The Anti-inflammatory and apoptotic effects of L. Officinal extracts on HT 29 and Caco-2 human colorectal carcinoma cell lines
Keywords:
Colorectal Cancer; Levisticum Officinale Koch; Lovage; Apoptosis; Anti-cancer; Anti-inflammationAbstract
Background: Colorectal cancer is among the deadliest cancers in the world. Due to the occurrence of side effects related to current standard therapy, researchers are seeking better alternative treatments. For many years, herbs have been a promising source for discovering therapeutic compounds. the primary objective of this research was to examine the distinctive apoptotic and anti-inflammatory properties exhibited by Levisticum officinale Koch (lovage) on HT-29 and Caco-2 cell lines. Materials and Methods: The maceration method was used to prepare different extracts (ethanol, dichloromethane, petroleum, and residues) from the plant. These extracts were tested on two colon cancer cell lines - HT-29 and Caco-2 - using the MTT assay to determine the half-maximal inhibitory concentration (IC50) values. we evaluated the expression levels of inflammatory genes (IKKb, IKKa, and REIB) using real-time PCR. We also assessed Cox-2 protein expression using western blot analysis. The western blot was also used to analyze apoptosis-related proteins, including Caspase-3, BAX, and Bcl-2. Results: The dichloromethane extract of Levisticum officin (DELO) exhibited a high cytotoxic effect on Caco-2 and HT-29 cell lines, with IC50 values of 106.0±2 µg/mL in HT-29 cells and 175.3±4 µg/mL in Caco-2 cells after 72 hours. None of the lovage extracts showed a significant cytotoxic effect on non-cancerous cells. Furthermore, the group treated with DELO showed a lower expression level of inflammatory genes and COX-2 protein compared to the control group. treatment with DELO resulted in an increase in Caspase-3 protein and BAX/Bcl-2 ratio in both HT-29 and Caco-2 cells. Conclusion: According to this study, DELO has the potential to act as an anti-inflammatory and anti-cancer agent. Further research on the compounds present in DELO and their effect on various signaling pathways could help in the development of new drugs for diseases where inflammation or cells escape from apoptosis play a crucial role.
References
Bylaitė E, Venskutonis RP, Roozen JP. Influence of harvesting time on the composition of volatile components in different anatomical parts of lovage (Levisticum officinale Koch.). J Agric Food Chem. 1998;46(9):3735-3740.
https://doi.org/10.1021/jf9800559
Farhood B, Geraily G, Alizadeh A. Incidence and mortality of various cancers in Iran and compare to other countries: a review article. Iran J Public Health. 2018;47(3):309.
Yari A, Afzali A, Aalipour M, Nakheai M, Zahedi MJ. KRAS and BRAF mutations in Iranian colorectal cancer patients: A systematic review and meta-analysis. Casp J Intern Med. 2020;11(4):355.
Yari A, Samoudi A, Afzali A, et al. Mutation status and prognostic value of KRAS and BRAF in southeast Iranian colorectal cancer patients: first report from southeast of Iran. J Gastrointest Cancer. 2021;52:557-568.
https://doi.org/10.1007/s12029-020-00426-8
PMid:32495109
Yari A, Meybodi SME, Karam ZM, et al. Association of MTHFR 677C> T and 1298A> C genetic polymorphisms with colorectal cancer: genotype and haplotype analysis in a Southeast Iranian population. Gene Reports. 2021;25:101399.
https://doi.org/10.1016/j.genrep.2021.101399
Pan SY, Litscher G, Gao SH, et al. Historical perspective of traditional indigenous medical practices: the current renaissance and conservation of herbal resources. Evidence-based Complement Altern Med. 2014;2014: 525340.
https://doi.org/10.1155/2014/525340
PMid:24872833 PMCid:PMC4020364
Pagare S, Bhatia M, Tripathi N, Pagare S, Bansal YK. Secondary metabolites of plants and their role: Overview. Curr Trends Biotechnol Pharm. 2015;9(3):293-304.
