Investigating the Impact of LNA-anti-miR-92b, miR-181b, TNF-α, and Piperine on Gene Expression and Cell Viability in Jurkat Cells: Implications for Acute Lymphoblastic Leukemia
DOI:
https://doi.org/10.31661/gmj.v14i.3566Keywords:
MicroRNA; T cell; ALL; Acute Lymphoblastic Leukemia; Acute Lymphoblastic Lymphoma; LBLAbstract
Background: Acute lymphoblastic leukemia/lymphoblastic lymphoma (ALL/LBL), a prevalent pediatric cancer, arises from precursor lymphoid cells and is affected by various risk factors. Abnormal microRNAs (miRs) and dysregulated expression of BCL-2 family proteins significantly contribute to leukemogenesis. Piperine, noted for its anti-tumor capabilities, has demonstrated potential in enhancing the sensitivity of cancer cells to treatment. We aimed in this study to investigate the influence of specific miRs (miR-92b, miR-181b) and TNF-α on the proliferation and viability of the Jurkat cell line, and examined the effects of piperine on miR expression and the genes BAX, BCL-2, and MCL-1. Materials and Methods: Jurkat T-cells were cultured and treated with LNA-miR inhibitors to selectively suppress miR-181b and miR-92b expression. Cell viability was assessed using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, while miR-92b, miR-181b, MCL-1, BAX, and BCL-2 mRNA levels were quantified using SYBR Green Real-Time PCR (Polymerase Chain Reaction). SPSS software (version 18) was utilized for statistical analysis. Results: The study demonstrated effective inhibition of miR-181b and miR-92b through LNA-anti-miR technology. Treatment with LNA-anti-miR-92b and TNF-α reduced Jurkat cell survival, whereas inhibiting miR-181b enhanced viability. BAX expression decreased with LNA-anti-miR-181b and piperine treatment, while BCL-2 expression declined with LNA-anti-miR-92b and piperine treatment. Additionally, piperine treatment increased miR-181b expression while reducing miR-92b and TNF-α expression. Conclusion: Our findings suggest that inhibiting miR-92b, miR-181b, TNF-α, and BAX using LNA-anti-miR could be a promising strategy for treating ALL. Piperine may enhance this approach by upregulating BAX. Further research is needed to explore these possibilities and develop effective treatments.
References
Horton TM, Steuber CP, Aster JC. Overview of the clinical presentation and diagnosis of acute lymphoblastic leukemia/lymphoma in children. UpToDate. 2018; : .
Rogne T, Wang R, Wang P, Deziel NC, Metayer C, Wiemels JL et al. High ambient temperature in pregnancy and risk of childhood acute lymphoblastic leukaemia: an observational study. Lancet Planet Health. 2024;8(7):e506-e14.
https://doi.org/10.1016/S2542-5196(24)00121-9
PMid:38969477
Zack M, Adami HO, Ericson A. Maternal and perinatal risk factors for childhood leukemia. Cancer Res. 1991;51(14):3696-701.
Hunger SP, Mullighan CG. Acute Lymphoblastic Leukemia in Children. N Engl J Med. 2015;373(16):1541-52.
https://doi.org/10.1056/NEJMra1400972
PMid:26465987
Buffler PA, Kwan ML, Reynolds P, Urayama KY. Environmental and genetic risk factors for childhood leukemia: appraising the evidence. Cancer Invest. 2005;23(1):60-75.
https://doi.org/10.1081/CNV-46402
PMid:15779869
Trevino LR, Yang W, French D, Hunger SP, Carroll WL, Devidas M et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet. 2009;41(9):1001-5.
https://doi.org/10.1038/ng.432
PMid:19684603 PMCid:PMC2762391
Papaemmanuil E, Hosking FJ, Vijayakrishnan J, Price A, Olver B, Sheridan E et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet. 2009;41(9):1006-10.
