Circadian Blood Pressure as An Indicator for Cardiovascular Complications
Circadian Blood Pressure as An Indicator for Cardiovascular Complications
DOI:
https://doi.org/10.31661/gmj.v14i.3604Keywords:
Circadian Rhythm; Blood Pressure Fluctuations; Cardiovascular Complications; Hypertension; Circadian DisruptionAbstract
The circadian variation in blood pressure is an important factor influencing various changes in the body over a 24-hour cycle and it has recently been in the focus of research for its ability to act as a sign of cardiovascular health. The following paper examines the interconnection, between the rhythmic pattern that characterizes blood pressure and how this affects cardiovascular events. It integrates newly appearing data that explain the applicability, prognostic, and therapeutic importance of those changes in recognizing and preventing the cardiovascular comorbidities. In fact, research confirms the affiliation between the daily fluctuation of circulatory pressure and the enhanced propensity for cardiovascular disorder, underlining the need for round-the-clock blood pressure regulation. Furthermore, there is clear evidence connecting disruption of the standard diurnal cycle, for instance due to abnormally sleeping or shift work, with increased vulnerability of hypertension and unfavorable cardiovascular outcomes. It is also seen that such patterns of reasons are possible if there is an innovative therapy for addressing cardiac ailments.
References
Vitaterna MH, Takahashi JS, Turek FW. Overview of circadian rhythms. Alcohol research & health. 2001;25(2):85.
Reddy S, Reddy V, Sharma S. Physiology, Circadian Rhythm. 2023 May 1. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. PMID: 30137792.
Rietveld WJ, Minors DS, Waterhouse JM. Circadian rhythms and masking: an overview. Chronobiology International. 1993 Jan 1;10(4):306-12.
https://doi.org/10.1080/07420529309059713
PMid:8403074
Shaw E, Tofler GH. Circadian rhythm and cardiovascular disease. Current atherosclerosis reports. 2009 Jul;11(4):289-95.
https://doi.org/10.1007/s11883-009-0044-4
PMid:19500492
Fuchs FD, Whelton PK. High blood pressure and cardiovascular disease. Hypertension. 2020 Feb;75(2):285-92.
https://doi.org/10.1161/HYPERTENSIONAHA.119.14240
PMid:31865786 PMCid:PMC10243231
Georgiopoulou VV, Kalogeropoulos AP, Raggi P, Butler J. Prevention, diagnosis, and treatment of hypertensive heart disease. Cardiology clinics. 2010 Nov 1;28(4):675-91.
https://doi.org/10.1016/j.ccl.2010.07.005
PMid:20937450
Jaeger BC, Chen L, Foti K, Hardy ST, Bress AP, Kane SP, Huang L, Herrick JS, Derington CG, Poudel B, Christenson A. Hypertension statistics for US adults: An open-source web application for analysis and visualization of national health and nutrition examination survey data. Hypertension. 2023 Jun;80(6):1311-20.
https://doi.org/10.1161/HYPERTENSIONAHA.123.20900
PMid:37082970 PMCid:PMC10424908
Mann S, Altman DG, Raftery EB, Bannister R. Circadian variation of blood pressure in autonomic failure. Circulation. 1983 Sep;68(3):477-83.
https://doi.org/10.1161/01.CIR.68.3.477
PMid:6872160
Shea SA, Hilton MF, Hu K, Scheer FA. Existence of an endogenous circadian blood pressure rhythm in humans that peaks in the evening. Circulation research. 2011 Apr 15;108(8):980-4.
https://doi.org/10.1161/CIRCRESAHA.110.233668
PMid:21474818 PMCid:PMC3086568
Millar-Craig M, Bishop C, Raftery EB. Circadian variation of blood-pressure. The Lancet. 1978 Apr 15;311(8068):795-7.
https://doi.org/10.1016/S0140-6736(78)92998-7
PMid:85815
Elliott WJ. Circadian variation in blood pressure: implications for the elderly patient. American journal of hypertension. 1999 Feb 1;12(S2):43S-9S.
https://doi.org/10.1016/S0895-7061(98)00279-9
PMid:10090294
Copinschi G, Van Reeth O, Van Cauter E. Biologic rhythms. Circadian, ultradian and seasonal rhythms. Presse Medicale (Paris, France: 1983). 1999 May 1;28(17):933-5.