Majolo F, Delwing LK de OB, Marmitt DJ, Bustamante-Filho IC, Goettert MI. Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery. Phytochem Lett. 2019;31:196-207.
https://doi.org/10.1016/j.phytol.2019.04.003
Yadav VR, Prasad S, Sung B, Kannappan R, Aggarwal BB. Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins (Basel). 2010;2(10):2428-2466.
https://doi.org/10.3390/toxins2102428
PMid:22069560 PMCid:PMC3153165
Baghel SS, Shrivastava N, Baghel RS, Agrawal P, Rajput S. A review of quercetin: antioxidant and anticancer properties. World J Pharm Pharm Sci. 2012;1(1):146-160.
Ghaedi N, Pouraboli I, Askari N. Antidiabetic properties of hydroalcoholic leaf and stem extract of Levisticum officinale: an implication for α-amylase inhibitory activity of extract ingredients through molecular docking. Iran J Pharm Res IJPR. 2020;19(1):231.
Segebrecht S, Schilcher H. Ligustilide: guiding component for preparations of Levisticum officinale roots. Planta Med. 1989;55(06):572-573.
https://doi.org/10.1055/s-2006-962102
PMid:17262483
Hamedi A, Lashgari AP, Pasdaran A. Antimicrobial activity and analysis of the essential oils of selected endemic edible Apiaceae plants root from Caspian Hyrcanian region (North of Iran). Pharm Sci. 2019;25(2):138-144.
https://doi.org/10.15171/PS.2019.21
Sertel S, Eichhorn T, Plinkert PK, Efferth T. Chemical Composition and antiproliferative activity of essential oil from the leaves of a medicinal herb, Levisticum officinale, against UMSCC1 head and neck squamous carcinoma cells. Anticancer Res. 2011;31(1):185-191.
Shafaghat A. Chemical constituents, antimicrobial and antioxidant activity of the hexane extract from root and seed of Levisticum persicum Freyn and Bornm. J Med Plants Res. 2011;5(20):5127-5131.
Moradalizadeh M, Akhgar MR, Rajaei P, Faghihi-Zarandi A. Chemical composition of the essential oils of Levisticum officinale growing wild in Iran. Chem Nat Compd. 2012;47:1007-1009.
https://doi.org/10.1007/s10600-012-0130-7
Khodashenas M, Keramat B, Emamipoor Y. Callus induction and PLBs production from Levisticum officinale koch (a wild medicinal plant). J Appl Environ Biol Sci. 2015;5(10):172-180.
Spréa RM, Fernandes Â, Finimundy TC, et al. Lovage (Levisticum officinale WDJ Koch) roots: A source of bioactive compounds towards a circular economy. Resources. 2020;9(7):81.
https://doi.org/10.3390/resources9070081
Miran M, Esfahani HM, Jung JH, et al. Characterization and Antibacterial Activity of Phthalides from the Roots of the Medicinal Herb Levisticum officinale WDJ Koch. Iran J Pharm Res IJPR. 2020;19(2):182.
Mirjalili MH, Salehi P, Sonboli A, Hadian J, Ebrahimi SN, Yousefzadi M. The composition and antibacterial activity of the essential oil of Levisticum officinale Koch flowers and fruits at different developmental stages. J Serbian Chem Soc. 2010;75(12):1661-1669.
https://doi.org/10.2298/JSC100524126M
Aydin E, Türkez H, Geyikoğlu F. Antioxidative, anticancer and genotoxic properties of α-pinene on N2a neuroblastoma cells. Biologia (Bratisl). 2013;68:1004-1009.
https://doi.org/10.2478/s11756-013-0230-2
Bai X, Tang J. Myrcene exhibits antitumor activity against lung cancer cells by inducing oxidative stress and apoptosis mechanisms. Nat Prod Commun. 2020;15(9):1934578X20961189.
https://doi.org/10.1177/1934578X20961189
Juliana de Vasconcelos CB, de Carvalho FO, Daniele de Vasconcelos CM, et al. Mechanism of Action of Limonene in Tumor Cells: A Systematic Review and Meta-Analysis. Curr Pharm Des. 2021;27(26):2956-2965.