https://doi.org/10.1038/ng.430
PMid:19684604 PMCid:PMC4915548
Sherborne AL, Hosking FJ, Prasad RB, Kumar R, Koehler R, Vijayakrishnan J, et al. Variation in CDKN2A at 9p21 3 influences childhood acute lymphoblastic leukemia risk. Nat Genet. 2010;42(6):492-4.
https://doi.org/10.1038/ng.585
PMid:20453839 PMCid:PMC3434228
Xu H, Yang W, Perez-Andreu V, Devidas M, Fan Y, Cheng C, et al. Novel susceptibility variants at 10p12 31-12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations. J Natl Cancer Inst. 2013;105(10):733-42.
https://doi.org/10.1093/jnci/djt042
PMid:23512250 PMCid:PMC3691938
Rudant J, Orsi L, Bonaventure A, Goujon-Bellec S, Baruchel A, Petit A et al. ARID5B, IKZF1 and non-genetic factors in the etiology of childhood acute lymphoblastic leukemia: the ESCALE study. PLoS One. 2015;10(3):e0121348.
https://doi.org/10.1371/journal.pone.0121348
PMid:25806972 PMCid:PMC4373901
Milne E, Greenop KR, Scott RJ, Bailey HD, Attia J, Dalla-Pozza L et al. Parental prenatal smoking and risk of childhood acute lymphoblastic leukemia. Am J Epidemiol. 2012;175(1):43-53.
https://doi.org/10.1093/aje/kwr275
PMid:22143821
Wang Y, Gao P, Liang G, Zhang N, Wang C, Wang Y et al. Maternal prenatal exposure to environmental factors and risk of childhood acute lymphocytic leukemia: A hospital-based case-control study in China. Cancer Epidemiol. 2019;58:146-52.
https://doi.org/10.1016/j.canep.2018.11.005
PMid:30579239
Rafieemehr H, Calhor F, Esfahani H, Ghorbani Gholiabad S. Risk of Acute Lymphoblastic Leukemia: Results of a Case-Control Study. Asian Pac J Cancer Prev. 2019;20(8):2477-83.
https://doi.org/10.31557/APJCP.2019.20.8.2477
PMid:31450923 PMCid:PMC6852832
Contreras ZA, Hansen J, Ritz B, Olsen J, Yu F, Heck JE. Parental age and childhood cancer risk: A Danish population-based registry study. Cancer Epidemiol. 2017;49:202-15.
https://doi.org/10.1016/j.canep.2017.06.010
PMid:28715709 PMCid:PMC5586505
Karalexi MA, Dessypris N, Skalkidou A, Biniaris-Georgallis S, Kalogirou E, Thomopoulos TP et al. Maternal fetal loss history and increased acute leukemia subtype risk in subsequent offspring: a systematic review and meta-analysis. Cancer Causes Control. 2017;28(6):599-624.
https://doi.org/10.1007/s10552-017-0890-2
PMid:28401353
Hjalgrim LL, Rostgaard K, Hjalgrim H, Westergaard T, Thomassen H, Forestier E et al. Birth weight and risk for childhood leukemia in Denmark, Sweden, Norway, and Iceland. J Natl Cancer Inst. 2004;96(20):1549-56.
https://doi.org/10.1093/jnci/djh287
PMid:15494605
Petridou ET, Georgakis MK, Erdmann F, Ma X, Heck JE, Auvinen A et al. Advanced parental age as risk factor for childhood acute lymphoblastic leukemia: results from studies of the Childhood Leukemia International Consortium. Eur J Epidemiol. 2018;33:965-76.
https://doi.org/10.1007/s10654-018-0402-z
PMid:29761423 PMCid:PMC6384148
Iravani Saadi M. Up-Regulation of the MiR-92a and miR-181a in Patients with Acute Myeloid Leukemia and their Inhibition with Locked Nucleic acid (LNA)-antimiRNA; Introducing c-Kit as a New Target Gene. Int J Hematol Oncol. 2018;28(4):238-47.
