Effect of Hiwa syrup, a Persian Medicine Product, on Autism Symptoms and in Children with Autism Spectrum Disorders: A Randomized Double-Blinded Clinical Trial

Authors

  • mohsen dayani Department of Traditional Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
  • Mehrdad Karimi Department of Iranian Medicine, Faculty of Iranian Medicine, Tehran University of Medical Sciences, Tehran, Iran
  • Seied Amirhosein Latifi Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
  • Mohammad Bagher Saberi Zafarghandi School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran
  • Mehdi Salehi Traditional and Complementary Medicine Research Center, Department of Traditional Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran

DOI:

https://doi.org/10.31661/gmj.v13i.3553

Keywords:

Autism Spectrum Disorder; Eye Contact; Herbal Medicine; Persian Medicine

Abstract

Background: Autism spectrum disorder (ASD) is a complex condition that affects communication, social interaction, and behavior. This study aims to evaluate the effectiveness of a Persian Medicine product, Hiwa syrup, which consists of consisted of apple (Malus domestica Borkh.) fruit, quince (Cydonia Oblonga Mill.) fruit, basil (Ocimum basilicum L.), green cardamom (Elettaria cardamomum), and sandalwood (Santalum album Linn), in ameliorating autism symptoms and extending eye contact duration in children diagnosed with ASD.

Methods: A double-blind randomized clinical trial involved 60 children (3-5 years) with level 1 autism, randomly assigned to intervention and control (placebo) groups. The intervention group received Hiwa syrup for eight weeks alongside routine therapy. Autism status was assessed using Persian version of Gilliam Autism Rating 2nd edition (GARS-2) questionnaire, and eye contact duration in response to auditory stimuli was measured pre and post-intervention. SPSS software version 25.0 was used for data analysis. 

Results: The Hiwa syrup group exhibited a significant decrease in the mean GARS-2 score from  75.03  ± 7.83 to 69.47 ± 5.87 (p=0.01) with a mean difference of 5.56 ± 3.12. This decrease surpassed that of the placebo group. Furthermore, the intervention group showed a significant increase in eye contact duration, from (7.90 ± 3.81 seconds to 9.26 ± 3.21 seconds (p=0.05), with a mean difference of 1.36±1.88 seconds. In contrast, the placebo group exhibited a smaller increase, from (7.50 ± 2.21seconds to 7.83 ± 2.91 seconds (p=0.64), with a mean difference of  0.33 ± 0.48 seconds.

Conclusion:The polyherbal product from Persian Medicine appears to be effective in ameliorating autism symptoms and extending the duration of eye contact in children diagnosed with autism spectrum disorders. Further clinical trials are essential to validate the efficacy of this product in treating autism spectrum disorders.

References

Cicolella A. Volatile Organic Compounds (VOC): definition, classification and properties. Revue des maladies respiratoires. 2008 Feb 1;25(2):155-63.

https://doi.org/10.1016/S0761-8425(08)71513-4

PMid:18449077

Abis L, Loubet B, Ciuraru R, Lafouge F, Dequiedt S, Houot S, Maron PA, Bourgeteau-Sadet S. Profiles of volatile organic compound emissions from soils amended with organic waste products. Science of The Total Environment. 2018 Sep 15;636:1333-43.

https://doi.org/10.1016/j.scitotenv.2018.04.232

PMid:29913594

Jiang M, Zou L, Li XQ, Che F, Zhao GH, Li G, Zhang GN. Definition and control indicators of volatile organic compounds in China. Huan jing ke xue= Huanjing kexue. 2015 Sep 1;36(9):3522-32.

Salthammer T. Very volatile organic compounds: an understudied class of indoor air pollutants. Indoor air. 2016 Feb;26(1):25-38.

https://doi.org/10.1111/ina.12173

PMid:25471461

Võ UU, Morris MP. Nonvolatile, semivolatile, or volatile: Redefining volatile for volatile organic compounds. Journal of the Air & Waste Management Association. 2014 Jun 3;64(6):661-9.

https://doi.org/10.1080/10962247.2013.873746

PMid:25039200

David E, Niculescu VC. Volatile organic compounds (VOCs) as environmental pollutants: Occurrence and mitigation using nanomaterials. International journal of environmental research and public health. 2021 Dec 13;18(24):13147.