https://doi.org/10.2174/1381612826666201026152902
PMid:33106139
Złotek U, Lewicki S, Markiewicz A, Szymanowska U, Jakubczyk A. Effects of Drying Methods on Antioxidant, Anti-Inflammatory, and Anticancer Potentials of Phenolic Acids in Lovage Elicited by Jasmonic Acid and Yeast Extract. Antioxidants. 2021;10(5):662.
https://doi.org/10.3390/antiox10050662
PMid:33923284 PMCid:PMC8146002
Liang N, Kitts DD. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients. 2015;8(1):16.
https://doi.org/10.3390/nu8010016
PMid:26712785 PMCid:PMC4728630
Jiang Y, Nan H, Shi N, Hao W, Dong J, Chen H. Chlorogenic acid inhibits proliferation in human hepatoma cells by suppressing noncanonical NF-κB signaling pathway and triggering mitochondrial apoptosis. Mol Biol Rep. 2021;48:2351-2364.
https://doi.org/10.1007/s11033-021-06267-3
PMid:33738723
Feng R, Lu Y, Bowman LL, Qian Y, Castranova V, Ding M. Inhibition of activator protein-1, NF-κB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J Biol Chem. 2005;280(30):27888-27895.
https://doi.org/10.1074/jbc.M503347200
PMid:15944151
Abubakar AR, Haque M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J Pharm Bioallied Sci. 2020;12(1):1.
https://doi.org/10.4103/jpbs.JPBS_175_19
PMid:32801594 PMCid:PMC7398001
Chomczynski P, Wilfinger W, Kennedy A, Rymaszewski M, Mackey K. RNAzol® RT: a new single-step method for isolation of RNA. Nature Methods. 2010 Dec;7(12):4-5.
https://doi.org/10.1038/nmeth.f.315
Kordestani Z, Shahrokhi-Farjah M, Yazdi Rouholamini SE, Saberi A. Reduced ikk/nf-kb expression by Nigella sativa extract in breast cancer. Middle East J Cancer. 2020;11(2):150-158.
Luo Y, Fu X, Ru R, et al. CpG oligodeoxynucleotides induces apoptosis of human bladder cancer cells via caspase-3-Bax/Bcl-2-p53 axis. Arch Med Res. 2020;51(3):233-244.
https://doi.org/10.1016/j.arcmed.2020.02.005
PMid:32139108
Creagh EM, Conroy H, Martin SJ. Caspase-activation pathways in apoptosis and immunity. Immunol Rev. 2003;193(1):10-21.
https://doi.org/10.1034/j.1600-065X.2003.00048.x
PMid:12752666
Amiri M, Nasrollahi F, Barghi S, et al. The effect of ethanol baneh skin extract on the expressions of bcl-2, bax, and caspase-3 concentration in human prostate cancer pc3 cells. Int J Cancer Manag. 2018;11(3): e9865.
https://doi.org/10.5812/ijcm.9865
Gao C, Wang AY. Significance of increased apoptosis and Bax expression in human small intestinal adenocarcinoma. J Histochem Cytochem. 2009;57(12):1139-1148.
https://doi.org/10.1369/jhc.2009.954446
PMid:19729672 PMCid:PMC2778087
Moretti A, Weig HJ, Ott T, et al. Essential myosin light chain as a target for caspase-3 in failing myocardium. Proc Natl Acad Sci. 2002;99(18):11860-11865.
https://doi.org/10.1073/pnas.182373099
PMid:12186978 PMCid:PMC129359
Rajabi S, Maresca M, Yumashev AV, Choopani R, Hajimehdipoor H. The most competent plant-derived natural products for targeting apoptosis in cancer therapy. Biomolecules. 2021;11(4):534.
https://doi.org/10.3390/biom11040534
PMid:33916780 PMCid:PMC8066452
Loizzo MR, Tundis R, Conforti F, et al. Salvia leriifolia Benth (Lamiaceae) extract demonstrates in vitro antioxidant properties and cholinesterase inhibitory activity. Nutr Res. 2010;30(12):823-830.
https://doi.org/10.1016/j.nutres.2010.09.016
PMid:21147365
Bogucka-Kocka A, Smolarz HD, Kocki J. Apoptotic activities of ethanol extracts from some Apiaceae on human leukaemia cell lines. Fitoterapia. 2008;79(7-8):487-497.
