The Anti-inflammatory and apoptotic effects of L. Officinal extracts on HT 29 and Caco-2 human colorectal carcinoma cell lines

Authors

  • Marzieh Lotfian Sargazi Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
  • Zahra Miri Karam Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
  • Ali Shahraki Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
  • Mahboobeh Raeiszadeh Herbal and traditional medicines research center, Kerman University of Medical Sciences, kerman, Iran
  • Mohammad Javad Rezazadeh Khabaz Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
  • Abolfazl Yari Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran

DOI:

https://doi.org/10.31661/gmj.v13i.3341

Keywords:

Colorectal Cancer; Levisticum Officinale Koch; Lovage; Apoptosis; Anti-cancer; Anti-inflammation

Abstract

Background: Colorectal cancer is among the deadliest cancers in the world. Due to the occurrence of side effects related to current standard therapy, researchers are seeking better alternative treatments. For many years, herbs have been a promising source for discovering therapeutic compounds. the primary objective of this research was to examine the distinctive apoptotic and anti-inflammatory properties exhibited by Levisticum officinale Koch (lovage) on HT-29 and Caco-2 cell lines. Materials and Methods: The maceration method was used to prepare different extracts (ethanol, dichloromethane, petroleum, and residues) from the plant. These extracts were tested on two colon cancer cell lines - HT-29 and Caco-2 - using the MTT assay to determine the half-maximal inhibitory concentration (IC50) values. we evaluated the expression levels of inflammatory genes (IKKb, IKKa, and REIB) using real-time PCR. We also assessed Cox-2 protein expression using western blot analysis. The western blot was also used to analyze apoptosis-related proteins, including Caspase-3, BAX, and Bcl-2. Results: The dichloromethane extract of Levisticum officin (DELO) exhibited a high cytotoxic effect on Caco-2 and HT-29 cell lines, with IC50 values of 106.0±2 µg/mL in HT-29 cells and 175.3±4 µg/mL in Caco-2 cells after 72 hours. None of the lovage extracts showed a significant cytotoxic effect on non-cancerous cells. Furthermore, the group treated with DELO showed a lower expression level of inflammatory genes and COX-2 protein compared to the control group. treatment with DELO resulted in an increase in Caspase-3 protein and BAX/Bcl-2 ratio in both HT-29 and Caco-2 cells. Conclusion: According to this study, DELO has the potential to act as an anti-inflammatory and anti-cancer agent. Further research on the compounds present in DELO and their effect on various signaling pathways could help in the development of new drugs for diseases where inflammation or cells escape from apoptosis play a crucial role.

References

Bylaitė E, Venskutonis RP, Roozen JP. Influence of harvesting time on the composition of volatile components in different anatomical parts of lovage (Levisticum officinale Koch.). J Agric Food Chem. 1998;46(9):3735-3740.

https://doi.org/10.1021/jf9800559

Farhood B, Geraily G, Alizadeh A. Incidence and mortality of various cancers in Iran and compare to other countries: a review article. Iran J Public Health. 2018;47(3):309.

Yari A, Afzali A, Aalipour M, Nakheai M, Zahedi MJ. KRAS and BRAF mutations in Iranian colorectal cancer patients: A systematic review and meta-analysis. Casp J Intern Med. 2020;11(4):355.

Yari A, Samoudi A, Afzali A, et al. Mutation status and prognostic value of KRAS and BRAF in southeast Iranian colorectal cancer patients: first report from southeast of Iran. J Gastrointest Cancer. 2021;52:557-568.

https://doi.org/10.1007/s12029-020-00426-8

PMid:32495109

Yari A, Meybodi SME, Karam ZM, et al. Association of MTHFR 677C> T and 1298A> C genetic polymorphisms with colorectal cancer: genotype and haplotype analysis in a Southeast Iranian population. Gene Reports. 2021;25:101399.

https://doi.org/10.1016/j.genrep.2021.101399

Pan SY, Litscher G, Gao SH, et al. Historical perspective of traditional indigenous medical practices: the current renaissance and conservation of herbal resources. Evidence-based Complement Altern Med. 2014;2014: 525340.

https://doi.org/10.1155/2014/525340

PMid:24872833 PMCid:PMC4020364

Pagare S, Bhatia M, Tripathi N, Pagare S, Bansal YK. Secondary metabolites of plants and their role: Overview. Curr Trends Biotechnol Pharm. 2015;9(3):293-304.