https://doi.org/10.3390/ijerph182413147

PMid:34948756 PMCid:PMC8700805

Nurmatov UB, Tagiyeva N, Semple S, Devereux G, Sheikh A. Volatile organic compounds and risk of asthma and allergy: a systematic review. European Respiratory Review. 2015 Mar 1;24(135):92-101.

https://doi.org/10.1183/09059180.00000714

PMid:25726560 PMCid:PMC9487771

Hussain MS, Gupta G, Mishra R, Patel N, Gupta S, Alzarea SI, Kazmi I, Kumbhar P, Disouza J, Dureja H, Kukreti N. Unlocking the secrets: Volatile Organic Compounds (VOCs) and their devastating effects on lung cancer. Pathology-Research and Practice. 2024 Jan 26:155157.

https://doi.org/10.1016/j.prp.2024.155157

PMid:38320440

Feng X, Qiu F, Zheng L, Zhang Y, Wang Y, Wang M, Xia H, Tang B, Yan C, Liang R. Exposure to volatile organic compounds and mortality in US adults: A population-based prospective cohort study. Science of The Total Environment. 2024 Jun 10;928:172512.

https://doi.org/10.1016/j.scitotenv.2024.172512

PMid:38636853

Pappas GP, Herbert RJ, Henderson W, Koenig J, Stover B, Barnhart S. The respiratory effects of volatile organic compounds. International journal of occupational and environmental health. 2000 Jan 1;6(1):1-8.

https://doi.org/10.1179/oeh.2000.6.1.1

PMid:10637531

Nascimento GG, Alves‐Costa S, Romandini M. Burden of severe periodontitis and edentulism in 2021, with projections up to 2050: The Global Burden of Disease 2021 study. Journal of Periodontal Research. 2024 Oct;59(5):823-67.

https://doi.org/10.1111/jre.13337

PMid:39192495

Wu X, Apte MG, Maddalena R, Bennett DH. Volatile organic compounds in small-and medium-sized commercial buildings in California. Environmental science & technology. 2011 Oct 15;45(20):9075-83.

https://doi.org/10.1021/es202132u

PMid:21888354

Phillips M, Gleeson K, Hughes JM, Greenberg J, Cataneo RN, Baker L, McVay WP. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. The Lancet. 1999 Jun 5;353(9168):1930-3.

https://doi.org/10.1016/S0140-6736(98)07552-7

PMid:10371572

Besis A, Katsaros T, Samara C. Concentrations of volatile organic compounds in vehicular cabin air-Implications to commuter exposure. Environmental Pollution. 2023 Aug 1;330:121763.

https://doi.org/10.1016/j.envpol.2023.121763

PMid:37142203

Wickliffe JK, Stock TH, Howard JL, Frahm E, Simon-Friedt BR, Montgomery K, Wilson MJ, Lichtveld MY, Harville E. Increased long-term health risks attributable to select volatile organic compounds in residential indoor air in southeast Louisiana. Scientific Reports. 2020 Dec 10;10(1):21649.

https://doi.org/10.1038/s41598-020-78756-7

PMid:33303920 PMCid:PMC7730171

Phillips M, Cataneo RN, Greenberg J, Munawar MI, Nachnani S, Samtani S. Pilot study of a breath test for volatile organic compounds associated with oral malodor: evidence for the role of oxidative stress. Oral diseases. 2005 Mar;11:32-4.

https://doi.org/10.1111/j.1601-0825.2005.01085.x

PMid:15752095

Fenga C, Gangemi S, Giambò F, Tsitsimpikou C, Golokhvast K, Tsatsakis A, Costa C. Low-dose occupational exposure to benzene and signal transduction pathways involved in the regulation of cellular response to oxidative stress. Life sciences. 2016 Feb 15;147:67-70.

https://doi.org/10.1016/j.lfs.2015.12.025

PMid:26775569

Xu Z, Zou Q, Jin L, Shen Y, Shen J, Xu B, Qu F, Zhang F, Xu J, Pei X, Xie G. Characteristics and sources of ambient Volatile Organic Compounds (VOCs) at a regional background site, YRD region, China: Significant influence of solvent evaporation during hot months. Science of The Total Environment. 2023 Jan 20;857:159674.