Lefta M, Wolff G, Esser KA. Circadian rhythms, the molecular clock, and skeletal muscle. Current topics in developmental biology. 2011 Jan 1;96:231-71.
https://doi.org/10.1016/B978-0-12-385940-2.00009-7
PMid:21621073 PMCid:PMC4545213
Fagiani F, Di Marino D, Romagnoli A, Travelli C, Voltan D, Di Cesare Mannelli L, Racchi M, Govoni S, Lanni C. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal transduction and targeted therapy. 2022 Feb 8;7(1):41.
https://doi.org/10.1038/s41392-022-00899-y
PMid:35136018 PMCid:PMC8825842
Mills JN. Human circadian rhythms. Physiological reviews. 1966 Jan;46(1):128-71.
https://doi.org/10.1152/physrev.1966.46.1.128
PMid:5323500
Axelrod S, Saez L, Young MW. Studying circadian rhythm and sleep using genetic screens in Drosophila. Methods in enzymology. 2015 Jan 1;551:3-27.
https://doi.org/10.1016/bs.mie.2014.10.026
PMid:25662449
Pundir M, De Rosa MC, Lobanova L, Abdulmawjood S, Chen X, Papagerakis S, Papagerakis P. Structural properties and binding mechanism of DNA aptamers sensing saliva melatonin for diagnosis and monitoring of circadian clock and sleep disorders. Analytica Chimica Acta. 2023 Apr 22;1251:340971.
https://doi.org/10.1016/j.aca.2023.340971
PMid:36925277
FARR L, KEENE A, SAMSON D, MICHAEL A. Alterations in circadian excretion of urinary variables and physiological indicators of stress following surgery. Nursing Research. 1984 May 1;33(3):140-6.
https://doi.org/10.1097/00006199-198405000-00005
PMid:6563530
Beevers G, Lip GY, O'Brien E. The pathophysiology of hypertension. Bmj. 2001 Apr 14;322(7291):912-6.
https://doi.org/10.1136/bmj.322.7291.912
PMid:11302910 PMCid:PMC1120075
Mayet J, Hughes A. Cardiac and vascular pathophysiology in hypertension. Heart. 2003 Sep 1;89(9):1104-9.
https://doi.org/10.1136/heart.89.9.1104
PMid:12923045 PMCid:PMC1767863
DeMarco VG, Aroor AR, Sowers JR. The pathophysiology of hypertension in patients with obesity. Nature Reviews Endocrinology. 2014 Jun;10(6):364-76.
https://doi.org/10.1038/nrendo.2014.44
PMid:24732974 PMCid:PMC4308954
Suzumoto Y, Zucaro L, Iervolino A, Capasso G. Kidney and blood pressure regulation-latest evidence for molecular mechanisms. Clinical Kidney Journal. 2023 Jun;16(6):952-64.
https://doi.org/10.1093/ckj/sfad015
PMid:37261007 PMCid:PMC10229285
Drew RC, Charkoudian N, Park J. Neural control of cardiovascular function in black adults: implications for racial differences in autonomic regulation. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2020 Feb 1;318(2):R234-44.
https://doi.org/10.1152/ajpregu.00091.2019
PMid:31823675 PMCid:PMC7052601
Tsyrlin VA, Pliss MG, Galust'ian GE. Character of the baroreceptor reflexes in experimental arterial hypertension. Fiziologicheskii Zhurnal SSSR Imeni IM Sechenova. 1988 Nov 1;74(11):1564-70.
Stauss HM, Petitto CE, Rotella DL, Wong BJ, Sheriff DD. Very low frequency blood pressure variability is modulated by myogenic vascular function and is reduced in stroke-prone rats. Journal of hypertension. 2008 Jun 1;26(6):1127-37.
https://doi.org/10.1097/HJH.0b013e3282fb81c8
PMid:18475150
Hermida RC, Ayala DE, Fernández JR, Portaluppi F, Fabbian F, Smolensky MH. Circadian rhythms in blood pressure regulation and optimization of hypertension treatment with ACE inhibitor and ARB medications. American journal of hypertension. 2011 Apr 1;24(4):383-91.
https://doi.org/10.1038/ajh.2010.217
PMid:20930708
Cugini P, Manconi R, Serdoz R, Mancini A, Meucci T, Scavo D. Rhythm characteristics of plasma renin, aldosterone and cortisol in five subtypes of mesor-hypertension. Journal of Endocrinological Investigation. 1980 Apr;3:143-7.
