoa2115022

PMid:35320644

Von Minckwitz G, Procter M, De Azambuja E, Zardavas D, Benyunes M, Viale G, et al. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N Engl J Med. 2017;377(2):122-31.

https://doi.org/10.1056/NEJMoa1703643

PMid:28581356 PMCid:PMC5538020

Assi HA, Khoury KE, Dbouk H, Khalil LE, Mouhieddine TH, El Saghir NS. Epidemiology and prognosis of breast cancer in young women. J Thorac Dis. 2013;5(Suppl 1):S2-8.

Han Y, Wang J, Xu B. Clinicopathological characteristics and prognosis of breast cancer with special histological types: a surveillance, epidemiology, and end results database analysis. Breast. 2020:54:114-20.

https://doi.org/10.1016/j.breast.2020.09.006

PMid:32979771 PMCid:PMC7519362

Kanumuri P, Hayse B, Killelea BK, Chagpar AB, Horowitz NR, Lannin DR. Characteristics of multifocal and multicentric breast cancers. Ann Surg Oncol. 2015;22(8):2475-82.

https://doi.org/10.1245/s10434-015-4430-6

PMid:25805233

Colleoni M, Sun Z, Price KN, Karlsson P, Forbes JF, Thürlimann B, et al. Annual hazard rates of recurrence for breast cancer during 24 years of follow-up: results from the international breast cancer study group trials I to V. J Clin Oncol. 2016;34(9):927-35.

https://doi.org/10.1200/JCO.2015.62.3504

PMid:26786933 PMCid:PMC4933127

Published

2024-04-22

Issue

Section

Review Article