https://doi.org/10.1016/j.scitotenv.2022.159674

PMid:36283529

Qin G, Gao S, Fu Q, Fu S, Jia H, Zeng Q, Fan L, Ren H, Cheng J. Investigation of VOC characteristics, source analysis, and chemical conversions in a typical petrochemical area through 1-year monitoring and emission inventory. Environmental Science and Pollution Research. 2022 Jul;29(34):51635-50.

https://doi.org/10.1007/s11356-022-19145-7

PMid:35247176

Li XH, Wang SX, Hao JM. Characteristics of volatile organic compounds (VOCs) emitted from biofuel combustion in China. Huan Jing ke Xue= Huanjing Kexue. 2011 Dec 1;32(12):3515-21.

Ye L, Tai QQ, Yu HM. Characteristics and source apportionment of volatile organic compounds (VOCs) in the automobile industrial park of shanghai. Huan Jing ke Xue= Huanjing Kexue. 2021 Feb 1;42(2):624-33.

An JL, Zhu B, Wang HL, Yang H. Characteristics and source apportionment of volatile organic compounds (VOCs) in the northern suburb of Nanjing. Huan Jing ke Xue= Huanjing Kexue. 2014 Dec 1;35(12):4454-64.

Wang WM, Gao JY, Xiao ZM, Li Y, Bi WK, Li LW, Yang N, Xu H, Kong J. Characteristics and sources of VOCs at different ozone concentration levels in Tianjin. Huan Jing ke Xue= Huanjing Kexue. 2021 Aug 1;42(8):3585-94.

Mögel I, Baumann S, Böhme A, Kohajda T, von Bergen M, Simon JC, Lehmann I. The aromatic volatile organic compounds toluene, benzene and styrene induce COX-2 and prostaglandins in human lung epithelial cells via oxidative stress and p38 MAPK activation. Toxicology. 2011 Oct 28;289(1):28-37.

https://doi.org/10.1016/j.tox.2011.07.006

PMid:21801798

Wang S, Luo J, Zhang F, Zhang R, Ju W, Wu N, Zhang J, Liu Y. Association between blood volatile organic aromatic compound concentrations and hearing loss in US adults. BMC Public Health. 2024 Feb 27;24(1):623.

https://doi.org/10.1186/s12889-024-18065-0

PMid:38413886 PMCid:PMC10897984

Nurmatov UB, Tagiyeva N, Semple S, Devereux G, Sheikh A. Volatile organic compounds and risk of asthma and allergy: a systematic review. European Respiratory Review. 2015 Mar 1;24(135):92-101.

https://doi.org/10.1183/09059180.00000714

PMid:25726560 PMCid:PMC9487771

Lee I, Park H, Kim MJ, Kim S, Choi S, Park J, Cho YH, Hong S, Yoo J, Cheon GJ, Choi K. Exposure to polycyclic aromatic hydrocarbons and volatile organic compounds is associated with a risk of obesity and diabetes mellitus among Korean adults: Korean National Environmental Health Survey (KoNEHS) 2015-2017. International Journal of Hygiene and Environmental Health. 2022 Mar 1;240:113886.

https://doi.org/10.1016/j.ijheh.2021.113886

PMid:34864598

Odabasi M. Halogenated volatile organic compounds from the use of chlorine-bleach-containing household products. Environmental science & technology. 2008 Mar 1;42(5):1445-51.

https://doi.org/10.1021/es702355u

PMid:18441786

Gschwend PM, MacFarlane JK, Newman KA. Volatile halogenated organic compounds released to seawater from temperate marine macroalgae. Science. 1985 Mar 1;227(4690):1033-5.

https://doi.org/10.1126/science.227.4690.1033

PMid:17794227

Fantuzzi G, Righi E, Predieri G, Pinotti MA, Aggazzotti G. Halogenated volatile organic compounds in bottled mineral water and soft drinks. Annali di Igiene: Medicina Preventiva e di Comunita. 2004 Nov 1;16(6):727-34.