https://doi.org/10.1016/j.fitote.2008.07.002
PMid:18672039
Sargazi S, Saravani R, Galavi H, Mollashahee-Kohkan F. Effect of Levisticum officinale hydroalcoholic extract on DU-145 and PC-3 prostate cancer cell lines. Gene, Cell Tissue. 2017;4(4): e66094.
https://doi.org/10.5812/gct.66094
Jambor T, Arvay J, Tvrda E, Kovacik A, Greifova H, Lukac N. The effect of Apium graveolens L, Levisticum officinale and Calendula officinalis L on cell viability, membrane integrity, steroidogenesis, and intercellular communication in mice Leydig cells in vitro. Physiol Res. 2021;70(4):615.
https://doi.org/10.33549/physiolres.934675
PMid:34062080 PMCid:PMC8820550
Złotek U, Szymanowska U, Pecio Ł, Kozachok S, Jakubczyk A. Antioxidative and potentially anti-inflammatory activity of phenolics from lovage leaves Levisticum officinale Koch elicited with jasmonic acid and yeast extract. Molecules. 2019;24(7):1441.
https://doi.org/10.3390/molecules24071441
PMid:30979087 PMCid:PMC6480578
Choi ES, Yoon JJ, Han BH, et al. Ligustilide attenuates vascular inflammation and activates Nrf2/HO-1 induction and, NO synthesis in HUVECs. Phytomedicine. 2018;38:12-23.
https://doi.org/10.1016/j.phymed.2017.09.022
PMid:29425644
Chopra B, Dhingra AK, Dhar KL, Nepali K. Emerging role of terpenoids for the treatment of cancer: A review. Mini Rev Med Chem. 2021;21(16):2300-2336.
https://doi.org/10.2174/1389557521666210112143024
PMid:33438537
Marques FM, Figueira MM, Schmitt EFP, et al. In vitro anti-inflammatory activity of terpenes via suppression of superoxide and nitric oxide generation and the NF-κB signalling pathway. Inflammopharmacology. 2019;27:281-289.
https://doi.org/10.1007/s10787-018-0483-z
PMid:29675712
Luo JL, Kamata H, Karin M. IKK/NF-κB signaling: balancing life and death-a new approach to cancer therapy. J Clin Invest. 2005;115(10):2625-2632.
https://doi.org/10.1172/JCI26322
PMid:16200195 PMCid:PMC1236696
Harris RE. Cyclooxygenase-2 (cox-2) and the inflammogenesis of cancer. Inflamm Pathog Chronic Dis COX-2 Controv. Published online 2007:93-126.
https://doi.org/10.1007/1-4020-5688-5_4
PMid:17612047
Greenhough A, Smartt HJM, Moore AE, et al. The COX-2/PGE 2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30(3):377-386.
https://doi.org/10.1093/carcin/bgp014
PMid:19136477
Roelofs HMJ, Te Morsche RHM, van Heumen BWH, Nagengast FM, Peters WHM. Over-expression of COX-2 mRNA in colorectal cancer. BMC Gastroenterol. 2014;14:1-6.
https://doi.org/10.1186/1471-230X-14-1
PMid:24383454 PMCid:PMC3880419
Conlon M. Analysis of the phytochemical composition and anti-inflammatory properties of Lovage. Published online 2011.
Amraie E, Pouraboli I, Rajaei Z. Neuroprotective effects of Levisticum officinale on LPS-induced spatial learning and memory impairments through neurotrophic, anti-inflammatory, and antioxidant properties. Food Funct. 2020;11(7):6608-6621.
https://doi.org/10.1039/D0FO01030H
PMid:32648872
Sargazi ML, Saravani R, Shahraki A. Hydroalcoholic extract of Levisticum officinale increases cGMP signaling pathway by down-regulating PDE5 expression and induction of apoptosis in MCF-7 and MDA-MB-468 breast cancer cell lines. Iran Biomed J. 2019;23(4):280.
https://doi.org/10.29252/ibj.23.4.280
PMCid:PMC6462291
Published
Issue
Section
License
Copyright (c) 2024 Galen Medical Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.