Effect of Photobiomodulation with 980nm Diode Laser and Vitamin D on Proliferation and Osteoblastic Differentiation of Periodontal Ligament Stem Cells
Effects of Photobiomodulation and Vitamin D on Differentiation of StemCells
Keywords:
Photobiomodulation; Low Level Light Therapy; Vitamin D; Periodontal Ligament Stem Cells; Osteogenic DifferentiationAbstract
Background: It has been established that periodontal ligament stem cells (PDLSCs) have a significant impact on restoration of periodontal tissues, and optimizing their differentiation into osteoblast is critical to improving clinical outcomes in periodontal regeneration. Different non-invasive method, including photobiomodulation (PBM) and vitamin D supplementation, hold potential for enhancing Osteoblastic Differentiation. the present work aimed at investigating the synergic impact of PBM by the use of a 980 nm diode laser and vitamin D on the osteogenic differentiation and cell viability of PDLSCs. Materials and Methods: Cultured PDLSCs were separated into six groups: 1. Control (no treatment), 2. Vitamin D, 3. PBM at 2 J/cm², 4. PBM at 2 J/cm² with Vitamin D (VD- 2 J/cm²), 5. PBM at 4 J/cm², and 6. PBM at 4 J/cm² with Vitamin D (VD- 4 J/cm²). We evaluated cell viability using the methyl thiazolyl tetrazolium assay at 24 and 72 hours post-irradiation. For the osteogenic differentiation assessment, we measured expression of osteogenic genes, including Runt-related transcription factor 2(RUNX2), Osteocalcin (OCN), alkaline phosphatase (ALP), and Osteopontin(OPN), through quantitative reverse transcription-polymerase chain reaction. Additionally, Alizarin red staining was utilized for detecting calcification. Results: All study groups demonstrated enhanced viability in comparison with the control at both time intervals, with the exception of the vitamin D group at 72 hours. The PBM (4 J/cm²) and VD-2 J/cm² groups exhibited the highest levels of cell viability, respectively. All study groups exhibited increased expression of osteogenic genes in comparison with control group. The largest values were associated with groups that included both vitamin D and PBM. The calcification rate was markedly elevated in the VD-2 J/cm², VD-4 J/cm², and VD+OM groups, respectively. Conclusion: The integration of photobiomodulation with vitamin D has been shown to improve mineralization and accelerate the osteogenic differentiation of PDLSCs, resulting in a synergistic effect.
References
Jensen AT, Jensen SS, Worsaae N. Complications related to bone augmentation procedures of localized defects in the alveolar ridge A retrospective clinical study. Oral and maxillofacial surgery. 2016;20:115-22.
https://doi.org/10.1007/s10006-016-0551-8
PMid:26932593
Atieh MA, Alnaqbi M, Abdunabi F, Lin L, Alsabeeha NH. Alveolar ridge preservation in extraction sockets of periodontally compromised teeth: a systematic review and meta-analysis. Clinical oral implants research. 2022;33(9):869-85.
https://doi.org/10.1111/clr.13975
PMid:35818637
Suárez-López del Amo F, Monje A. Efficacy of biologics for alveolar ridge preservation/reconstruction and implant site development: An American Academy of Periodontology best evidence systematic review. Journal of periodontology. 2022;93(12):1827-47.
https://doi.org/10.1002/JPER.22-0069
PMid:35841608 PMCid:PMC10092438
Urban I, Montero E, Sanz-Sánchez I, Palombo D, Monje A, Tommasato G, Chiapasco M. Minimal invasiveness in vertical ridge augmentation. Periodontology 2000. 2023;91(1):126-44.
https://doi.org/10.1111/prd.12479
PMid:36700299
Liu Y, Guo L, Li X, Liu S, Du J, Xu J et al. Challenges and tissue engineering strategies of periodontal-guided tissue regeneration. Tissue Engineering Part C: Methods. 2022;28(8):405-19.
https://doi.org/10.1089/ten.tec.2022.0106
PMid:35838120
Aly RM. Current state of stem cell-based therapies: an overview. Stem cell investigation. 2020;7:8.
https://doi.org/10.21037/sci-2020-001
PMid:32695801 PMCid:PMC7367472
Xinaris C, Morigi M, Benedetti V, Imberti B, Fabricio A, Squarcina E et al. A novel strategy to enhance mesenchymal stem cell migration capacity and promote tissue repair in an injury specific fashion. Cell transplantation. 2013;22(3):423-36.