https://doi.org/10.1007/BF03348241
PMid:6248590
Mochel JP, Fink M, Peyrou M, Desevaux C, Deurinck M, Giraudel JM, Danhof M. Chronobiology of the renin-angiotensin-aldosterone system in dogs: relation to blood pressure and renal physiology. Chronobiology International. 2013 Nov 1;30(9):1144-59.
https://doi.org/10.3109/07420528.2013.807275
PMid:23931032
Krauth MO, Saini J, Follenius M, Brandenberger G. Nocturnal oscillations of plasma aldosterone in relation to sleep stages. Journal of endocrinological investigation. 1990 Oct;13(9):727-35.
https://doi.org/10.1007/BF03349609
PMid:1963435
Campos LA, Cipolla-Neto J, Amaral FG, Michelini LC, Bader M, Baltatu OC. The Angiotensin‐melatonin axis. International Journal of Hypertension. 2013;2013(1):521783.
https://doi.org/10.1155/2013/521783
PMid:23365722 PMCid:PMC3556444
Sampson AK, Widdop RE, Denton KM. Sex‐differences in circadian blood pressure variations in response to chronic angiotensin II infusion in rats. Clinical and Experimental Pharmacology and Physiology. 2008 Apr;35(4):391-5.
https://doi.org/10.1111/j.1440-1681.2008.04884.x
PMid:18307727
Zhang Y, Agnoletti D, Blacher J, Safar ME. Blood pressure variability in relation to autonomic nervous system dysregulation: the X-CELLENT study. Hypertension Research. 2012 Apr;35(4):399-403.
https://doi.org/10.1038/hr.2011.203
PMid:22129516
Agnoli A, Manfredi M, Mossuto L, Piccinelli A. Relationship between circadian rhythms and blood pressure and the pathogenesis of cerebrovascular insufficiency. Revue Neurologique. 1975 Sep 1;131(9):597-606.
Guasti L, Simoni C, Mainardi LT, Cimpanelli M, Crespi C, Gaudio G, Clersy C, Grandi AM, Cerutti S, Venco A. Circadian blood pressure variability is associated with autonomic and baroreflex-mediated modulation of the sinoatrial node. Acta cardiologica. 2005 Jun 1;60(3):319-24.
https://doi.org/10.2143/AC.60.3.2005011
PMid:15999473
Hermida RC, Ayala DE, Portaluppi F. Circadian variation of blood pressure: the basis for the chronotherapy of hypertension. Advanced drug delivery reviews. 2007 Aug 31;59(9-10):904-22.
https://doi.org/10.1016/j.addr.2006.08.003
PMid:17659807
Higashi Y, Nakagawa K, Kimura M, Noma K, Hara K, Sasaki S, Goto C, Oshima T, Chayama K, Yoshizumi M. Circadian variation of blood pressure and endothelial function in patients with essential hypertension: a comparison of dippers and non-dippers. Journal of the American college of cardiology. 2002 Dec 4;40(11):2039-43.
https://doi.org/10.1016/S0735-1097(02)02535-4
PMid:12475467
Kollias GE, Stamatelopoulos KS, Papaioannou TG, Zakopoulos NA, Alevizaki M, Alexopoulos GP, Kontoyannis DA, Karga H, Koroboki E, Lekakis JP, Papamichael CM. Diurnal variation of endothelial function and arterial stiffness in hypertension. Journal of human hypertension. 2009 Sep;23(9):597-604.
https://doi.org/10.1038/jhh.2009.2
PMid:19242493
Yamamoto K, Takeda Y, Yamashita S, Sugiura T, Wakamatsu Y, Fukuda M, Ohte N, Dohi Y, Kimura G. Renal dysfunction impairs circadian variation of endothelial function in patients with essential hypertension. Journal of the American Society of Hypertension. 2010 Nov 1;4(6):265-71.
https://doi.org/10.1016/j.jash.2010.09.004
PMid:20980214
Piggins HD. Human clock genes. Annals of medicine. 2002 Jan 1;34(5):394-400.
https://doi.org/10.1080/078538902320772142
PMid:12452483
Vitaterna MH, Shimomura K, Jiang P. Genetics of circadian rhythms. Neurologic clinics. 2019 Aug 1;37(3):487-504.