https://doi.org/10.4999/uhod.183066
Jiang X, Hu C, Arnovitz S, Bugno J, Yu M, Zuo Z et al. miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia. Nat Commun. 2016;7(1):1-15.
https://doi.org/10.1038/ncomms11452
PMid:27116251 PMCid:PMC5477496
Zanette DL, Rivadavia F, Molfetta GA, Barbuzano FG, Proto-Siqueira R, Silva WA, et al. miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res. 2007;40(11):1435-40.
https://doi.org/10.1590/S0100-879X2007001100003
PMid:17934639
Udupa MN, Babu KG, Babu MS, Lakshmaiah K, Lokanatha D, Jacob AL et al. Clinical profile, cytogenetics and treatment outcomes of adult acute myeloid leukemia. J Cancer Res Ther. 2020;16(1):18-22.
https://doi.org/10.4103/jcrt.JCRT_1162_16
PMid:32362604
Liu Z, Diep C, Mao T, Huang L, Merrill R, Zhang Z, Peng Y. MicroRNA-92b promotes tumor growth and activation of NF-kappaB signaling via regulation of NLK in oral squamous cell carcinoma. Oncol Rep. 2015;34(6):2961-8.
https://doi.org/10.3892/or.2015.4323
PMid:26503628
Li M, Shan W, Hua Y, Chao F, Cui Y, Lv L et al. Exosomal miR-92b-3p Promotes Chemoresistance of Small Cell Lung Cancer Through the PTEN/AKT Pathway. Frontiers in cell and developmental biology. 2021;9:661602.
https://doi.org/10.3389/fcell.2021.661602
PMid:34136482 PMCid:PMC8201786
Lei L, Huang Y, Gong W. Inhibition of miR-92b suppresses nonsmall cell lung cancer cells growth and motility by targeting RECK. Mol Cell Biochem. 2014;387(1-2):171-6.
https://doi.org/10.1007/s11010-013-1882-5
PMid:24162673
Qin Y, Zheng Y, Huang C, Li Y, Gu M, Wu Q. Downregulation of miR-181b-5p Inhibits the Viability, Migration, and Glycolysis of Gallbladder Cancer by Upregulating PDHX Under Hypoxia. Front Oncol. 2021;11:683725.
https://doi.org/10.3389/fonc.2021.683725
PMid:34485121 PMCid:PMC8415503
Loren P, Saavedra N, Saavedra K, De Godoy Torso N, Visacri MB, Moriel P, Salazar LA. Contribution of MicroRNAs in Chemoresistance to Cisplatin in the Top Five Deadliest Cancer: An Updated Review. Front Pharmacol. 2022;13:831099.
https://doi.org/10.3389/fphar.2022.831099
PMid:35444536 PMCid:PMC9015654
Carrington EM, Zhan Y, Brady JL, Zhang J-G, Sutherland RM, Anstee NS et al. Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo. Cell Death & Differentiation. 2017;24(5):878-88.
https://doi.org/10.1038/cdd.2017.30
PMid:28362427 PMCid:PMC5423112
Campana D, Coustan-Smith E, Manabe A, Buschle M, Raimondi SC, Behm FG et al. Prolonged survival of B-lineage acute lymphoblastic leukemia cells is accompanied by overexpression of bcl-2 protein. Blood. 1993;81(4):1025-31.
https://doi.org/10.1182/blood.V81.4.1025.1025
PMid:8427984
Lee EF, Harris TJ, Tran S, Evangelista M, Arulananda S, John T et al. BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival. Cell Death Dis. 2019;10(5):342.
https://doi.org/10.1038/s41419-019-1568-3
PMid:31019203 PMCid:PMC6482196
Ebrahimi E, Shabestari RM, Bashash D, Safa M. Synergistic apoptotic effect of Mcl-1 inhibition and doxorubicin on B-cell precursor acute lymphoblastic leukemia cells. Mol Biol Rep. 2022;49(3):2025-36.