Majolo F, Delwing LK de OB, Marmitt DJ, Bustamante-Filho IC, Goettert MI. Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery. Phytochem Lett. 2019;31:196-207.

https://doi.org/10.1016/j.phytol.2019.04.003

Yadav VR, Prasad S, Sung B, Kannappan R, Aggarwal BB. Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins (Basel). 2010;2(10):2428-2466.

https://doi.org/10.3390/toxins2102428

PMid:22069560 PMCid:PMC3153165

Baghel SS, Shrivastava N, Baghel RS, Agrawal P, Rajput S. A review of quercetin: antioxidant and anticancer properties. World J Pharm Pharm Sci. 2012;1(1):146-160.

Ghaedi N, Pouraboli I, Askari N. Antidiabetic properties of hydroalcoholic leaf and stem extract of Levisticum officinale: an implication for α-amylase inhibitory activity of extract ingredients through molecular docking. Iran J Pharm Res IJPR. 2020;19(1):231.

Segebrecht S, Schilcher H. Ligustilide: guiding component for preparations of Levisticum officinale roots. Planta Med. 1989;55(06):572-573.

https://doi.org/10.1055/s-2006-962102

PMid:17262483

Hamedi A, Lashgari AP, Pasdaran A. Antimicrobial activity and analysis of the essential oils of selected endemic edible Apiaceae plants root from Caspian Hyrcanian region (North of Iran). Pharm Sci. 2019;25(2):138-144.

https://doi.org/10.15171/PS.2019.21

Sertel S, Eichhorn T, Plinkert PK, Efferth T. Chemical Composition and antiproliferative activity of essential oil from the leaves of a medicinal herb, Levisticum officinale, against UMSCC1 head and neck squamous carcinoma cells. Anticancer Res. 2011;31(1):185-191.

Shafaghat A. Chemical constituents, antimicrobial and antioxidant activity of the hexane extract from root and seed of Levisticum persicum Freyn and Bornm. J Med Plants Res. 2011;5(20):5127-5131.

Moradalizadeh M, Akhgar MR, Rajaei P, Faghihi-Zarandi A. Chemical composition of the essential oils of Levisticum officinale growing wild in Iran. Chem Nat Compd. 2012;47:1007-1009.

https://doi.org/10.1007/s10600-012-0130-7

Khodashenas M, Keramat B, Emamipoor Y. Callus induction and PLBs production from Levisticum officinale koch (a wild medicinal plant). J Appl Environ Biol Sci. 2015;5(10):172-180.

Spréa RM, Fernandes Â, Finimundy TC, et al. Lovage (Levisticum officinale WDJ Koch) roots: A source of bioactive compounds towards a circular economy. Resources. 2020;9(7):81.

https://doi.org/10.3390/resources9070081

Miran M, Esfahani HM, Jung JH, et al. Characterization and Antibacterial Activity of Phthalides from the Roots of the Medicinal Herb Levisticum officinale WDJ Koch. Iran J Pharm Res IJPR. 2020;19(2):182.

Mirjalili MH, Salehi P, Sonboli A, Hadian J, Ebrahimi SN, Yousefzadi M. The composition and antibacterial activity of the essential oil of Levisticum officinale Koch flowers and fruits at different developmental stages. J Serbian Chem Soc. 2010;75(12):1661-1669.

https://doi.org/10.2298/JSC100524126M

Aydin E, Türkez H, Geyikoğlu F. Antioxidative, anticancer and genotoxic properties of α-pinene on N2a neuroblastoma cells. Biologia (Bratisl). 2013;68:1004-1009.

https://doi.org/10.2478/s11756-013-0230-2

Bai X, Tang J. Myrcene exhibits antitumor activity against lung cancer cells by inducing oxidative stress and apoptosis mechanisms. Nat Prod Commun. 2020;15(9):1934578X20961189.

https://doi.org/10.1177/1934578X20961189

Juliana de Vasconcelos CB, de Carvalho FO, Daniele de Vasconcelos CM, et al. Mechanism of Action of Limonene in Tumor Cells: A Systematic Review and Meta-Analysis. Curr Pharm Des. 2021;27(26):2956-2965.