Ofstad EB, Drangsholt H, Carlberg GE. Analysis of volatile halogenated organic compounds in fish. Science of The Total Environment. 1981 Oct 1;20(3):205-15.

https://doi.org/10.1016/0048-9697(81)90090-5

PMid:7323805

Russo MV, Notardonato I, Rosada A, Ianiri G, Avino P. Halogenated volatile organic compounds in water samples and inorganic elements levels in ores for characterizing a high anthropogenic polluted area in the Northern Latium region (Italy). International Journal of Environmental Research and Public Health. 2021 Feb;18(4):1628.

https://doi.org/10.3390/ijerph18041628

PMid:33567749 PMCid:PMC7915735

Kandalam U, Ledra N, Laubach H, Venkatachalam KV. Inhibition of methionine gamma lyase deaminase and the growth of Porphyromonas gingivalis: a therapeutic target for halitosis/periodontitis. Archives of Oral Biology. 2018 Jun 1;90:27-32.

https://doi.org/10.1016/j.archoralbio.2018.02.022

PMid:29525436

Roslund K, Lehto M, Pussinen P, Hartonen K, Groop PH, Halonen L, Metsälä M. Identifying volatile in vitro biomarkers for oral bacteria with proton-transfer-reaction mass spectrometry and gas chromatography-mass spectrometry. Scientific Reports. 2021 Aug 19;11(1):16897.

https://doi.org/10.1038/s41598-021-96287-7

PMid:34413397 PMCid:PMC8377122

Roslund K, Lehto M, Pussinen P, Groop PH, Halonen L, Metsälä M. On-line profiling of volatile compounds produced in vitro by pathogenic oral bacteria. Journal of Breath Research. 2019 Dec 16;14(1):016010.

https://doi.org/10.1088/1752-7163/ab5559

PMid:31698353

Hertel M, Preissner R, Gillissen B, Schmidt-Westhausen AM, Paris S, Preissner S. Detection of signature volatiles for cariogenic microorganisms. European Journal of Clinical Microbiology & Infectious Diseases. 2016 Feb;35:235-44.

https://doi.org/10.1007/s10096-015-2536-1

PMid:26610336

Roslund K, Uosukainen M, Järvik K, Hartonen K, Lehto M, Pussinen P, Groop PH, Metsälä M. Antibiotic treatment and supplemental hemin availability affect the volatile organic compounds produced by P. gingivalis in vitro. Scientific Reports. 2022 Dec 29;12(1):22534.

https://doi.org/10.1038/s41598-022-26497-0

PMid:36581644 PMCid:PMC9800405

Qiao W, Wang F, Xu X, Wang S, Regenstein JM, Bao B, Ma M. Egg yolk immunoglobulin interactions with Porphyromonas gingivalis to impact periodontal inflammation and halitosis. AMB Express. 2018 Dec;8:1-2.

https://doi.org/10.1186/s13568-018-0706-0

PMid:30374625 PMCid:PMC6206315

Milanowski M, Monedeiro F, Złoch M, Ratiu IA, Pomastowski P, Ligor T, De Martinis BS, Buszewski B. Profiling of VOCs released from different salivary bacteria treated with non-lethal concentrations of silver nitrate. Analytical biochemistry. 2019 Aug 1;578:36-44.

https://doi.org/10.1016/j.ab.2019.05.007

PMid:31085164

Scully C, Greenman J. Halitology (breath odour: aetiopathogenesis and management). Oral diseases. 2012 May;18(4):333-45.

https://doi.org/10.1111/j.1601-0825.2011.01890.x

PMid:22277019

Suzuki N, Yoneda M, Takeshita T, Hirofuji T, Hanioka T. Induction and inhibition of oral malodor. Molecular oral microbiology. 2019 Jun;34(3):85-96.

https://doi.org/10.1111/omi.12259

PMid:30927516

Krespi YP, Shrime MG, Kacker A. The relationship between oral malodor and volatile sulfur compound-producing bacteria. Otolaryngology-Head and Neck Surgery. 2006 Nov;135(5):671-6.

https://doi.org/10.1016/j.otohns.2005.09.036

PMid:17071291

Ratcliff PA, Johnson PW. The relationship between oral malodor, gingivitis, and periodontitis. A review. Journal of periodontology. 1999 May;70(5):485-9.