https://doi.org/10.1007/s11033-021-07021-5
PMid:35138523
Gong JN, Khong T, Segal D, Yao Y, Riffkin CD, Garnier JM et al. Hierarchy for targeting prosurvival BCL2 family proteins in multiple myeloma: pivotal role of MCL1. Blood. 2016;128(14):1834-44.
https://doi.org/10.1182/blood-2016-03-704908
PMid:27465916
Pena-Blanco A, Garcia-Saez AJ. Bax, Bak and beyond - mitochondrial performance in apoptosis. FEBS J. 2018;285(3):416-31.
https://doi.org/10.1111/febs.14186
PMid:28755482
Kamali MJ, Salehi M, Fatemi S, Moradi F, Khoshghiafeh A, Ahmadifard M. Locked nucleic acid (LNA): A modern approach to cancer diagnosis and treatment. Exp Cell Res. 2023;423(1):113442.
https://doi.org/10.1016/j.yexcr.2022.113442
PMid:36521777
GrÜnweiler A, Hartmann RK. Locked nucleic acid oligonucleotides. Biodrugs. 2007;21:235-43.
https://doi.org/10.2165/00063030-200721040-00004
PMid:17628121
Stenvang J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S. The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Seminars in cancer biology. 2008;18(2):89-102.
https://doi.org/10.1016/j.semcancer.2008.01.004
PMid:18295505
Javanmard SH, Vaseghi G, Ghasemi A, Rafiee L, Ferns GA, Esfahani HN, Nedaeinia R. Therapeutic inhibition of microRNA-21 (miR-21) using locked-nucleic acid (LNA)-anti-miR and its effects on the biological behaviors of melanoma cancer cells in preclinical studies. Cancer Cell Int. 2020;20:384.
https://doi.org/10.1186/s12935-020-01394-6
PMid:32788885 PMCid:PMC7418194
Morinaga S, Nakamura Y, Atsumi Y, Murakawa M, Yamaoku K, Aoyama T et al. Locked Nucleic Acid In Situ Hybridization Analysis of MicroRNA-21 Predicts Clinical Outcome in Patients After Resection for Pancreatic Cancer Treated with Adjuvant Gemcitabine Monotherapy. Anticancer Res. 2016;36(3):1083-8.
Torres A, Kozak J, Korolczuk A, Rycak D, Wdowiak P, Maciejewski R, Torres K. Locked nucleic acid-inhibitor of miR-205 decreases endometrial cancer cells proliferation in vitro and in vivo. Oncotarget. 2016;7(45):73651-63.
https://doi.org/10.18632/oncotarget.12043
PMid:27655663 PMCid:PMC5342005
Torres A, Kozak J, Korolczuk A, Wdowiak P, Domańska-Glonek E, Maciejewski R, Torres K. In vitro and in vivo activity of miR-92a-locked nucleic acid (LNA)-inhibitor against endometrial cancer. BMC Cancer. 2016;16:1-10.
https://doi.org/10.1186/s12885-016-2867-z
PMid:27782822 PMCid:PMC5080781
Egawa H, Jingushi K, Ueda Y, Kitae K, Nakata W, Fujita K et al. Abstract A20: Innovative drug discovery for bladder cancer by miR-130 family seed-targeting locked nucleic acid. Cancer Research. 2016;76(6_Supplement):A20-A.
https://doi.org/10.1158/1538-7445.NONRNA15-A20
Cocetta V, Quagliariello V, Fiorica F, Berretta M, Montopoli M. Resveratrol as Chemosensitizer Agent: State of Art and Future Perspectives. International journal of molecular sciences. 2021;22(4):2049.
https://doi.org/10.3390/ijms22042049
PMid:33669559 PMCid:PMC7922064
Ashrafizadeh M, Zarrabi A, Mirzaei S, Hashemi F, Samarghandian S, Zabolian A et al. Gallic acid for cancer therapy: Molecular mechanisms and boosting efficacy by nanoscopical delivery. Food Chem Toxicol. 2021;157:112576.