https://doi.org/10.2174/1381612826666201026152902

PMid:33106139

Złotek U, Lewicki S, Markiewicz A, Szymanowska U, Jakubczyk A. Effects of Drying Methods on Antioxidant, Anti-Inflammatory, and Anticancer Potentials of Phenolic Acids in Lovage Elicited by Jasmonic Acid and Yeast Extract. Antioxidants. 2021;10(5):662.

https://doi.org/10.3390/antiox10050662

PMid:33923284 PMCid:PMC8146002

Liang N, Kitts DD. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients. 2015;8(1):16.

https://doi.org/10.3390/nu8010016

PMid:26712785 PMCid:PMC4728630

Jiang Y, Nan H, Shi N, Hao W, Dong J, Chen H. Chlorogenic acid inhibits proliferation in human hepatoma cells by suppressing noncanonical NF-κB signaling pathway and triggering mitochondrial apoptosis. Mol Biol Rep. 2021;48:2351-2364.

https://doi.org/10.1007/s11033-021-06267-3

PMid:33738723

Feng R, Lu Y, Bowman LL, Qian Y, Castranova V, Ding M. Inhibition of activator protein-1, NF-κB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J Biol Chem. 2005;280(30):27888-27895.

https://doi.org/10.1074/jbc.M503347200

PMid:15944151

Abubakar AR, Haque M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J Pharm Bioallied Sci. 2020;12(1):1.

https://doi.org/10.4103/jpbs.JPBS_175_19

PMid:32801594 PMCid:PMC7398001

Chomczynski P, Wilfinger W, Kennedy A, Rymaszewski M, Mackey K. RNAzol® RT: a new single-step method for isolation of RNA. Nature Methods. 2010 Dec;7(12):4-5.

https://doi.org/10.1038/nmeth.f.315

Kordestani Z, Shahrokhi-Farjah M, Yazdi Rouholamini SE, Saberi A. Reduced ikk/nf-kb expression by Nigella sativa extract in breast cancer. Middle East J Cancer. 2020;11(2):150-158.

Luo Y, Fu X, Ru R, et al. CpG oligodeoxynucleotides induces apoptosis of human bladder cancer cells via caspase-3-Bax/Bcl-2-p53 axis. Arch Med Res. 2020;51(3):233-244.

https://doi.org/10.1016/j.arcmed.2020.02.005

PMid:32139108

Creagh EM, Conroy H, Martin SJ. Caspase-activation pathways in apoptosis and immunity. Immunol Rev. 2003;193(1):10-21.

https://doi.org/10.1034/j.1600-065X.2003.00048.x

PMid:12752666

Amiri M, Nasrollahi F, Barghi S, et al. The effect of ethanol baneh skin extract on the expressions of bcl-2, bax, and caspase-3 concentration in human prostate cancer pc3 cells. Int J Cancer Manag. 2018;11(3): e9865.

https://doi.org/10.5812/ijcm.9865

Gao C, Wang AY. Significance of increased apoptosis and Bax expression in human small intestinal adenocarcinoma. J Histochem Cytochem. 2009;57(12):1139-1148.

https://doi.org/10.1369/jhc.2009.954446

PMid:19729672 PMCid:PMC2778087

Moretti A, Weig HJ, Ott T, et al. Essential myosin light chain as a target for caspase-3 in failing myocardium. Proc Natl Acad Sci. 2002;99(18):11860-11865.

https://doi.org/10.1073/pnas.182373099

PMid:12186978 PMCid:PMC129359

Rajabi S, Maresca M, Yumashev AV, Choopani R, Hajimehdipoor H. The most competent plant-derived natural products for targeting apoptosis in cancer therapy. Biomolecules. 2021;11(4):534.

https://doi.org/10.3390/biom11040534

PMid:33916780 PMCid:PMC8066452

Loizzo MR, Tundis R, Conforti F, et al. Salvia leriifolia Benth (Lamiaceae) extract demonstrates in vitro antioxidant properties and cholinesterase inhibitory activity. Nutr Res. 2010;30(12):823-830.

https://doi.org/10.1016/j.nutres.2010.09.016

PMid:21147365

Bogucka-Kocka A, Smolarz HD, Kocki J. Apoptotic activities of ethanol extracts from some Apiaceae on human leukaemia cell lines. Fitoterapia. 2008;79(7-8):487-497.