https://doi.org/10.1902/jop.1999.70.5.485

PMid:10368052

Miyazaki H, Sakao S, Katoh Y, Takehara T. Correlation between volatile sulphur compounds and certain oral health measurements in the general population. Journal of periodontology. 1995 Aug;66(8):679-84.

https://doi.org/10.1902/jop.1995.66.8.679

PMid:7473010

Tokar OM, Batig VM, Ostafiichuk MO, Ishkov MO, Sheremet MI. Investigation of the effect of formaldehyde on the condition of periodontal tissues of woodworking industry workers. Journal of medicine and life. 2020 Apr;13(2):225.

https://doi.org/10.25122/jml-2020-0016

PMid:32742518 PMCid:PMC7378329

Laçin N, İzol BS, Tuncer MC, Özkorkmaz EG, Deveci B, Deveci E. Effects of formaldehyde on vascular endothelial growth factor, matrix metallopeptidase 2 and osteonectin levels in periodontal membrane and alveolar bone in rats. Folia morphologica. 2019;78(3):545-53.

https://doi.org/10.5603/FM.a2018.0110

PMid:30536359

Gautam S, Galgali SR, Sheethal HS, Priya NS. Pulpal changes associated with advanced periodontal disease: A histopathological study. Journal of Oral and Maxillofacial Pathology. 2017 Jan 1;21(1):58-63.

https://doi.org/10.4103/0973-029X.203795

PMCid:PMC5406820

Ma L, Chen J, Han H, Liu P, Wang H, Lin S, Zhang Q, Lu D, Zhang X. Effects of lemon essential oil and limonene on the progress of early caries: An in vitro study. Archives of Oral Biology. 2020 Mar 1;111:104638.

https://doi.org/10.1016/j.archoralbio.2019.104638

Lemes RS, Alves CC, Estevam EB, Santiago MB, Martins CH, SANTOS TC, Crotti AE, Miranda ML. Chemical composition and antibacterial activity of essential oils from Citrus aurantifolia leaves and fruit peel against oral pathogenic bacteria. Anais da Academia Brasileira de Ciências. 2018;90(02):1285-92.

https://doi.org/10.1590/0001-3765201820170847

Benzaid C, Belmadani A, Tichati L, Djeribi R, Rouabhia M. Effect of Citrus aurantium L. Essential oil on Streptococcus mutans growth, biofilm formation and virulent genes expression. Antibiotics. 2021 Jan 8;10(1):54.

https://doi.org/10.3390/antibiotics10010054

PMCid:PMC7827172

Milia E, Bullitta SM, Mastandrea G, Szotáková B, Schoubben A, Langhansová L, Quartu M, Bortone A, Eick S. Leaves and fruits preparations of Pistacia lentiscus L.: a review on the ethnopharmacological uses and implications in inflammation and infection. Antibiotics. 2021 Apr 12;10(4):425.

https://doi.org/10.3390/antibiotics10040425

PMCid:PMC8069618

Kostelc JG, Zelson PR, Preti G, Tonzetich J. Quantitative differences in volatiles from healthy mouths and mouths with periodontitis. Clinical chemistry. 1981 Jun 1;27(6):842-5.

https://doi.org/10.1093/clinchem/27.6.842

Kostelc JG, Preti G, Zelson PR, Brauner and L, Baehni P. Oral odors in early experimental gingivitis. Journal of Periodontal Research. 1984 May;19(3):303-12.

https://doi.org/10.1111/j.1600-0765.1984.tb00821.x

Ehizele AO, Ojehanon PI. Relationship between self-perception of malodour and actual estimation of malodour in a group of dental patients. Nigerian Postgraduate Medical Journal. 2013 Oct 1;20(4):311-4.

https://doi.org/10.4103/1117-1936.164619

Iscan TA, Ozsin-Ozler C, Ileri-Keceli T, Guciz-Dogan B, Alikasifoglu A, Uzamis-Tekcicek M. Oral health and halitosis among type 1 diabetic and healthy children. Journal of breath research. 2020 Jun 30;14(3):036008.

https://doi.org/10.1088/1752-7163/ab8d8b

Hartwig S, Raguse JD, Pfitzner D, Preissner R, Paris S, Preissner S. Volatile organic compounds in the breath of oral squamous cell carcinoma patients: a pilot study. Otolaryngology-Head and Neck Surgery. 2017 Dec;157(6):981-7.

https://doi.org/10.1177/0194599817711411

Li XJ, Dong LL, Kong JJ. Impact of volatile sulphur compounds in periodontal pockets on initial periodontal therapy. Zhejiang da xue xue bao. Yi xue ban= Journal of Zhejiang University. Medical Sciences. 2008 Jul 1;37(4):418-21.