https://doi.org/10.1016/j.fct.2021.112576
PMid:34571052
Kumar S, Bhandari C, Sharma P, Agnihotri N. Role of Piperine in Chemoresistance. In: Bharti AC, Aggarwal BB, editors Role of Nutraceuticals in Chemoresistance to Cancer Academic Press. 2018;2: 259-86.
https://doi.org/10.1016/B978-0-12-812373-7.00013-9
Tak JK, Lee JH, Park JW. Resveratrol and piperine enhance radiosensitivity of tumor cells. BMB reports. 2012;45(4):242-6.
https://doi.org/10.5483/BMBRep.2012.45.4.242
PMid:22531135
Cahyono AT, Louisa M, Permata TBM, Nuryadi E, Kodrat H, Wibowo H et al. The Potential of Gallic Acid as a Radiosensitizer on Human Prostate Cancer: A Systematic Review of Preclinical Studies. Malays J Med Health Sci. 2021;17(2): 2636-9346.
SAADI MI, Arandi N, Yaghobi R, Azarpira N, Geramizadeh B, Ramzi MJIJoH. Up-regulation of the miR-92a and miR-181a in patients with acute myeloid leukemia and their inhibition with locked nucleic acid (LNA)-antimiRNA. introducing c-kit as a new target gene. 2018;33(3):238-47.
https://doi.org/10.4999/uhod.183066
Iravani Saadi M, Arandi N, Yaghobi R, Azarpira N, Geramizadeh B, Ramzi M. Aberrant Expression of the miR-181b/miR-222 after Hematopoietic Stem Cell Transplantation in Patients with Acute Myeloid Leukemia. Indian journal of hematology & blood transfusion : an official journal of Indian Society of Hematology and Blood Transfusion. 2019;35(3):446-50.
https://doi.org/10.1007/s12288-018-01066-6
PMid:31388255 PMCid:PMC6646491
SAADI MI, Arandi N, Yaghobi R, Azarpira N, Geramizadeh B, Ramzi M. Up-Regulation of the miR-92a and miR-181a in Patients with Acute Myeloid Leukemia and their Inhibition with Locked Nucleic acid (LNA)-antimiRNA; Introducing c-Kit as a New Target Gene. Int J Hematol Oncol. 2018;34(3):238-47.
https://doi.org/10.4999/uhod.183066
Saadi MI, Beigi MAB, Ghavipishe M, Tahamtan M, Geramizadeh B, Zare A, Yaghoobi R. The circulating level of interleukins 6 and 18 in ischemic and idiopathic dilated cardiomyopathy. Journal of cardiovascular and thoracic research. 2019;11(2):132.
https://doi.org/10.15171/jcvtr.2019.23
PMid:31384408 PMCid:PMC6669430
Ramzi M. Up-Regulation of the miR-92a and miR-181a in Patients with Acute Myeloid Leukemia and their Inhibition with Locked Nucleic acid (LNA)-antimiRNA; Introducing c-Kit as a New Target Gene. Int J Hematol Oncol. 2018;28(4):238-47.
https://doi.org/10.4999/uhod.183066
Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S. Inhibition of microRNA function by antimiR oligonucleotides. Silence. 2012;3(1):1.
https://doi.org/10.1186/1758-907X-3-1
PMid:22230293 PMCid:PMC3306207
Stenvang J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S. The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol. 2008;18(2):89-102.
https://doi.org/10.1016/j.semcancer.2008.01.004
PMid:18295505
Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, Liu C et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature. 2015;518(7537):107-10.
https://doi.org/10.1038/nature13905
PMid:25409146 PMCid:PMC4367962
Liu E, Sun H, Wu J, Kuang Y. MiR-92b-3p regulates oxygen and glucose deprivation-reperfusion-mediated apoptosis and inflammation by targeting TRAF3 in PC12 cells. Exp Physiol. 2020;105(10):1792-801.