https://doi.org/10.1016/j.fitote.2008.07.002

PMid:18672039

Sargazi S, Saravani R, Galavi H, Mollashahee-Kohkan F. Effect of Levisticum officinale hydroalcoholic extract on DU-145 and PC-3 prostate cancer cell lines. Gene, Cell Tissue. 2017;4(4): e66094.

https://doi.org/10.5812/gct.66094

Jambor T, Arvay J, Tvrda E, Kovacik A, Greifova H, Lukac N. The effect of Apium graveolens L, Levisticum officinale and Calendula officinalis L on cell viability, membrane integrity, steroidogenesis, and intercellular communication in mice Leydig cells in vitro. Physiol Res. 2021;70(4):615.

https://doi.org/10.33549/physiolres.934675

PMid:34062080 PMCid:PMC8820550

Złotek U, Szymanowska U, Pecio Ł, Kozachok S, Jakubczyk A. Antioxidative and potentially anti-inflammatory activity of phenolics from lovage leaves Levisticum officinale Koch elicited with jasmonic acid and yeast extract. Molecules. 2019;24(7):1441.

https://doi.org/10.3390/molecules24071441

PMid:30979087 PMCid:PMC6480578

Choi ES, Yoon JJ, Han BH, et al. Ligustilide attenuates vascular inflammation and activates Nrf2/HO-1 induction and, NO synthesis in HUVECs. Phytomedicine. 2018;38:12-23.

https://doi.org/10.1016/j.phymed.2017.09.022

PMid:29425644

Chopra B, Dhingra AK, Dhar KL, Nepali K. Emerging role of terpenoids for the treatment of cancer: A review. Mini Rev Med Chem. 2021;21(16):2300-2336.

https://doi.org/10.2174/1389557521666210112143024

PMid:33438537

Marques FM, Figueira MM, Schmitt EFP, et al. In vitro anti-inflammatory activity of terpenes via suppression of superoxide and nitric oxide generation and the NF-κB signalling pathway. Inflammopharmacology. 2019;27:281-289.

https://doi.org/10.1007/s10787-018-0483-z

PMid:29675712

Luo JL, Kamata H, Karin M. IKK/NF-κB signaling: balancing life and death-a new approach to cancer therapy. J Clin Invest. 2005;115(10):2625-2632.

https://doi.org/10.1172/JCI26322

PMid:16200195 PMCid:PMC1236696

Harris RE. Cyclooxygenase-2 (cox-2) and the inflammogenesis of cancer. Inflamm Pathog Chronic Dis COX-2 Controv. Published online 2007:93-126.

https://doi.org/10.1007/1-4020-5688-5_4

PMid:17612047

Greenhough A, Smartt HJM, Moore AE, et al. The COX-2/PGE 2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30(3):377-386.

https://doi.org/10.1093/carcin/bgp014

PMid:19136477

Roelofs HMJ, Te Morsche RHM, van Heumen BWH, Nagengast FM, Peters WHM. Over-expression of COX-2 mRNA in colorectal cancer. BMC Gastroenterol. 2014;14:1-6.

https://doi.org/10.1186/1471-230X-14-1

PMid:24383454 PMCid:PMC3880419

Conlon M. Analysis of the phytochemical composition and anti-inflammatory properties of Lovage. Published online 2011.

Amraie E, Pouraboli I, Rajaei Z. Neuroprotective effects of Levisticum officinale on LPS-induced spatial learning and memory impairments through neurotrophic, anti-inflammatory, and antioxidant properties. Food Funct. 2020;11(7):6608-6621.

https://doi.org/10.1039/D0FO01030H

PMid:32648872

Sargazi ML, Saravani R, Shahraki A. Hydroalcoholic extract of Levisticum officinale increases cGMP signaling pathway by down-regulating PDE5 expression and induction of apoptosis in MCF-7 and MDA-MB-468 breast cancer cell lines. Iran Biomed J. 2019;23(4):280.

https://doi.org/10.29252/ibj.23.4.280

PMCid:PMC6462291

Downloads

Published

2024-04-07

How to Cite

Lotfian Sargazi, M., Miri Karam, Z., Shahraki, A., Raeiszadeh, M., Rezazadeh Khabaz , M. J., & Yari, A. (2024). The Anti-inflammatory and apoptotic effects of L. Officinal extracts on HT 29 and Caco-2 human colorectal carcinoma cell lines. Galen Medical Journal, 13, e3341. https://doi.org/10.31661/gmj.v13i.3341

Issue

Section

Original Article