Liang Z, Feng Q, Zhang Y, Yu Y, Liao W, Li G, An T. Odorous VOCs released from bio-decomposition and its interaction mechanism with bacteria: Compared inter-type with intra-type household garbage. Journal of Cleaner Production. 2024 Apr 1;447:141523.

https://doi.org/10.1016/j.jclepro.2024.141523

Dong H, Wang X, Xiao N, Yang X, Zhang X, Niu P, Chen T. Association between volatile organic compounds exposure and periodontitis: A representative cross‐sectional study. Journal of Clinical Periodontology. 2024 Oct;51(10):1359-68.

https://doi.org/10.1111/jcpe.14041

Dai Z, Zhang Z, Hu Q, Yu X, Cao Y, Xia Y, Fu Y, Tan Y, Jing C, Zhang C. Mediating role of systemic inflammation in the association between volatile organic compounds exposure and periodontitis: NHANES 2011-2014. BMC Oral Health. 2024 Oct 30;24(1):1324.

https://doi.org/10.1186/s12903-024-05110-y

PMCid:PMC11523851

Jiang W, Wu W, Zhang K, Liu L, Yan B. Mediating role of immune cells in association between volatile organic compounds and periodontitis: NHANES 2011-2014. Journal of Periodontology.

Silva ML, Viana KS, de Arruda JA, de Miranda RD, Soares MC, Calado HD, Amorim MC, Costa FO, Cota LO, Abreu LG, Amaral TM. Volatile sulfur compounds, biofilm, and salivary parameters in patients with periodontal disease: a cross-sectional study. Odontology. 2024 Sep 15:1-9.

https://doi.org/10.1007/s10266-024-01004-1

PMCid:PMC11415441

Lee YH, Shin SI, Hong JY. Investigation of volatile sulfur compound level and halitosis in patients with gingivitis and periodontitis. Scientific Reports. 2023 Aug 14;13(1):13175.

https://doi.org/10.1038/s41598-023-40391-3

PMCid:PMC10425441

Bolepalli AC, Munireddy C, Peruka S, Polepalle T, Alluri LS, Mishaeel S. Determining the association between oral malodor and periodontal disease: a case control study. Journal of International Society of Preventive and Community Dentistry. 2015 Sep 1;5(5):413-8.

https://doi.org/10.4103/2231-0762.165929

PMCid:PMC4606607

Iatropoulos A, Panis V, Mela E, Stefaniotis T, Madianos PN, Papaioannou W. Changes of volatile sulphur compounds during therapy of a case series of patients with chronic periodontitis and halitosis. Journal of clinical periodontology. 2016 Apr;43(4):359-65.

https://doi.org/10.1111/jcpe.12521

Xue Y, Tang Y, Ren Z, Linke L, Liu Y, Xie J. Association between blood ethylene oxide levels and the prevalence of periodontitis: evidence from NHANES 2013-2014. Clinical Oral Investigations. 2024 May 2;28(5):293.

https://doi.org/10.1007/s00784-024-05690-7

Makino Y, Yamaga T, Yoshihara A, Nohno K, Miyazaki H. Association between volatile sulfur compounds and periodontal disease progression in elderly non‐smokers. Journal of Periodontology. 2012 May;83(5):635-43.

https://doi.org/10.1902/jop.2011.110275

Downloads

Published

2024-10-09

How to Cite

dayani, mohsen, Karimi, M., Latifi, S. A., Saberi Zafarghandi, M. B., & Salehi, M. (2024). Effect of Hiwa syrup, a Persian Medicine Product, on Autism Symptoms and in Children with Autism Spectrum Disorders: A Randomized Double-Blinded Clinical Trial. Galen Medical Journal, 13, e3553. https://doi.org/10.31661/gmj.v13i.3553

Issue

Section

Original Article