https://doi.org/10.3727/096368912X653246
PMid:22889699
Firoozi P, Amiri MA, Soghli N, Farshidfar N, Hakimiha N, Fekrazad R. The role of photobiomodulation on dental-derived stem cells in regenerative dentistry: A comprehensive systematic review. Current Stem Cell Research & Therapy. 2024;19(4):559-86.
https://doi.org/10.2174/1574888X17666220810141411
PMid:35950251
Gan L, Liu Y, Cui D, Pan Y, Zheng L, Wan M. Dental tissue-derived human mesenchymal stem cells and their potential in therapeutic application. Stem cells international. 2020;2020(1):8864572.
https://doi.org/10.1155/2020/8864572
PMid:32952572 PMCid:PMC7482010
Queiroz A, Albuquerque-Souza E, Gasparoni LM, de França BN, Pelissari C, Trierveiler M, Holzhausen M. Therapeutic potential of periodontal ligament stem cells. World journal of stem cells. 2021;13(6):605.
https://doi.org/10.4252/wjsc.v13.i6.605
PMid:34249230 PMCid:PMC8246246
Safari AH, Sadat Mansouri S, Iranpour B, Hodjat M, Hakimiha N. An in vitro study on the effects of photobiomodulation by diode lasers (red, infrared, and red-infrared combination) on periodontal ligament mesenchymal stem cells treated with bisphosphonates. Photochemistry and Photobiology. 2024;100(5):1399-1407.
https://doi.org/10.1111/php.13905
PMid:38217350
Kim SH, Kim KH, Seo BM, Koo KT, Kim TI, Seol YJ et al. Alveolar bone regeneration by transplantation of periodontal ligament stem cells and bone marrow stem cells in a canine peri-implant defect model: a pilot study. Journal of periodontology. 2009;80(11):1815-23.
https://doi.org/10.1902/jop.2009.090249
PMid:19905951
Qiu J, Wang X, Zhou H, Zhang C, Wang Y, Huang J et al. Enhancement of periodontal tissue regeneration by conditioned media from gingiva-derived or periodontal ligament-derived mesenchymal stem cells: a comparative study in rats. Stem cell research & therapy. 2020;11:1-15.
https://doi.org/10.1186/s13287-019-1546-9
PMid:32014015 PMCid:PMC6998241
De Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE Journal of selected topics in quantum electronics. 2016;22(3):348-64.
https://doi.org/10.1109/JSTQE.2016.2561201
PMid:28070154 PMCid:PMC5215870
Sisakhtnezhad S, Alimoradi E, Akrami H. External factors influencing mesenchymal stem cell fate in vitro. European journal of cell biology. 2017;96(1):13-33.
https://doi.org/10.1016/j.ejcb.2016.11.003
PMid:27988106
Mohammadi F, Bahrami N, Nazariyan M, Mohamadnia A, Hakimiha N, Nazariyan A. Effect of photobiomodulation therapy on differentiation of mesenchymal stem cells derived from impacted third molar tooth into neuron-like cells. Photochemistry and Photobiology. 2022;98(6):1434-40.
https://doi.org/10.1111/php.13627
PMid:35363889
van de Peppel J, van Leeuwen JP. Vitamin D and gene networks in human osteoblasts. Frontiers in Physiology. 2014;5:137.
https://doi.org/10.3389/fphys.2014.00137
PMid:24782782 PMCid:PMC3988399
Woeckel V, Van der Eerden B, Schreuders-Koedam M, Eijken M, Van Leeuwen J. 1α, 25-dihydroxyvitamin D3 stimulates activin A production to fine-tune osteoblast-induced mineralization. Journal of cellular physiology. 2013;228(11):2167-74.
https://doi.org/10.1002/jcp.24388
PMid:23589129
Khorsandi K, Hosseinzadeh R, Abrahamse H, Fekrazad R. Biological responses of stem cells to photobiomodulation therapy. Current Stem Cell Research & Therapy. 2020;15(5):400-13.
https://doi.org/10.2174/1574888X15666200204123722
PMid:32013851
-Soto JR, Anthias C, Madrigal A, Snowden JA. Insights into the role of vitamin D as a biomarker in stem cell transplantation. Frontiers in immunology. 2020;11:966.