https://doi.org/10.1016/j.ncl.2019.05.002
PMid:31256785 PMCid:PMC7202232
Ruben MD, Wu G, Smith DF, Schmidt RE, Francey LJ, Lee YY, Anafi RC, Hogenesch JB. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine. Science translational medicine. 2018 Sep 12;10(458):eaat8806.
https://doi.org/10.1126/scitranslmed.aat8806
PMid:30209245 PMCid:PMC8961342
Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP, Evans SJ, Choudary PV, Cartagena P, Barchas JD, Schatzberg AF. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proceedings of the National Academy of Sciences. 2013 Jun 11;110(24):9950-5.
https://doi.org/10.1073/pnas.1305814110
PMid:23671070 PMCid:PMC3683716
Masubuchi S, Honma S, Abe H, Ishizaki K, Namihira M, Ikeda M, Honma KI. Clock genes outside the suprachiasmatic nucleus involved in manifestation of locomotor activity rhythm in rats. European Journal of Neuroscience. 2000 Dec;12(12):4206-14.
https://doi.org/10.1111/j.1460-9568.2000.01313.x
PMid:11122332
Shimba S, Ogawa T, Hitosugi S, Ichihashi Y, Nakadaira Y, Kobayashi M, Tezuka M, Kosuge Y, Ishige K, Ito Y, Komiyama K. Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation. PloS one. 2011 Sep 22;6(9):e25231.
https://doi.org/10.1371/journal.pone.0025231
PMid:21966465 PMCid:PMC3178629
Wang XH, Zhang ZZ, Ou Y, Ning ZH, Yang JY, Huang H, Tang HF, Jiang ZS, Hu HJ. High-Salt Diet Inhibits the Expression of Bmal1 and Promotes Atrial Fibrosis and Vulnerability to Atrial Fibrillation in Dahl Salt-Sensitive Rats. American Journal of Hypertension. 2024 May 18:hpae069.
https://doi.org/10.1093/ajh/hpae069
PMid:38761040
Woon PY, Kaisaki PJ, Bragança J, Bihoreau MT, Levy JC, Farrall M, Gauguier D. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proceedings of the National Academy of Sciences. 2007 Sep 4;104(36):14412-7.
https://doi.org/10.1073/pnas.0703247104
PMid:17728404 PMCid:PMC1958818
Costello HM, Crislip GR, Cheng KY, Lynch IJ, Juffre A, Bratanatawira P, Mckee A, Thelwell RS, Mendez VM, Wingo CS, Douma LG. Adrenal-specific KO of the circadian clock protein BMAL1 alters blood pressure rhythm and timing of eating behavior. Function. 2023;4(2):zqad001.
https://doi.org/10.1093/function/zqad001
PMid:36778748 PMCid:PMC9909366
Czupryniak L, Młynarski W, Pawłowski M, Saryusz-Wolska M, Borkowska A, Klich I, Bodalski J, Loba J. Circadian blood pressure variation in normotensive type 2 diabetes patients and angiotensin converting enzyme polymorphism. diabetes research and clinical practice. 2008 Jun 1;80(3):386-91.
https://doi.org/10.1016/j.diabres.2008.01.007
PMid:18291549
Kulah E, Dursun A, Aktunc E, Acikgoz S, Aydin M, Can M, Dursun A. Effects of angiotensin-converting enzyme gene polymorphism and serum vitamin D levels on ambulatory blood pressure measurement and left ventricular mass in Turkish hypertensive population. Blood Pressure Monitoring. 2007 Aug 1;12(4):207-13.
https://doi.org/10.1097/MBP.0b013e32813fa371
PMid:17625392
Kostadinova ES, Miteva LD, Stanilova SA. ACE serum level and I/D gene polymorphism in children with obstructive uropathies and other congenital anomalies of the kidney and urinary tract. Nephrology. 2017 Aug;22(8):609-16.
https://doi.org/10.1111/nep.12824
PMid:27206329
Morris CJ, Purvis TE, Hu K, Scheer FA. Circadian misalignment increases cardiovascular disease risk factors in humans. Proceedings of the National Academy of Sciences. 2016 Mar 8;113(10):E1402-11.
https://doi.org/10.1073/pnas.1516953113
PMid:26858430 PMCid:PMC4790999
Navarro-Ledesma S, Gonzalez-Muñoz A, García Ríos MC, de la Serna D, Pruimboom L. Circadian variation of blood pressure in patients with chronic musculoskeletal pain: a cross-sectional study. International Journal of Environmental Research and Public Health. 2022 May 26;19(11):6481.