https://doi.org/10.1113/EP088708
PMid:32818322
Annibaldi A, Meier P. Checkpoints in TNF-Induced Cell Death: Implications in Inflammation and Cancer. Trends Mol Med. 2018;24(1):49-65.
https://doi.org/10.1016/j.molmed.2017.11.002
PMid:29217118
Nedaeinia R, Avan A, Ahmadian M, Nia SN, Ranjbar M, Sharifi M et al. Current Status and Perspectives Regarding LNA-Anti-miR Oligonucleotides and microRNA miR-21 Inhibitors as a Potential Therapeutic Option in Treatment of Colorectal Cancer. J Cell Biochem. 2017;118(12):4129-40.
https://doi.org/10.1002/jcb.26047
PMid:28401648
Javanmard SH, Vaseghi G, Ghasemi A, Rafiee L, Ferns GA, Esfahani HN, Nedaeinia R. Therapeutic inhibition of microRNA-21 (miR-21) using locked-nucleic acid (LNA)-anti-miR and its effects on the biological behaviors of melanoma cancer cells in preclinical studies. Cancer Cell Int. 2020;20(1):384.
https://doi.org/10.1186/s12935-020-01394-6
PMid:32788885 PMCid:PMC7418194
Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I. The dual role of tumor necrosis factor-alpha (TNF-alpha) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol (Dordr). 2020;43(1):1-18.
https://doi.org/10.1007/s13402-019-00489-1
PMid:31900901
Feng X, Zhang C, Yang Y, Hou D, Zhu A. Role of miR-181a in the process of apoptosis of multiple malignant tumors: A literature review. Adv Clin Exp Med. 2018;27(2):263-70.
https://doi.org/10.17219/acem/66842
PMid:29521071
Haque S, Vaiselbuh SR. Silencing of Exosomal miR-181a Reverses Pediatric Acute Lymphocytic Leukemia Cell Proliferation. Pharmaceuticals (Basel). 2020;13(9):241.
https://doi.org/10.3390/ph13090241
PMid:32932883 PMCid:PMC7558769
Banerjee S, Katiyar P, Kumar V, Saini SS, Varshney R, Krishnan V et al. Black pepper and piperine induce anticancer effects on leukemia cell line. Toxicol Res (Camb). 2021;10(2):169-82.
https://doi.org/10.1093/toxres/tfab001
PMid:33884168 PMCid:PMC8045589
Yoo ES, Choo GS, Kim SH, Woo JS, Kim HJ, Park YS et al. Antitumor and Apoptosis-inducing Effects of Piperine on Human Melanoma Cells. Anticancer Res. 2019;39(4):1883-92.
https://doi.org/10.21873/anticanres.13296
PMid:30952729
Iravani Saadi M, Moayedi J, Hosseini F, Rostamipour HA, Karimi Z, Rahimian Z et al. The Effects of Resveratrol, Gallic Acid, and Piperine on the Expression of miR-17, miR-92b, miR-181a, miR-222, BAX, BCL-2, MCL-1, WT1, c-Kit, and CEBPA in Human Acute Myeloid Leukemia Cells and Their Roles in Apoptosis. Biochem Genet. 2024;62(4):2958-74.
https://doi.org/10.1007/s10528-023-10582-8
PMid:38062274
Guo G, Shi F, Zhu J, Shao Y, Gong W, Zhou G et al. Piperine, a functional food alkaloid, exhibits inhibitory potential against TNBS-induced colitis via the inhibition of IkappaB-alpha/NF-kappaB and induces tight junction protein (claudin-1, occludin, and ZO-1) signaling pathway in experimental mice. Hum Exp Toxicol. 2020;39(4):477-91.
https://doi.org/10.1177/0960327119892042
PMid:31835924

Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Galen Medical Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.