https://doi.org/10.3389/fimmu.2020.00966
PMid:32582151 PMCid:PMC7295104
Abdelgawad LM, Salah N, Sabry D, Abdelgwad M. Efficacy of photobiomodulation and vitamin D on odontogenic activity of human dental pulp stem cells. Journal of Lasers in Medical Sciences. 2021;12:e30.
https://doi.org/10.34172/jlms.2021.30
PMid:34733753 PMCid:PMC8558714
Soltani HD, Tehranchi M, Taleghani F, Saberi S, Hodjat M. In Vitro Effects of Photobiomodulation with 660 Nm Laser and Vitamin D on Osteoblastic Differentiation of Human Periodontal Ligament Stem Cells: Photobiomodulation Laser and Vitamin D on Osteoblastic Differentiation of Periodontal Ligament Stem Cells. Galen Medical Journal. 2024;13:e3312-e.
https://doi.org/10.31661/gmj.v13i.3312
PMid:39224548 PMCid:PMC11368476
Etemadi A, Faghih A, Chiniforush N. Effects of photobiomodulation therapy with various laser wavelengths on proliferation of human periodontal ligament mesenchymal stem cells. Photochemistry and Photobiology. 2022;98(5):1182-9.
https://doi.org/10.1111/php.13588
PMid:34970994
Abdelgawad LM, Abdelaziz AM, Sabry D, Abdelgwad M. Influence of photobiomodulation and vitamin D on osteoblastic differentiation of human periodontal ligament stem cells and bone-like tissue formation through enzymatic activity and gene expression. Biomolecular concepts. 2020;11(1):172-81.
https://doi.org/10.1515/bmc-2020-0016
PMid:34233429
Wu J-Y, Chen C-H, Yeh L-Y, Yeh M-L, Ting C-C, Wang Y-H. Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate. International Journal of Oral Science. 2013;5(2):85-91.
https://doi.org/10.1038/ijos.2013.38
PMid:23788285 PMCid:PMC3707076
Wang Y, Huang Y-Y, Wang Y, Lyu P, Hamblin MR. Photobiomodulation of human adipose-derived stem cells using 810 nm and 980 nm lasers operates via different mechanisms of action. Biochimica et Biophysica Acta (BBA)-General Subjects. 2017;1861(2):441-9.
https://doi.org/10.1016/j.bbagen.2016.10.008
PMid:27751953 PMCid:PMC5195895
Gholami L, Parsamanesh G, Shahabi S, Jazaeri M, Baghaei K, Fekrazad R. The effect of laser photobiomodulation on periodontal ligament stem cells. Photochemistry and Photobiology. 2021;97(4):851-9.
https://doi.org/10.1111/php.13367
PMid:33305457
Wang Z, Tian T, Chen L, Zhang C, Zheng X, Zhong N et al. 980 nm Photobiomodulation Promotes Osteo/Odontogenic Differentiation of the Stem Cells from Human Exfoliated Deciduous Teeth Via the Cross talk Between BMP/Smad and Wnt/β-Catenin Signaling Pathways. Photochemistry and photobiology. 2023;99(4):1181-92.
https://doi.org/10.1111/php.13751
PMid:36437584
Hong H-H, Hong A, Yen T-H, Wang Y-L. Potential Osteoinductive Effects of Calcitriol on the m-RNA of Mesenchymal Stem Cells Derived from Human Alveolar Periosteum. BioMed research international. 2016;2016(1):3529561.
https://doi.org/10.1155/2016/3529561
PMid:28105418 PMCid:PMC5220409
Alhazmi YA, Aljabri MY, Raafat SN, Gomaa SM, Shamel M. Exploring the effects of low-level laser therapy on the Cytocompatibility and Osteo/Odontogenic potential of gingival-derived mesenchymal stem cells: preliminary report. Applied Sciences. 2023;13(14):8490.
https://doi.org/10.3390/app13148490
Choi E-J, Yim J-Y, Koo K-T, Seol Y-J, Lee Y-M, Ku Y et al. Biological effects of a semiconductor diode laser on human periodontal ligament fibroblasts. Journal of Periodontal & Implant Science. 2010;40(3):105-10.
https://doi.org/10.5051/jpis.2010.40.3.105
PMid:20607054 PMCid:PMC2895515
Bouvet-Gerbettaz S, Merigo E, Rocca JP, Carle GF, Rochet N. Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery. 2009;41(4):291-7.
https://doi.org/10.1002/lsm.20759
PMid:19347941
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Galen Medical Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.