https://doi.org/10.3390/ijerph19116481
PMid:35682067 PMCid:PMC9180615
Itana TB, Tadelle A, Legesse BT, Hailu AM, Abebe ST. Circadian blood pressure variability and associated factors among chronic kidney disease patients at Nekemte Town public Hospitals, West Oromia, Ethiopia: a comparative cross-sectional study. BMJ open. 2024 Aug 1;14(8):e083014.
https://doi.org/10.1136/bmjopen-2023-083014
PMid:39209493 PMCid:PMC11367293
García-Ortiz L, Recio-Rodríguez JI, Puig-Ribera A, Lema-Bartolomé J, Ibáñez-Jalón E, González-Viejo N, Guenaga-Saenz N, Agudo-Conde C, Patino-Alonso MC, Gomez-Marcos MA, EVIDENT Group. Blood pressure circadian pattern and physical exercise assessment by accelerometer and 7-day physical activity recall scale. American journal of hypertension. 2014 May 1;27(5):665-73.
https://doi.org/10.1093/ajh/hpt159
PMid:23975330
Sun Y, Zhang Y, Liu F, Liu X, Hidru TH, Yang X, Jiang Y. The relationship between circadian rhythm of blood pressure and vascular dysfunction in essential hypertension. Clinical and Experimental Hypertension. 2023 Dec 31;45(1):2229535.
https://doi.org/10.1080/10641963.2023.2229535
PMid:37358045
Kitamura T, Onishi K, Dohi K, Okinaka T, Ito M, Isaka N, Nakano T. Circadian rhythm of blood pressure is transformed from a dipper to a non-dipper pattern in shift workers with hypertension. Journal of human hypertension. 2002 Mar;16(3):193-7.
https://doi.org/10.1038/sj.jhh.1001328
PMid:11896509
Patterson PD, Weiss LS, Weaver MD, Salcido DD, Opitz SE, Okerman TS, Smida TT, Martin SE, Guyette FX, Martin-Gill C, Callaway CW. Napping on the night shift and its impact on blood pressure and heart rate variability among emergency medical services workers: study protocol for a randomized crossover trial. Trials. 2021 Dec;22:1-5.
https://doi.org/10.1186/s13063-021-05161-4
PMid:33726840 PMCid:PMC7962082
Shafer BM, Kogan SA, McHill AW. Pressure building against the clock: the impact of circadian misalignment on blood pressure. Current Hypertension Reports. 2024 Jan;26(1):31-42.
https://doi.org/10.1007/s11906-023-01274-0
PMid:37837518 PMCid:PMC10916535
MUNAKATA M, IMAI Y, HASHIMOTO J, SAKUMA H, SEKINO H, ABE K, YOSHINAGA K. The influence of antihypertensive agents on circadian rhythms of blood pressure and heart rate in patients with essential hypertension. The Tohoku Journal of Experimental Medicine. 1992;166(2):217-27.
https://doi.org/10.1620/tjem.166.217
PMid:1348880
Voogel AJ, van der Meulen JH, van Montfrans GA. Effects of antihypertensive drugs on the circadian blood pressure profile. Journal of cardiovascular pharmacology. 1996 Sep 1;28(3):463-9.
https://doi.org/10.1097/00005344-199609000-00017
PMid:8877595
Matsumura K, Abe I, Fukuhara M, Fujii K, Ohya Y, Okamura K, Fujishima M. Modulation of circadian rhythm of blood pressure by cortisol in patients with hypopituitarism. Clinical and Experimental Hypertension. 1994 Jan 1;16(1):55-66.
https://doi.org/10.3109/10641969409068584
PMid:8136775
Dai W, Wagh SA, Chettiar S, Zhou GD, Roy R, Qiao X, Visich PS, Hoffman EP. Blunted circadian cortisol in children is associated with poor cardiovascular health and may reflect circadian misalignment. Psychoneuroendocrinology. 2021 Jul 1;129:105252.
https://doi.org/10.1016/j.psyneuen.2021.105252
PMid:34049197
Roy R, Dang UJ, Huffman KM, Alayi T, Hathout Y, Nagaraju K, Visich PS, Hoffman EP. A population-based study of children suggests blunted morning cortisol rhythms are associated with alterations of the systemic inflammatory state. Psychoneuroendocrinology. 2024 Jan 1;159:106411.
https://doi.org/10.1016/j.psyneuen.2023.106411
PMid:37820505
Scheer FA, Van Montfrans GA, van Someren EJ, Mairuhu G, Buijs RM. Daily nighttime melatonin reduces blood pressure in male patients with essential hypertension. Hypertension. 2004 Feb 1;43(2):192-7.
https://doi.org/10.1161/01.HYP.0000113293.15186.3b
PMid:14732734
Jonas M, Garfinkel D, Zisapel N, Laudon M, Grossman E. Impaired nocturnal melatonin secretion in non-dipper hypertensive patients. Blood pressure. 2003 Jan 1;12(1):19-24.
Smolensky MH, Hermida RC, Portaluppi F. Circadian mechanisms of 24-hour blood pressure regulation and patterning. Sleep medicine reviews. 2017 Jun 1;33:4-16.
https://doi.org/10.1016/j.smrv.2016.02.003
PMid:27076261
Willich SN, Jimenez AH, Tofler GH, DeSilva RA, Muller JE. Pathophysiology and triggers of acute myocardial infarction: clinical implications. The clinical investigator. 1992 Feb;70:S73-8. Mogabgab O, Giugliano RP, Sabatine MS, Cannon CP, Mohanavelu S, Wiviott SD, Antman EM, Braunwald E. Circadian variation in patient characteristics and outcomes in ST-segment elevation myocardial infarction. Chronobiology International. 2012 Dec 1;29(10):1390-6.
https://doi.org/10.3109/07420528.2012.728658
PMid:23131034
Che Y, Shimizu Y, Hayashi T, Suzuki J, Pu Z, Tsuzuki K, Narita S, Shibata R, Murohara T. Chronic circadian rhythm disorder induces heart failure with preserved ejection fraction-like phenotype through the Clock-sGC-cGMP-PKG1 signaling pathway. Scientific Reports. 2024 May 11;14(1):10777.
https://doi.org/10.1038/s41598-024-61710-2
PMid:38734687 PMCid:PMC11088651
Caruana MP, Lahiri A, Cashman PM, Altman DG, Raftery EB. Effects of chronic congestive heart failure secondary to coronary artery disease on the circadian rhythm of blood pressure and heart rate. The American journal of cardiology. 1988 Oct 1;62(10):755-9.
https://doi.org/10.1016/0002-9149(88)91217-9
PMid:3421176
Harkin DW, O'Donnell M, Butler J, Blair PH, Hood JM, D'Sa AB. Periods of low atmospheric pressure are associated with high abdominal aortic aneurysm rupture rates in Northern Ireland. The Ulster medical journal. 2005 Sep;74(2):113.
Seguchi M, Wada H, Sakakura K, Nakagawa T, Ibe T, Ikeda N, Sugawara Y, Ako J, Momomura SI. Circadian Variation of Acute Aortic Dissection Significance of Blood Pressure Dipping Pattern. International Heart Journal. 2015;56(3):324-8.
https://doi.org/10.1536/ihj.14-328
PMid:25902880
Burnier M, Kreutz R, Narkiewicz K, Kjeldsen S, Oparil S, Mancia G. Circadian variations in blood pressure and their implications for the administration of antihypertensive drugs: is dosing in the evening better than in the morning?. Journal of hypertension. 2020 Aug 1;38(8):1396-406.
https://doi.org/10.1097/HJH.0000000000002532
PMid:32618895
Zhang L, Sabeh M, Jain MK. Circadian rhythm and cardiovascular disorders. ChronoPhysiology and Therapy. 2014 Jul 8:27-40.
https://doi.org/10.2147/CPT.S44805
Sirgo MA, Mills RJ, DeQuattro V. Effects of antihypertensive agents on circadian blood pressure and heart rate patterns. Archives of internal medicine. 1988 Dec 1;148(12):2547-52.
https://doi.org/10.1001/archinte.1988.00380120017005
PMid:3058070
Peixoto AJ, White WB. Circadian blood pressure: clinical implications based on the pathophysiology of its variability. Kidney international. 2007 May 1;71(9):855-60.
https://doi.org/10.1038/sj.ki.5002130
PMid:17377513
Giles TD. Circadian rhythm of blood pressure and the relation to cardiovascular events. Journal of Hypertension. 2006 Apr 1;24:S11-6.
https://doi.org/10.1097/01.hjh.0000220098.12154.88
PMid:16601555

Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Galen Medical Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.